Araştırma Makalesi
BibTex RIS Kaynak Göster

Investigation of the Effect of Different Approaches in Predicting the Surface Response of Dynamic Behavior in Low Plasticitiy Clay Soils

Yıl 2025, Cilt: 25 Sayı: 5, 1138 - 1146, 01.10.2025
https://doi.org/10.35414/akufemubid.1626252

Öz

The dynamic behavior of soft soils constitutes a critical area of geotechnical engineering and earthquake engineering. The aim of the study is to investigate the effect of different approaches in predicting the surface response of dynamic behavior in soft soils. The change of soil properties under dynamic loads is investigated by finite element models. The dynamic behavior of soft soil samples modeled as one dimensional (1D) and two dimensional (2D) was investigated using PLAXIS and DEEPSOIL software. To reveal the effects of 1D and 2D approaches on the surface response, various parameters were analyzed in detail. The variations in the surface response with the changes in soil properties was obtained and it was seen that the soil properties is a critical factor in the accurate prediction of the surface response. The results also showed that the model dimension should be taken into account in predicting the dynamic behavior in soft soils and that this effect is important both in modeling approaches and in engineering solutions in the field. These findings provide important data that will contribute to the safer and more accurate implementations of geotechnical designs.

Kaynakça

  • Amorosi, A., Boldini, D. and di Lernia, A., (2016) Seismic ground response at Lotung: Hysteretic elasto-plastic-based 3D analyses. Soil Dynamics and Ear, 85, 44-61. https://doi.org/10.1016/j.soildyn.2016.03.001
  • Amoroso, S., Gaudiosi, I., Tallini, M., Di Giulio, G. and Milana, G., (2018). 2D site response analysis of a cultural heritage: the case study of the site of Santa Maria di Collemaggio Basilica (L’Aquila, Italy). Bulletin of Earthquake Engineering, 16(10), 4443-4466. https://doi.org/10.1007/s10518-018-0356-2
  • Astroza, R., Pastén, C., Ochoa-Cornejo, F., (2017). Site response analysis using one-dimensional equivalent-linear method and Bayesian filtering. Computers and Geotechnics, 89, 43-54. https://doi.org/10.1016/j.compgeo.2017.04.004
  • Bakır, B.S., Özkan, M.Y. and Cılız, S., (2002). Effects of basin edge on the distribution of damage in 1995 Dinar, Turkey earthquake. Soil Dynamics and Earthquake Engineering, 22(4), 335-345. https://doi.org/10.1016/S0267-7261(02)00015-5
  • Bolisetti, C., Whittaker, A.S., Mason, H.B., Almufti, I. Willford, M., (2014). Equivalent linear and nonlinear site response analysis for design and risk assessment of safety-related nuclear structures. Nuclear Engineering and Design, 275, 107-121. https://doi.org/10.1016/j.nucengdes.2014.04.033
  • Civelekler, E., Afacan, K. B. and Okur, D. V., (2024). Effect of site specific soil characteristics on the nonlinear ground response analysis and comparison of the results with equivalent linear analysis, Journal of Applied Geophysics, 220, 105250. https://doi.org/10.1016/j.jappgeo.2023.105250
  • Ci̇velekler, E., Okur, V.D. and Afacan, K.B., (2021). A study of the local site effects on the ground response for the city of Eskişehir, Turkey. Bulletin of Engineering Geology and the Environment 80, 5589–5607. https://doi.org/10.1007/s10064-021-02285-4
  • Cook, R.D., (1995). Finite Element Modeling for Stress Analysis. New York, Wiley, 1-15.
  • Craig, R.G., (2002). Powers, J.M., Restorative Dental Materials, 11th ed. St. Louis, Mosby, 287-327.
  • Darendeli, M.B., (2001). Development of a New Family of Normalized Modulus Reduction and Material Damping Curves. Ph.D. Thesis, The University of Texas at Austin, Austin, TX, USA.
  • Fish, J., Belytschko, T., (2007). A First Course in Finite Elements. John Wiley & Sons, Chichester, England, 1-9. Gücek, S., Afacan, K. B. and Zorluer, İ., (2023). The Facts of Soil Amplification and Liquefaction After the Earthquakes of February 6, 2023: Examples of Antakya, Gölbaşı, Türkoğlu. Afyon Kocatepe University Journal of Science and Engineering, 23(3), 740-752. https://doi.org/10.35414/akufemubid.1298648
  • Hashash, Y.M.A., Musgrove, M.I., Harmon, J.A., Ilhan, O., Groholski, D.R., Philips, C.A. and Park, D., (2020). DEEPSOIL 7.0, User Manual. Board of Trustees of University of Illinois at Urbana-Champaign. Urbana, IL, Board of Trustees of University of Illinois at Urbana-Champaign.
  • Idriss, I.M., Seed, H.B., (1967). Response of horizontal soil layers during earthquakes. Soil Mechanics and Bituminous Materials Research Laboratory, University of California, Berkeley, California, USA. Kramer, S.L., (1996). Geotechnical Earthquake Engineering. 1st ed. New Jersey, USA, Prentice Hall. Liu, G.R., Quek, S.S., (2003). The Finite Element Method: a Practical Course, Ed: Liu G.R. and Quek S.S. Butterworth Heinemann, Oxford, 1-11.
  • Luo, R., Yang, M. and Li, W., (2018). Assessments of kinematic bending moment at pile head in seismic area. Journal of Earthquake Engineering, 25(5), 970-991. https://doi.org/10.1080/13632469.2018.1550024
  • Makra, K. and Chávez-García, F.J., (2016). Site effects in 3D basins using 1D and 2D models: an evaluation of the differences based on simulations of the seismic response of Euroseistest. Bulletin of Earthquake Engineering, 14(4), 1177-1194. https://doi.org/10.1007/s10518-015-9862-7
  • Matasovic, N, Hashash, Y.M.A., (2012). “Practices and Procedures for Site-Specific Evaluations of Earthquake Ground Motions (A Synthesis of Highway Practice)”. National Cooperative Highway Research Program, Transportation Research Board, Washington, D.C., USA, Scientific Report, 78.
  • Romeed, S.A, Fok, S.L, Wilson, N.H.F., (2006). “A Comparison of 2D and 3D finite element analysis of a restored tooth”. Journal of Oral Rehabilitation, 33: 209-215. https://doi.org/10.1111/j.1365-2842.2005.01552.x
  • Sahinkaya, F., (2016). Numerical Investigation the Behavior Under Seismic Loads Improved Ground with Floatıig Stone Columns. Bozok University, Graduate School of Natural and Applied Sciences, Department of Civil Engineering, Master of Science Thesis, Yozgat.
  • Smerzini, C., Paolucci, R. and Stupazzini, M., (2011). Comparison of 3D, 2D and 1D numerical approaches to predict long period earthquake ground motion in the Gubbio plain, Central Italy. Bulletin of Earthquake Engineering, 9(6), 2007-2029. https://doi.org/10.1007/s10518-011-9289-8
  • Stanko, D., Gülerce, Z., Markušić, S., Šalić, R., (2019). Evaluation of the site amplification factors estimated by equivalent linear site response analysis using time series and random vibration theory based approaches. Soil Dynamics and Earthquake Engineering, 117, 16-29. https://doi.org/10.1016/j.soildyn.2018.11.007
  • Tabatabaiefar, H.R.S, Fatahi, B. and Samali, B., (2014). An empirical relationship to determine lateral seismic response of mid-rise building frames under influence of soil-structure interaction. The Structural Design of Tall and Special Buildings, 23(7), 526-548. https://doi.org/10.1002/tal.1058
  • Turkish Building Earthquake Code (TEC 2018) (2018) Ministry of Public Works and Settlement. Specification for Structures to be Built in Disaster Areas. Government of Republic of Turkey. http://www.resmigazete.gov.tr/eskiler/2018/03/20180318M1-2.htm
  • Wolf, J.P., (1985). Dynamic Soil-Structure Interaction. 1st ed. New Jersey, USA, Prentice Hall.

Düşük Plastisiteli Kil Zeminlerde Dinamik Davranışın Yüzey Tepkisinin Tahmininde Boyut Etkisinin Araştırılması

Yıl 2025, Cilt: 25 Sayı: 5, 1138 - 1146, 01.10.2025
https://doi.org/10.35414/akufemubid.1626252

Öz

Yumuşak zeminlerin dinamik davranışı, geoteknik mühendisliği ve deprem mühendisliği açısından kritik bir çalışma alanı oluşturmaktadır. Bu çalışma, yumuşak zeminlerde dinamik davranışın yüzey tepkisinin tahmin edilmesinde boyut etkisinin rolünü araştırmayı amaçlamaktadır. Dinamik yükler altında zemin özelliklerinin değişimi hem sonlu elemanlar yöntemi ile modellemeler hem de deneysel yaklaşımlar ile ele alınmaktadır. Sonlu eleman analizleri ve bilgisayar destekli mühendislik yöntemleri, günümüz araştırma ve geliştirme projelerinde kritik bir rol üstlenmektedir. Araştırma kapsamında, 1 boyutlu ve 2 boyutlu olarak modellenen yumuşak zemin örneklerinin dinamik davranışı PLAXIS ve DEEPSOIL programları kullanılarak incelenmiştir. Boyut etkisinin yüzey tepkisi üzerindeki etkilerini ortaya koyabilmek için çeşitli parametreler detaylı olarak analiz edilmiştir. Elde edilen bulgular, zemin özelliklerinin değişiminin yüzey tepkisinde ne tür değişimler yaptığını ve bu değişimin yüzey tepkisinin doğru tahmininde kritik bir faktör olduğunu göstermiştir. Sonuçlar, boyut etkisinin yumuşak zeminlerde dinamik davranışın öngörülmesinde dikkate alınması gerektiğini ve bu etkinin hem modelleme yaklaşımlarında hem de sahada uygulanacak mühendislik çözümlerinde önem arz ettiğini ortaya koymuştur. Bu bulgular, geoteknik tasarımların daha güvenli ve doğru bir şekilde gerçekleştirilmesine katkı sağlayacak önemli veriler sunmaktadır.

Kaynakça

  • Amorosi, A., Boldini, D. and di Lernia, A., (2016) Seismic ground response at Lotung: Hysteretic elasto-plastic-based 3D analyses. Soil Dynamics and Ear, 85, 44-61. https://doi.org/10.1016/j.soildyn.2016.03.001
  • Amoroso, S., Gaudiosi, I., Tallini, M., Di Giulio, G. and Milana, G., (2018). 2D site response analysis of a cultural heritage: the case study of the site of Santa Maria di Collemaggio Basilica (L’Aquila, Italy). Bulletin of Earthquake Engineering, 16(10), 4443-4466. https://doi.org/10.1007/s10518-018-0356-2
  • Astroza, R., Pastén, C., Ochoa-Cornejo, F., (2017). Site response analysis using one-dimensional equivalent-linear method and Bayesian filtering. Computers and Geotechnics, 89, 43-54. https://doi.org/10.1016/j.compgeo.2017.04.004
  • Bakır, B.S., Özkan, M.Y. and Cılız, S., (2002). Effects of basin edge on the distribution of damage in 1995 Dinar, Turkey earthquake. Soil Dynamics and Earthquake Engineering, 22(4), 335-345. https://doi.org/10.1016/S0267-7261(02)00015-5
  • Bolisetti, C., Whittaker, A.S., Mason, H.B., Almufti, I. Willford, M., (2014). Equivalent linear and nonlinear site response analysis for design and risk assessment of safety-related nuclear structures. Nuclear Engineering and Design, 275, 107-121. https://doi.org/10.1016/j.nucengdes.2014.04.033
  • Civelekler, E., Afacan, K. B. and Okur, D. V., (2024). Effect of site specific soil characteristics on the nonlinear ground response analysis and comparison of the results with equivalent linear analysis, Journal of Applied Geophysics, 220, 105250. https://doi.org/10.1016/j.jappgeo.2023.105250
  • Ci̇velekler, E., Okur, V.D. and Afacan, K.B., (2021). A study of the local site effects on the ground response for the city of Eskişehir, Turkey. Bulletin of Engineering Geology and the Environment 80, 5589–5607. https://doi.org/10.1007/s10064-021-02285-4
  • Cook, R.D., (1995). Finite Element Modeling for Stress Analysis. New York, Wiley, 1-15.
  • Craig, R.G., (2002). Powers, J.M., Restorative Dental Materials, 11th ed. St. Louis, Mosby, 287-327.
  • Darendeli, M.B., (2001). Development of a New Family of Normalized Modulus Reduction and Material Damping Curves. Ph.D. Thesis, The University of Texas at Austin, Austin, TX, USA.
  • Fish, J., Belytschko, T., (2007). A First Course in Finite Elements. John Wiley & Sons, Chichester, England, 1-9. Gücek, S., Afacan, K. B. and Zorluer, İ., (2023). The Facts of Soil Amplification and Liquefaction After the Earthquakes of February 6, 2023: Examples of Antakya, Gölbaşı, Türkoğlu. Afyon Kocatepe University Journal of Science and Engineering, 23(3), 740-752. https://doi.org/10.35414/akufemubid.1298648
  • Hashash, Y.M.A., Musgrove, M.I., Harmon, J.A., Ilhan, O., Groholski, D.R., Philips, C.A. and Park, D., (2020). DEEPSOIL 7.0, User Manual. Board of Trustees of University of Illinois at Urbana-Champaign. Urbana, IL, Board of Trustees of University of Illinois at Urbana-Champaign.
  • Idriss, I.M., Seed, H.B., (1967). Response of horizontal soil layers during earthquakes. Soil Mechanics and Bituminous Materials Research Laboratory, University of California, Berkeley, California, USA. Kramer, S.L., (1996). Geotechnical Earthquake Engineering. 1st ed. New Jersey, USA, Prentice Hall. Liu, G.R., Quek, S.S., (2003). The Finite Element Method: a Practical Course, Ed: Liu G.R. and Quek S.S. Butterworth Heinemann, Oxford, 1-11.
  • Luo, R., Yang, M. and Li, W., (2018). Assessments of kinematic bending moment at pile head in seismic area. Journal of Earthquake Engineering, 25(5), 970-991. https://doi.org/10.1080/13632469.2018.1550024
  • Makra, K. and Chávez-García, F.J., (2016). Site effects in 3D basins using 1D and 2D models: an evaluation of the differences based on simulations of the seismic response of Euroseistest. Bulletin of Earthquake Engineering, 14(4), 1177-1194. https://doi.org/10.1007/s10518-015-9862-7
  • Matasovic, N, Hashash, Y.M.A., (2012). “Practices and Procedures for Site-Specific Evaluations of Earthquake Ground Motions (A Synthesis of Highway Practice)”. National Cooperative Highway Research Program, Transportation Research Board, Washington, D.C., USA, Scientific Report, 78.
  • Romeed, S.A, Fok, S.L, Wilson, N.H.F., (2006). “A Comparison of 2D and 3D finite element analysis of a restored tooth”. Journal of Oral Rehabilitation, 33: 209-215. https://doi.org/10.1111/j.1365-2842.2005.01552.x
  • Sahinkaya, F., (2016). Numerical Investigation the Behavior Under Seismic Loads Improved Ground with Floatıig Stone Columns. Bozok University, Graduate School of Natural and Applied Sciences, Department of Civil Engineering, Master of Science Thesis, Yozgat.
  • Smerzini, C., Paolucci, R. and Stupazzini, M., (2011). Comparison of 3D, 2D and 1D numerical approaches to predict long period earthquake ground motion in the Gubbio plain, Central Italy. Bulletin of Earthquake Engineering, 9(6), 2007-2029. https://doi.org/10.1007/s10518-011-9289-8
  • Stanko, D., Gülerce, Z., Markušić, S., Šalić, R., (2019). Evaluation of the site amplification factors estimated by equivalent linear site response analysis using time series and random vibration theory based approaches. Soil Dynamics and Earthquake Engineering, 117, 16-29. https://doi.org/10.1016/j.soildyn.2018.11.007
  • Tabatabaiefar, H.R.S, Fatahi, B. and Samali, B., (2014). An empirical relationship to determine lateral seismic response of mid-rise building frames under influence of soil-structure interaction. The Structural Design of Tall and Special Buildings, 23(7), 526-548. https://doi.org/10.1002/tal.1058
  • Turkish Building Earthquake Code (TEC 2018) (2018) Ministry of Public Works and Settlement. Specification for Structures to be Built in Disaster Areas. Government of Republic of Turkey. http://www.resmigazete.gov.tr/eskiler/2018/03/20180318M1-2.htm
  • Wolf, J.P., (1985). Dynamic Soil-Structure Interaction. 1st ed. New Jersey, USA, Prentice Hall.
Toplam 23 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular İnşaat Mühendisliği (Diğer)
Bölüm Makaleler
Yazarlar

Ahmet Neim Kahveci 0000-0002-1452-9760

Nazile Ural 0000-0002-2268-842X

Kamil Bekir Afacan 0000-0002-3667-4432

Erken Görünüm Tarihi 18 Eylül 2025
Yayımlanma Tarihi 1 Ekim 2025
Gönderilme Tarihi 24 Ocak 2025
Kabul Tarihi 8 Nisan 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 25 Sayı: 5

Kaynak Göster

APA Kahveci, A. N., Ural, N., & Afacan, K. B. (2025). Investigation of the Effect of Different Approaches in Predicting the Surface Response of Dynamic Behavior in Low Plasticitiy Clay Soils. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 25(5), 1138-1146. https://doi.org/10.35414/akufemubid.1626252
AMA Kahveci AN, Ural N, Afacan KB. Investigation of the Effect of Different Approaches in Predicting the Surface Response of Dynamic Behavior in Low Plasticitiy Clay Soils. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. Ekim 2025;25(5):1138-1146. doi:10.35414/akufemubid.1626252
Chicago Kahveci, Ahmet Neim, Nazile Ural, ve Kamil Bekir Afacan. “Investigation of the Effect of Different Approaches in Predicting the Surface Response of Dynamic Behavior in Low Plasticitiy Clay Soils”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 25, sy. 5 (Ekim 2025): 1138-46. https://doi.org/10.35414/akufemubid.1626252.
EndNote Kahveci AN, Ural N, Afacan KB (01 Ekim 2025) Investigation of the Effect of Different Approaches in Predicting the Surface Response of Dynamic Behavior in Low Plasticitiy Clay Soils. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 25 5 1138–1146.
IEEE A. N. Kahveci, N. Ural, ve K. B. Afacan, “Investigation of the Effect of Different Approaches in Predicting the Surface Response of Dynamic Behavior in Low Plasticitiy Clay Soils”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 25, sy. 5, ss. 1138–1146, 2025, doi: 10.35414/akufemubid.1626252.
ISNAD Kahveci, Ahmet Neim vd. “Investigation of the Effect of Different Approaches in Predicting the Surface Response of Dynamic Behavior in Low Plasticitiy Clay Soils”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 25/5 (Ekim2025), 1138-1146. https://doi.org/10.35414/akufemubid.1626252.
JAMA Kahveci AN, Ural N, Afacan KB. Investigation of the Effect of Different Approaches in Predicting the Surface Response of Dynamic Behavior in Low Plasticitiy Clay Soils. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2025;25:1138–1146.
MLA Kahveci, Ahmet Neim vd. “Investigation of the Effect of Different Approaches in Predicting the Surface Response of Dynamic Behavior in Low Plasticitiy Clay Soils”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 25, sy. 5, 2025, ss. 1138-46, doi:10.35414/akufemubid.1626252.
Vancouver Kahveci AN, Ural N, Afacan KB. Investigation of the Effect of Different Approaches in Predicting the Surface Response of Dynamic Behavior in Low Plasticitiy Clay Soils. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2025;25(5):1138-46.


Bu eser Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.