Araştırma Makalesi
BibTex RIS Kaynak Göster

Farklı Kalitede Sepiyolitlerle Sulu Çözeltilerden Amoksisilin Giderimi

Yıl 2025, Cilt: 25 Sayı: 5, 1172 - 1192, 01.10.2025
https://doi.org/10.35414/akufemubid.1628036

Öz

Bu çalışmada, yaygın kullanımı ve çevresel etkisi nedeniyle oldukça toksik bir antibiyotik olan amoksisilinin sulu çözeltilerden adsorpsiyon yöntemi kullanılarak uzaklaştırılmasında farklı sepiyolit oranlarında iki tip sepiolitin (bej ve beyaz) adsorban olarak kullanımı araştırılmıştır. Adsorpsiyon çalışmaları farklı amoksisilin konsantrasyonlarında, pH seviyelerinde, adsorban dozajlarında, temas sürelerinde ve sıcaklıklarda gerçekleştirilmiştir. Amoksisilin adsorpsiyonunun, heterojen ve çok değerlikli bir adsorpsiyon sürecini karşılayan Freundlich modeli ile uyumlu olduğu belirlenmiştir. Adsorpsiyon kinetiği verilerinin yalancı ikinci derece kinetik model ile uyumlu olduğu görülmüştür. Bej ve beyaz sepiyolitin maksimum amoksisilin adsorpsiyon kapasiteleri (qmax) sırasıyla 100,00 mg/g ve 123,45 mg/g olarak hesaplanmıştır. Termodinamik analiz verileri, adsorpsiyonun fiziksel ve kendiliğinden gerçekleştiğini, adsorpsiyonun bej ve beyaz sepiyolit için sırasıyla endotermik ve ekzotermik olduğunu ortaya koymuştur. BET, FTIR ve SEM+EDX analizleri, amoksisilinin adsorpsiyonunun bazal yüzeylere ek olarak sıvı film difüzyonu mekanizmasıyla sepiyolitin gözenek ve kanal boşluklarında yer alan aktif soğurma merkezlerinde gerçekleştiğini teyit etmiştir. Bu çalışmanın sonuçları sepiyolitin amoksisilin gideriminde etkili bir adsorban olduğunu ve antibiyotik içeren atık suların arıtımında potansiyel bir uygulama alanı bulabileceğini göstermiştir.

Kaynakça

  • Adriano, W.S., Veredas, V., Santana C.C, Goncalves L.R.B. 2005. Adsorption of amoxicillin on chitosan beads: kinetics, equilibrium and validation of finite batch models. Biochemical Engineering Journal, 27, 132–137. https://doi.org/10.1016/j.bej.2005.08.010
  • Ağlamaz, M.D., 2017. Antibiyotiklerin moleküler baskılama yöntemi ile sıvı kromatografi sisteminde ayırımı. Yüksek Lisans Tezi, Hacettepe Üniversitesi, Fen Bilimleri Enstitüsü, Ankara, 74.
  • Aksu, Z., Tunç, O., 2005. Application of biosorption for penicillin G removal: comparison with activated carbon. Process Biochemistry, 40, 831–847. https://doi.org/10.1016/j.procbio.2004.02.014
  • Al-Gheethi, A.A.S., Ismail, N., 2014. Biodegradation of pharmaceutical wastes ın treated sewage effluents by bacillus btilis 1556WTNC. Environmental Processes, 1, 459-481. https://doi.org/10.1007/s40710-014-0034-6
  • Alkaim, A.F., Alqaragully, M.B., 2013. Adsorption of basic yellow dye from aqueous solutions by activated carbon derived from waste apricot stones (ASAC): equilibrium, and thermodynamic aspects. International Journal of Chemical Sciences, 11(2), 797-814. https://doi.org/10.1016/j.jtice.2015.02.025
  • Alkan, M., Demirbaşi O., Dogan, M., 2007. Adsorption kinetics and thermodynamics of an anionic dye onto sepiolite. Microporous Mesoporous Materials, 101, 388–396. https://doi.org/10.1016/j.micromeso.2006.12.007
  • Anastopoulos. I., Pashalidis, I., Orfanos, A.G., Manariotis, I.D., Tatarchuk, T., Sellaoui, L., Bonilla-Petriciolet, A., Mittal, A., Núnez-Delgado, A., 2020. Removal of caffeine, nicotine and amoxicillin from (waste) waters by various adsorbents. A Review. Journal of Environmental Management, 261, 1–9. https://doi.org/10.1016/j.jenvman.2020.110236
  • Andreozzi, R., Canterino, M., Marotta, R., Paxeus, N., 2005. Antibiotic removal from wastewaters: the ozonation of amoxicillin. Journal of Hazardous Materials, 122, 243−250. https://doi.org/10.1016/j.jhazmat.2005.03.004
  • Andreozzi, R., Caprio, V., Ciniglia, C., Champdorea, M.D., Giud ice, R.L., Marotta, R., Zuccato, E., 2004. Antibiotics ın the environment: occurrence ın ıtalian STPs, fate, and preliminary assessment on algal toxicity of amoxicillin. Environmental Science and Technology, 38, 6832–6838. https://doi.org/10.1021/es049509a
  • Atkin, P.W., 1990. Physical Chemistry, 4th Edition. Oxford University Press, London.
  • Aydıngöz, E.S., Lux, K.M., 2021. Türkiye’de antibiyotik tüketim miktarının ve birinci basamak sağlık hizmetlerinde antibiyotik reçeteleme uygulamalarının OECD ülkeleri ile karşılaştırmalı olarak değerlendirilmesi. Erciyes Üniversitesi Sağlık Bilimleri Dergisi, 30, 56–62. https://doi.org/10.34108/eujhs.808230
  • Baere, S.D., Backer, P.D., 2007. Quantitative determination of amoxicillin in animal feed using liquid chromatography with tandem mass spectrometric detection. Analytica Chimica Acta, 586 (1-2), 319–325. https://doi.org/10.1016/j.aca.2006.10.036
  • Balcıoğlu, I.A., Ötker, M., 2003. Treatment of pharmaceutical wastewater containing antibiotics by O3 and O3/H2O2 Processes. Chemosphere, 50, 85–95. https://doi.org/10.1016/s0045-6535(02)00534-9
  • Bilgiç, H., 2015. Thiram’ın yüzey aktif madde miselleriyle çözündürülmesi ve misel içeren ortamlarda adsorbanlar ile etkileşimlerinin incelenmesi. Doktora Tezi, Yıldız Teknik Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul, 108.
  • Bird, A.E., 1994. Amoxicillin. Analytical Profiles of Drug Substances and Excipients, 23, 1-52. https://doi.org/10.1016/S0099-5428(08)60599-7
  • Budyanto, S., Soedjono, S., Irawaty, W., Indraswati, N., 2008. Studies of adsorption equilibria and kinetics of amoxicillin from simulated wastewater using activated carbon and natural bentonite. Journal of Environmental Protection Science, 2, 72–80.
  • Chang, P.H., Li, Z., Jean, J.S., Jiang, W.T., Wang, C.J., Lin, K.H., 2012. Adsorption of tetracycline on 2:1 layered non-swelling clay mineral ıllite. Applied Clay Science, 67-68, 158–163. https://doi.org/10.1016/j.clay.2011.11.004
  • De Franco, M.A.E., De Carvalho, C.B., Bonetto, M.M., Soares, R.D.P., Féris, L.A., 2017. Removal of amoxicillin from water by adsorption onto activated carbon in batch process and fixed bed column: kinetics, ısotherms, experimental design and breakthrough curves modelling. Journal of Cleaner Production, 161, 947−956. https://doi.org/10.1016/j.jclepro.2017.05.197
  • Dousa, M., Hosmanova, R., 2005. Rapid determination of amoxicillin in premixes by HPLC. Journal of Pharmaceutical and Biomedical Analysis, 37, 373–377. https://doi.org/10.1016/j.jpba.2004.10.010
  • Elmolla, E.S., Chaudhuri, M., 2010. Photocatalytic degradation of amoxicillin, ampicillin and cloxacillin antibiotics in aqueous solution using UV/TiO2 and UV/H2O2/TiO2 photocatalysis. Desalination, 252, 46−52. https://doi.org/10.1016/j.desal.2009.11.003
  • Feng, S., Shan, N., Carpenter, K.J., 2006. Crystallization of amoxicillin trihydrate ın the presence of degradation products. Organic Process Research & Development, 10, 1212-1218. https://doi.org/10.1021/op060078l
  • Fukushima, Y., Shimosaka, K., 1987. Sepiolite deposit ın Central Anatolia, Turkey. Summaries-Proceeding of 6th Meeting of European Clay Groups, Sevilla, 226–228.
  • Garoma, T., Umamaheshwar, S.H., Mumper, A., 2010. Removal of sulfadiazine, sulfamethizole, sulfamethoxazole, and sulfathiazole from aqueous solution by ozonation. Chemosphere, 79, 814–20. https://doi.org/10.1016/j.chemosphere.2010.02.060
  • Gholami, M., Mirzaei, R., Kalantary, R.R., Sabzali, A., Gatei, F., 2012. Performance evaluation of reverse osmosis technology for selected antibiotics removal from synthetic pharmaceutical wastewater. Journal of Environmental Health Science & Engineering, 9, 1–10. https://doi.org/10.1186/1735-2746-9-19
  • Gündüz, F., Bayrak, B., 2017. Biosorption of malachite green from an aqueous solution using pomegranate peel: equilibrium modelling, kinetic and thermodynamic studies. Journal of Molecular Liquids, 243, 790-798. https://doi.org/10.1016/j.molliq.2017.08.095
  • Güngördü, A., 2018. Atıksulardan ileri arıtım yöntemleri ile antibiyotik giderimi. Eskişehir Anadolu Üniversitesi, Fen Bilimleri Enstitüsü, Doktora Tezi, Eskişehir, 112.
  • Gürellier, R., 2004. Sularda düşük derişimlerde bulunan uranyumun polimerik adsorbanla tutulmasının kinetik incelenmesi. Yüksek Lisans Tezi, Ankara Üniversitesi, Ankara, 64.
  • Homayoonfal, M., Mehrnia, M.R., 2014. Amoxicillin separation from pharmaceutical solution by ph sensitive nanofiltration membranes. Separation and Purification Technology, 130, 74−83. https://doi.org/10.1016/j.seppur.2014.04.009
  • Hughes, S.R., Kay, P., Brown, L.E., 2016. Impact of anti-ınflammatories, beta-blockers and antibiotics on leaf litter breakdown ın freshwaters. Environmental Science and Pollution Research, 23, 3956–3962. https://doi.org/10.1007/s11356-015-5798-3
  • Imanipoor, J., Mohammadi, M., Dinari, M., Ehsani, M., 2022. Adsorption and desorption of amoxicillin antibiotic from water matrices using an effective and recyclable MIL-53(Al) metal−organic framework adsorbent. Journal of Chemical and Engineering Data 66, 389-403. https://doi.org/10.1021/acs.jced.0c00736.
  • Kıdak, R., Doğan, Ş., 2018. Medium-High frequency ultrasound and ozone based advanced oxidation for amoxicillin removal ın water. Ultrasonics Sonochemistry, 40, 131−139. https://doi.org/10.1016/j.ultsonch.2017.01.033
  • Kılıç, F., 2014. Tarımsal atık ile adsorpsiyonda optimum koşulların belirlenmesi, Yüksek Lisans Tezi, İnönü Üniversitesi Malatya, 88.
  • Kovalakova, P., Cizmas, L., McDonald, T. J., Marsalek, B., Feng, M., Sharma, V.K., 2020. Occurrence and toxicity of antibiotics ın the aquatic environment: A Review. Chemosphere, 251, 1–15. https://doi.org/10.1016/j.chemosphere.2020.126351
  • Lescano, L., Castillo, L., Marfil, S., Barbosa, S., Maiza, P., 2014. Alternative methodologies for sepiolite defibering. Applie Clay Science, 95, 378–382. https://doi.org/10.1016/j.clay.2014.05.001
  • Liu, X., Gordeyeva, K., Berrgström, L., 2017. Steady-Shear and viscoelastic properties of cellulose, nanofibril–nanoclay dispersions. Cellulose, 24, 1815–1824. https://doi.org/10.1007/s10570-017-1211-3
  • Liu, Z., Fan, T., Zhang, W., Zhang, D., 2005. The synthesis of hierarchical porous ıron oxide with wood templates. Microporous and Mesoporous Materials, 85, 82-88. https://doi.org/10.1016/j.micromeso.2005.06.021
  • Mansouri, H., Carmona, R.J., Gomis-Berenguer, A., Souissi-Najar, S., Ouederni, A., Ania, C.O., 2015. Competitive adsorption of ıbuprofen and amoxicillin mixtures from aqueous solution on activated carbons. Journal of Colloid Interface Science, 449, 252−260. https://doi.org/10.1016/j.jcis.2014.12.020
  • Míguez-González, A., Cela-Dablanca, R., Barreiro, A., Rodríguez-López, L., Rodríguez-Seijo, A., Arias-Estévez, M., Núñez-Delgado, A., Fernández-Sanjurjo, Mj., Castıllo-Ramos, V., Álvarez-Rodríguez, E., 2023. Adsorption of antibiotics on bio-adsorbents derived from the forestry and agro-food industries. Environmental Research, 233, 116360. https://doi.org/10.1016/j.envres.2023.116360
  • Moradi, S., 2015. Highly efficient removal of amoxicillin from water by magnetic graphene oxide adsorbent, chemical bulletin of politehnica university of timisoara. Romania Series of Chemistry and Environmental Engineering, 60, 41–48.
  • Özer, E.T., 2020. Aktif karbon ile sulu çözeltilerden amoksisilin giderimi: kinetik ve denge çalışmaları, Avrupa Bilim ve Teknoloji Dergisi, 18, 833-839. https://doi.org/10.31590/ejosat.697040
  • Öztürk, D., Mıhçıokur, H., 2022. Sucul ortamdan amoksisilin gideriminde hibrit adsorpsiyon/oksidasyon performansının değerlendirilmesi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 11, 031-038. https://doi.org/10.28948/ngumuh.983307
  • Pan, X., Deng, C., Zhang, D., Wang, J., Mu, G., Chen, Y., 2008. Toxic effects of amoxicillin on the photosystem ıı of synechocystis sp. characterized by a variety of ın vivo chlorophyll fluorescence tests. Aquatic Toxicology, 89, 207–213. https://doi.org/10.1016/j.aquatox.2008.06.018
  • Pehlivan, E., Çetin, S., Yanık, B.H., 2006. Equilibrium studies for the sorption of zinc and copper from aqueous solutions using sugar beet pulp and fly ash. Journal of Hazardous Materials, 135, 193-199. https://doi.org/10.1016/j.jhazmat.2005.11.049
  • Pereira, J.H.O.S., Reis, A.C., Nunes, O.C., Borges, M.T., Vilar, V.J.P. Boaventura, R.A.R., 2014. Assessment of solar driven TiO2-assisted photocatalysis efficiency on amoxicillin degradation. Environmental Science and Pollution Research, 21, 1292–1303. https://doi.org/10.1016/j.scitotenv.2013.05.098
  • Pezoti, O., Cazetta, A.L., Bedin, K.C., Souza, L.S., Martins, A.C., Silva, T.L., Santos Júnior, O., Visentainer, J.V., Almeida, V.C., 2016. NaOH-activated carbon of high surface area produced from guava seeds as a high-efficiency adsorbent for amoxicillin removal: kinetic, ısotherm and thermodynamic studies. Chemical Engineering Journal, 288, 778−788. https://doi.org/10.1016/j.cej.2015.12.042
  • Polianciuc, S.I., Gurzau, A.E., Kiss, B., Stefan, M.G., Loghin, F., 2020. Antibiotics ın the environment causes and consequences. Medicine and Pharmacy Reports, 93, 231–240. https://doi.org/10.15386/mpr-1742
  • Putra, E.K., Pranowo, R., Sunarso, J., Indraswati, N., Ismadji, S., 2009. Performance of activated carbon and bentonite for adsorption of amoxicillin from wastewater: mechanisms, Isotherms and Kinetics. Water Research, 43, 2419−2430. https://doi.org/10.1016/j.watres.2009.02.039
  • Ruiz-Hitzky, E., 2001. Molecular access to intracrystalline tunnels of sepiolite. Journal of Materials Chemistry, 11, 86–91. https://doi.org/10.1039/B003197F
  • Ruiz-Hitzky, E., Aranda, P., Alvarez, A., Santaren, J., Esteban-Cubillo, A., 2004. Organic/Polymeric ınteractions with clays. ın: auerbach sm, carrado ka, dutta pk (eds.) handbook of layered materials. Marcel Dekker, New York, 91–154. https://doi.org/10.1201/9780203021354
  • Sabah, E., 1998. Çeşitli amin türleri kullanılarak sepiyolitin adsorpsiyon mekanizmasının açıklanması. Eskişehir Osmangazi Üniversitesi Fen Bilimleri Enstitüsü, Doktora Tezi, Eskişehir, 303.
  • Sabah, E., Çelik, M.S., 1998. Sepiyolit oluşumu, özellikleri ve kullanım alanları. İnci Ofset, Afyon, 153.
  • Sabah. E., Çelik, M.S., 2006. Atık sulardaki kirleticilerin sepiyolit ile uzaklaştırılması. Kil Bilimi & Teknolojisi Dergisi, 1(1), 55-72. Saleh, K., Mortada, L.M., El-Khawas, M., 1984. The uptake of ampicillin and amoxicillin by some adsorbent. International Journal of Pharmaceutics, 18, 157–167. https://doi.org/10.1016/0378-5173(84)90116-9
  • Sellaoui, L., Lima, E.C., Dotto, G.L., Lamine, A.B., 2017. Adsorption of amoxicillin and paracetamol on modified activated carbons: equilibrium and positional entropy studies. Journal of Molecular Liquids, 234, 375–381. https://doi.org/10.1016/j.molliq.2017.03.111
  • Scaria, J., Anupama, K.V., Nidheesh, P.V., 2021. Tetracyclines ın the environment: an overview on the occurrence, fate, toxicity, detection, removal methods, and sludge management. Science of The Total Environment, 771, 1–23. https://doi.org/10.1016/j.scitotenv.2021.145291
  • Tekpetek, T., 2014. Amoksisilin molekülünün moleküler modellemesi. Yüksek Lisans Tezi, Tekirdağ Namık Kemal Üniversitesi, Tekirdağ, 55.
  • Thomashow, L.S., Bonsall, R.F., Weller, D.M., 2002. Antibiotic production by soil and rhizosphere microbes ın situ (2nd Edition). Washington, DC: ASM Press. https://doi.org/10.1007/978-3-540-74543-3_2
  • Tran, H.N., Youb, S., Chao, H., 2016. Thermodynamic parameters of cadmium adsorption onto orange peel calculated from various methods: A comparison study. Journal of Environmental Chemical Engineering, 4, 2671–2682. https://doi.org/10.1016/j.jece.2016.05.009
  • Trovó, A.G., Melo, S.A.S., Nogueira, R.F.P., 2008. Photodegradation of the pharmaceutical’s amoxicillin, bezafibrate and paracetamol by thephoto-fenton process—application to sewage treatment plant effluent. Journal of Photochemistry and Photobiology A: Chemistry, 198, 215–220. https://doi.org/10.1016/j.jphotochem.2008.03.011
  • Türkiye İlaç ve Tıbbi Cihaz Kurumu Akılcı İlaç Kullanımı Dairesi, 2020. Ulusal antibakteriyel ilaç tüketim sürveyansı – 2018. Ankara: Türkiye Cumhuriyeti Sağlık Bakanlığı.
  • Uğurlu, M., 2009. Adsorption of a textile dye onto activated sepiolite. Microporous and Mesoporous Materials, 119, 276–283. https://doi.org/10.1016/j.micromeso.2008.10.024
  • WHO, 2014. Antibiotics resistance global report on surveillance, geneva: world health organization press. WHO, İsviçre.
  • Yeniyol, M., 1992. Yenidoğan (Sivrihisar) sepiyolit yatağının jeolojisi, mineralojisi ve oluşumu, MTA Dergisi, 114,71-84.
  • Yu, F., Li, Y., Han, S., Ma, J., 2016. Adsorptive removal of antibiotics from aqueous solution using carbon materials. Chemosphere, 153, 365–85. https://doi.org/10.1016/j.chemosphere.2016.03.083
  • Zha, S.X., Zmo, Y., Jin, X., Chen, Z., 2013. The removal of amoxicillin from wastewater using organobentonite. Journal of Environment Management, 129, 569–576. https://doi.org/10.1016/j.jenvman.2013.08.032
  • WHO Report on Surveillance of Antibiotic Consumption, Apps.who.int.2018. https://apps.who.int/iris/bitstream/handle/10665/277359/9789241514880-eng.pdf?ua=1/, Erişim tarihi: 10 Haziran 2022.

Removal of Amoxycycline From Aqueous Solutions Using Sepiolites With Different Quality

Yıl 2025, Cilt: 25 Sayı: 5, 1172 - 1192, 01.10.2025
https://doi.org/10.35414/akufemubid.1628036

Öz

In this study, the use of two types of sepiolite (beige and white) at different sepiolite ratios as adsorbents for the removal of amoxicillin, a highly toxic antibiotic due to its widespread use and environmental impact, from aqueous solutions using the adsorption method was investigated. Adsorption studies were carried out at different amoxicillin concentrations, pH levels, adsorbent dosages, contact times, and temperatures. The adsorption isotherm of amoxicillin on both sepiolites was in agreement with the Freundlich model, which satisfies a heterogeneous and multivalent adsorption process. The maximum adsorption capacities (qmax) of beige and white sepiolite for amoxicillin adsorption were calculated as 100.00 mg/g and 123.45 mg/g, respectively. Thermodynamic analysis data revealed that adsorption was physical and spontaneous, endothermic for beige sepiolite, and exothermic for white sepiolite. BET, FTIR, and SEM+EDX confirmed that the adsorption of amoxicillin occurs at the basal surfaces as well as active sorption centers in the pores and channel spaces of the sepiolite through liquid film diffusion. This study showed that sepiolite is an effective adsorbent for removing amoxicillin and may find a potential application in treating wastewater containing antibiotics.

Kaynakça

  • Adriano, W.S., Veredas, V., Santana C.C, Goncalves L.R.B. 2005. Adsorption of amoxicillin on chitosan beads: kinetics, equilibrium and validation of finite batch models. Biochemical Engineering Journal, 27, 132–137. https://doi.org/10.1016/j.bej.2005.08.010
  • Ağlamaz, M.D., 2017. Antibiyotiklerin moleküler baskılama yöntemi ile sıvı kromatografi sisteminde ayırımı. Yüksek Lisans Tezi, Hacettepe Üniversitesi, Fen Bilimleri Enstitüsü, Ankara, 74.
  • Aksu, Z., Tunç, O., 2005. Application of biosorption for penicillin G removal: comparison with activated carbon. Process Biochemistry, 40, 831–847. https://doi.org/10.1016/j.procbio.2004.02.014
  • Al-Gheethi, A.A.S., Ismail, N., 2014. Biodegradation of pharmaceutical wastes ın treated sewage effluents by bacillus btilis 1556WTNC. Environmental Processes, 1, 459-481. https://doi.org/10.1007/s40710-014-0034-6
  • Alkaim, A.F., Alqaragully, M.B., 2013. Adsorption of basic yellow dye from aqueous solutions by activated carbon derived from waste apricot stones (ASAC): equilibrium, and thermodynamic aspects. International Journal of Chemical Sciences, 11(2), 797-814. https://doi.org/10.1016/j.jtice.2015.02.025
  • Alkan, M., Demirbaşi O., Dogan, M., 2007. Adsorption kinetics and thermodynamics of an anionic dye onto sepiolite. Microporous Mesoporous Materials, 101, 388–396. https://doi.org/10.1016/j.micromeso.2006.12.007
  • Anastopoulos. I., Pashalidis, I., Orfanos, A.G., Manariotis, I.D., Tatarchuk, T., Sellaoui, L., Bonilla-Petriciolet, A., Mittal, A., Núnez-Delgado, A., 2020. Removal of caffeine, nicotine and amoxicillin from (waste) waters by various adsorbents. A Review. Journal of Environmental Management, 261, 1–9. https://doi.org/10.1016/j.jenvman.2020.110236
  • Andreozzi, R., Canterino, M., Marotta, R., Paxeus, N., 2005. Antibiotic removal from wastewaters: the ozonation of amoxicillin. Journal of Hazardous Materials, 122, 243−250. https://doi.org/10.1016/j.jhazmat.2005.03.004
  • Andreozzi, R., Caprio, V., Ciniglia, C., Champdorea, M.D., Giud ice, R.L., Marotta, R., Zuccato, E., 2004. Antibiotics ın the environment: occurrence ın ıtalian STPs, fate, and preliminary assessment on algal toxicity of amoxicillin. Environmental Science and Technology, 38, 6832–6838. https://doi.org/10.1021/es049509a
  • Atkin, P.W., 1990. Physical Chemistry, 4th Edition. Oxford University Press, London.
  • Aydıngöz, E.S., Lux, K.M., 2021. Türkiye’de antibiyotik tüketim miktarının ve birinci basamak sağlık hizmetlerinde antibiyotik reçeteleme uygulamalarının OECD ülkeleri ile karşılaştırmalı olarak değerlendirilmesi. Erciyes Üniversitesi Sağlık Bilimleri Dergisi, 30, 56–62. https://doi.org/10.34108/eujhs.808230
  • Baere, S.D., Backer, P.D., 2007. Quantitative determination of amoxicillin in animal feed using liquid chromatography with tandem mass spectrometric detection. Analytica Chimica Acta, 586 (1-2), 319–325. https://doi.org/10.1016/j.aca.2006.10.036
  • Balcıoğlu, I.A., Ötker, M., 2003. Treatment of pharmaceutical wastewater containing antibiotics by O3 and O3/H2O2 Processes. Chemosphere, 50, 85–95. https://doi.org/10.1016/s0045-6535(02)00534-9
  • Bilgiç, H., 2015. Thiram’ın yüzey aktif madde miselleriyle çözündürülmesi ve misel içeren ortamlarda adsorbanlar ile etkileşimlerinin incelenmesi. Doktora Tezi, Yıldız Teknik Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul, 108.
  • Bird, A.E., 1994. Amoxicillin. Analytical Profiles of Drug Substances and Excipients, 23, 1-52. https://doi.org/10.1016/S0099-5428(08)60599-7
  • Budyanto, S., Soedjono, S., Irawaty, W., Indraswati, N., 2008. Studies of adsorption equilibria and kinetics of amoxicillin from simulated wastewater using activated carbon and natural bentonite. Journal of Environmental Protection Science, 2, 72–80.
  • Chang, P.H., Li, Z., Jean, J.S., Jiang, W.T., Wang, C.J., Lin, K.H., 2012. Adsorption of tetracycline on 2:1 layered non-swelling clay mineral ıllite. Applied Clay Science, 67-68, 158–163. https://doi.org/10.1016/j.clay.2011.11.004
  • De Franco, M.A.E., De Carvalho, C.B., Bonetto, M.M., Soares, R.D.P., Féris, L.A., 2017. Removal of amoxicillin from water by adsorption onto activated carbon in batch process and fixed bed column: kinetics, ısotherms, experimental design and breakthrough curves modelling. Journal of Cleaner Production, 161, 947−956. https://doi.org/10.1016/j.jclepro.2017.05.197
  • Dousa, M., Hosmanova, R., 2005. Rapid determination of amoxicillin in premixes by HPLC. Journal of Pharmaceutical and Biomedical Analysis, 37, 373–377. https://doi.org/10.1016/j.jpba.2004.10.010
  • Elmolla, E.S., Chaudhuri, M., 2010. Photocatalytic degradation of amoxicillin, ampicillin and cloxacillin antibiotics in aqueous solution using UV/TiO2 and UV/H2O2/TiO2 photocatalysis. Desalination, 252, 46−52. https://doi.org/10.1016/j.desal.2009.11.003
  • Feng, S., Shan, N., Carpenter, K.J., 2006. Crystallization of amoxicillin trihydrate ın the presence of degradation products. Organic Process Research & Development, 10, 1212-1218. https://doi.org/10.1021/op060078l
  • Fukushima, Y., Shimosaka, K., 1987. Sepiolite deposit ın Central Anatolia, Turkey. Summaries-Proceeding of 6th Meeting of European Clay Groups, Sevilla, 226–228.
  • Garoma, T., Umamaheshwar, S.H., Mumper, A., 2010. Removal of sulfadiazine, sulfamethizole, sulfamethoxazole, and sulfathiazole from aqueous solution by ozonation. Chemosphere, 79, 814–20. https://doi.org/10.1016/j.chemosphere.2010.02.060
  • Gholami, M., Mirzaei, R., Kalantary, R.R., Sabzali, A., Gatei, F., 2012. Performance evaluation of reverse osmosis technology for selected antibiotics removal from synthetic pharmaceutical wastewater. Journal of Environmental Health Science & Engineering, 9, 1–10. https://doi.org/10.1186/1735-2746-9-19
  • Gündüz, F., Bayrak, B., 2017. Biosorption of malachite green from an aqueous solution using pomegranate peel: equilibrium modelling, kinetic and thermodynamic studies. Journal of Molecular Liquids, 243, 790-798. https://doi.org/10.1016/j.molliq.2017.08.095
  • Güngördü, A., 2018. Atıksulardan ileri arıtım yöntemleri ile antibiyotik giderimi. Eskişehir Anadolu Üniversitesi, Fen Bilimleri Enstitüsü, Doktora Tezi, Eskişehir, 112.
  • Gürellier, R., 2004. Sularda düşük derişimlerde bulunan uranyumun polimerik adsorbanla tutulmasının kinetik incelenmesi. Yüksek Lisans Tezi, Ankara Üniversitesi, Ankara, 64.
  • Homayoonfal, M., Mehrnia, M.R., 2014. Amoxicillin separation from pharmaceutical solution by ph sensitive nanofiltration membranes. Separation and Purification Technology, 130, 74−83. https://doi.org/10.1016/j.seppur.2014.04.009
  • Hughes, S.R., Kay, P., Brown, L.E., 2016. Impact of anti-ınflammatories, beta-blockers and antibiotics on leaf litter breakdown ın freshwaters. Environmental Science and Pollution Research, 23, 3956–3962. https://doi.org/10.1007/s11356-015-5798-3
  • Imanipoor, J., Mohammadi, M., Dinari, M., Ehsani, M., 2022. Adsorption and desorption of amoxicillin antibiotic from water matrices using an effective and recyclable MIL-53(Al) metal−organic framework adsorbent. Journal of Chemical and Engineering Data 66, 389-403. https://doi.org/10.1021/acs.jced.0c00736.
  • Kıdak, R., Doğan, Ş., 2018. Medium-High frequency ultrasound and ozone based advanced oxidation for amoxicillin removal ın water. Ultrasonics Sonochemistry, 40, 131−139. https://doi.org/10.1016/j.ultsonch.2017.01.033
  • Kılıç, F., 2014. Tarımsal atık ile adsorpsiyonda optimum koşulların belirlenmesi, Yüksek Lisans Tezi, İnönü Üniversitesi Malatya, 88.
  • Kovalakova, P., Cizmas, L., McDonald, T. J., Marsalek, B., Feng, M., Sharma, V.K., 2020. Occurrence and toxicity of antibiotics ın the aquatic environment: A Review. Chemosphere, 251, 1–15. https://doi.org/10.1016/j.chemosphere.2020.126351
  • Lescano, L., Castillo, L., Marfil, S., Barbosa, S., Maiza, P., 2014. Alternative methodologies for sepiolite defibering. Applie Clay Science, 95, 378–382. https://doi.org/10.1016/j.clay.2014.05.001
  • Liu, X., Gordeyeva, K., Berrgström, L., 2017. Steady-Shear and viscoelastic properties of cellulose, nanofibril–nanoclay dispersions. Cellulose, 24, 1815–1824. https://doi.org/10.1007/s10570-017-1211-3
  • Liu, Z., Fan, T., Zhang, W., Zhang, D., 2005. The synthesis of hierarchical porous ıron oxide with wood templates. Microporous and Mesoporous Materials, 85, 82-88. https://doi.org/10.1016/j.micromeso.2005.06.021
  • Mansouri, H., Carmona, R.J., Gomis-Berenguer, A., Souissi-Najar, S., Ouederni, A., Ania, C.O., 2015. Competitive adsorption of ıbuprofen and amoxicillin mixtures from aqueous solution on activated carbons. Journal of Colloid Interface Science, 449, 252−260. https://doi.org/10.1016/j.jcis.2014.12.020
  • Míguez-González, A., Cela-Dablanca, R., Barreiro, A., Rodríguez-López, L., Rodríguez-Seijo, A., Arias-Estévez, M., Núñez-Delgado, A., Fernández-Sanjurjo, Mj., Castıllo-Ramos, V., Álvarez-Rodríguez, E., 2023. Adsorption of antibiotics on bio-adsorbents derived from the forestry and agro-food industries. Environmental Research, 233, 116360. https://doi.org/10.1016/j.envres.2023.116360
  • Moradi, S., 2015. Highly efficient removal of amoxicillin from water by magnetic graphene oxide adsorbent, chemical bulletin of politehnica university of timisoara. Romania Series of Chemistry and Environmental Engineering, 60, 41–48.
  • Özer, E.T., 2020. Aktif karbon ile sulu çözeltilerden amoksisilin giderimi: kinetik ve denge çalışmaları, Avrupa Bilim ve Teknoloji Dergisi, 18, 833-839. https://doi.org/10.31590/ejosat.697040
  • Öztürk, D., Mıhçıokur, H., 2022. Sucul ortamdan amoksisilin gideriminde hibrit adsorpsiyon/oksidasyon performansının değerlendirilmesi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 11, 031-038. https://doi.org/10.28948/ngumuh.983307
  • Pan, X., Deng, C., Zhang, D., Wang, J., Mu, G., Chen, Y., 2008. Toxic effects of amoxicillin on the photosystem ıı of synechocystis sp. characterized by a variety of ın vivo chlorophyll fluorescence tests. Aquatic Toxicology, 89, 207–213. https://doi.org/10.1016/j.aquatox.2008.06.018
  • Pehlivan, E., Çetin, S., Yanık, B.H., 2006. Equilibrium studies for the sorption of zinc and copper from aqueous solutions using sugar beet pulp and fly ash. Journal of Hazardous Materials, 135, 193-199. https://doi.org/10.1016/j.jhazmat.2005.11.049
  • Pereira, J.H.O.S., Reis, A.C., Nunes, O.C., Borges, M.T., Vilar, V.J.P. Boaventura, R.A.R., 2014. Assessment of solar driven TiO2-assisted photocatalysis efficiency on amoxicillin degradation. Environmental Science and Pollution Research, 21, 1292–1303. https://doi.org/10.1016/j.scitotenv.2013.05.098
  • Pezoti, O., Cazetta, A.L., Bedin, K.C., Souza, L.S., Martins, A.C., Silva, T.L., Santos Júnior, O., Visentainer, J.V., Almeida, V.C., 2016. NaOH-activated carbon of high surface area produced from guava seeds as a high-efficiency adsorbent for amoxicillin removal: kinetic, ısotherm and thermodynamic studies. Chemical Engineering Journal, 288, 778−788. https://doi.org/10.1016/j.cej.2015.12.042
  • Polianciuc, S.I., Gurzau, A.E., Kiss, B., Stefan, M.G., Loghin, F., 2020. Antibiotics ın the environment causes and consequences. Medicine and Pharmacy Reports, 93, 231–240. https://doi.org/10.15386/mpr-1742
  • Putra, E.K., Pranowo, R., Sunarso, J., Indraswati, N., Ismadji, S., 2009. Performance of activated carbon and bentonite for adsorption of amoxicillin from wastewater: mechanisms, Isotherms and Kinetics. Water Research, 43, 2419−2430. https://doi.org/10.1016/j.watres.2009.02.039
  • Ruiz-Hitzky, E., 2001. Molecular access to intracrystalline tunnels of sepiolite. Journal of Materials Chemistry, 11, 86–91. https://doi.org/10.1039/B003197F
  • Ruiz-Hitzky, E., Aranda, P., Alvarez, A., Santaren, J., Esteban-Cubillo, A., 2004. Organic/Polymeric ınteractions with clays. ın: auerbach sm, carrado ka, dutta pk (eds.) handbook of layered materials. Marcel Dekker, New York, 91–154. https://doi.org/10.1201/9780203021354
  • Sabah, E., 1998. Çeşitli amin türleri kullanılarak sepiyolitin adsorpsiyon mekanizmasının açıklanması. Eskişehir Osmangazi Üniversitesi Fen Bilimleri Enstitüsü, Doktora Tezi, Eskişehir, 303.
  • Sabah, E., Çelik, M.S., 1998. Sepiyolit oluşumu, özellikleri ve kullanım alanları. İnci Ofset, Afyon, 153.
  • Sabah. E., Çelik, M.S., 2006. Atık sulardaki kirleticilerin sepiyolit ile uzaklaştırılması. Kil Bilimi & Teknolojisi Dergisi, 1(1), 55-72. Saleh, K., Mortada, L.M., El-Khawas, M., 1984. The uptake of ampicillin and amoxicillin by some adsorbent. International Journal of Pharmaceutics, 18, 157–167. https://doi.org/10.1016/0378-5173(84)90116-9
  • Sellaoui, L., Lima, E.C., Dotto, G.L., Lamine, A.B., 2017. Adsorption of amoxicillin and paracetamol on modified activated carbons: equilibrium and positional entropy studies. Journal of Molecular Liquids, 234, 375–381. https://doi.org/10.1016/j.molliq.2017.03.111
  • Scaria, J., Anupama, K.V., Nidheesh, P.V., 2021. Tetracyclines ın the environment: an overview on the occurrence, fate, toxicity, detection, removal methods, and sludge management. Science of The Total Environment, 771, 1–23. https://doi.org/10.1016/j.scitotenv.2021.145291
  • Tekpetek, T., 2014. Amoksisilin molekülünün moleküler modellemesi. Yüksek Lisans Tezi, Tekirdağ Namık Kemal Üniversitesi, Tekirdağ, 55.
  • Thomashow, L.S., Bonsall, R.F., Weller, D.M., 2002. Antibiotic production by soil and rhizosphere microbes ın situ (2nd Edition). Washington, DC: ASM Press. https://doi.org/10.1007/978-3-540-74543-3_2
  • Tran, H.N., Youb, S., Chao, H., 2016. Thermodynamic parameters of cadmium adsorption onto orange peel calculated from various methods: A comparison study. Journal of Environmental Chemical Engineering, 4, 2671–2682. https://doi.org/10.1016/j.jece.2016.05.009
  • Trovó, A.G., Melo, S.A.S., Nogueira, R.F.P., 2008. Photodegradation of the pharmaceutical’s amoxicillin, bezafibrate and paracetamol by thephoto-fenton process—application to sewage treatment plant effluent. Journal of Photochemistry and Photobiology A: Chemistry, 198, 215–220. https://doi.org/10.1016/j.jphotochem.2008.03.011
  • Türkiye İlaç ve Tıbbi Cihaz Kurumu Akılcı İlaç Kullanımı Dairesi, 2020. Ulusal antibakteriyel ilaç tüketim sürveyansı – 2018. Ankara: Türkiye Cumhuriyeti Sağlık Bakanlığı.
  • Uğurlu, M., 2009. Adsorption of a textile dye onto activated sepiolite. Microporous and Mesoporous Materials, 119, 276–283. https://doi.org/10.1016/j.micromeso.2008.10.024
  • WHO, 2014. Antibiotics resistance global report on surveillance, geneva: world health organization press. WHO, İsviçre.
  • Yeniyol, M., 1992. Yenidoğan (Sivrihisar) sepiyolit yatağının jeolojisi, mineralojisi ve oluşumu, MTA Dergisi, 114,71-84.
  • Yu, F., Li, Y., Han, S., Ma, J., 2016. Adsorptive removal of antibiotics from aqueous solution using carbon materials. Chemosphere, 153, 365–85. https://doi.org/10.1016/j.chemosphere.2016.03.083
  • Zha, S.X., Zmo, Y., Jin, X., Chen, Z., 2013. The removal of amoxicillin from wastewater using organobentonite. Journal of Environment Management, 129, 569–576. https://doi.org/10.1016/j.jenvman.2013.08.032
  • WHO Report on Surveillance of Antibiotic Consumption, Apps.who.int.2018. https://apps.who.int/iris/bitstream/handle/10665/277359/9789241514880-eng.pdf?ua=1/, Erişim tarihi: 10 Haziran 2022.
Toplam 65 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Fiziksel Kimya (Diğer), Kimya Mühendisliği (Diğer)
Bölüm Makaleler
Yazarlar

Nazile Bilgin 0000-0001-9534-4604

Eyüp Sabah 0000-0002-5225-0891

Erken Görünüm Tarihi 18 Eylül 2025
Yayımlanma Tarihi 1 Ekim 2025
Gönderilme Tarihi 1 Şubat 2025
Kabul Tarihi 7 Nisan 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 25 Sayı: 5

Kaynak Göster

APA Bilgin, N., & Sabah, E. (2025). Farklı Kalitede Sepiyolitlerle Sulu Çözeltilerden Amoksisilin Giderimi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 25(5), 1172-1192. https://doi.org/10.35414/akufemubid.1628036
AMA Bilgin N, Sabah E. Farklı Kalitede Sepiyolitlerle Sulu Çözeltilerden Amoksisilin Giderimi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. Ekim 2025;25(5):1172-1192. doi:10.35414/akufemubid.1628036
Chicago Bilgin, Nazile, ve Eyüp Sabah. “Farklı Kalitede Sepiyolitlerle Sulu Çözeltilerden Amoksisilin Giderimi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 25, sy. 5 (Ekim 2025): 1172-92. https://doi.org/10.35414/akufemubid.1628036.
EndNote Bilgin N, Sabah E (01 Ekim 2025) Farklı Kalitede Sepiyolitlerle Sulu Çözeltilerden Amoksisilin Giderimi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 25 5 1172–1192.
IEEE N. Bilgin ve E. Sabah, “Farklı Kalitede Sepiyolitlerle Sulu Çözeltilerden Amoksisilin Giderimi”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 25, sy. 5, ss. 1172–1192, 2025, doi: 10.35414/akufemubid.1628036.
ISNAD Bilgin, Nazile - Sabah, Eyüp. “Farklı Kalitede Sepiyolitlerle Sulu Çözeltilerden Amoksisilin Giderimi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 25/5 (Ekim2025), 1172-1192. https://doi.org/10.35414/akufemubid.1628036.
JAMA Bilgin N, Sabah E. Farklı Kalitede Sepiyolitlerle Sulu Çözeltilerden Amoksisilin Giderimi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2025;25:1172–1192.
MLA Bilgin, Nazile ve Eyüp Sabah. “Farklı Kalitede Sepiyolitlerle Sulu Çözeltilerden Amoksisilin Giderimi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 25, sy. 5, 2025, ss. 1172-9, doi:10.35414/akufemubid.1628036.
Vancouver Bilgin N, Sabah E. Farklı Kalitede Sepiyolitlerle Sulu Çözeltilerden Amoksisilin Giderimi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2025;25(5):1172-9.


Bu eser Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.