Araştırma Makalesi
BibTex RIS Kaynak Göster

Cu-Pd Nanoalaşımlarının Yapısal, Enerjik ve Basınç Özelliklerinin İncelenmesi: Atomistik ve Yoğunluk Fonksiyonel Teorisi Hesaplamalarının Birleştirilmiş Çalışması

Yıl 2025, Cilt: 25 Sayı: 5, 1053 - 1061, 01.10.2025
https://doi.org/10.35414/akufemubid.1643569

Öz

İkili nanoalaşımlar daha fazla yapısal çeşitlilikleri nedeniyle ayarlanabilir katalitik özellikler sergilemektedir. Literatürde artan çalışmalar, Pd bazlı ikili heterojen katalizörlerin verimliliği artırmak ve maliyeti düşürmek için tasarlandığını göstermektedir. Bu çalışma, 19 atomlu CunPd19-n (n=0-19) nanoalaşımlarının yapısal, enerjik ve basınç özellikleri üzerindeki kompozisyon etkisini Gupta ve DFT hesaplamalarını birleştirerek göstermeyi amaçlamıştır. Cu ve Pd atomlarının nanoalaşımın iç kısmına veya yüzeyine yerleşme tercihinin atomik yarıçapa göre belirlendiği doğrulanmıştır. CunPd19-n (n=0-19) nanoalaşımlarının hem Gupta hem de DFT düzeyindeki fazlalık enerji analizine göre enerjik olarak karışıma uygun olduğu bulunmuştur. Cu-Pd bağlarının sayısı ile fazlalık enerji arasındaki ilişki doğrulanmıştır. CunPd19-n (n=0-19) nanoalaşımlarının basınç değerlerinin metal nanoparçacıkların doğal basınç modeline uygun olduğu elde edilmiştir.

Proje Numarası

KBÜBAP-25-DS-008

Teşekkür

Bu çalışma, Karabük Üniversitesi KBÜBAP-25-DS-008 nolu proje kapsamında yapılmıştır.

Kaynakça

  • Aguilera-Granja, F., Vega, A., Rogan, J., Andrade, X. and Garcia, G., 2006. Theoretical investigation of free standing CoPd nanoclusters as a function of cluster size and stoichiometry in the Pd-rich phase: Geometry, chemical order, magnetism, and metallic behavior. Physical Review B, 74, 224405. https://doi.org/10.1103/PhysRevB.74.224405
  • Arslan, H., 2008. Structures and energetic of palladium-cobalt binary clusters. International Journal of Modern Physics C, 19, 1243-1255. https://doi.org/10.1142/S0129183108012832
  • Arslan, H. and Irmak, A.E., 2009. Heat capacity of 13- and 19-atom Pd–Co binary clusters: parallel tempering Monte Carlo study. International Journal of Modern Physics C, 20, 1737–1747. https://doi.org/10.1142/S0129183109014709
  • Bell, A.T., 2003. The impact of nanoscience on heterogeneous catalysis. Science, 299, 1688-1691. https://doi.org/10.1126/science.1083671.
  • Bochicchio, D., Negro, F. and Ferrando, R., 2013. Competition between structural motifs in gold-platinum nanoalloys. Computational and Theoretical Chemistry, 1021, 177–182. https://doi.org/10.1016/j.comptc.2013.07.017
  • Bochicchio, D., Ferrando, R., Novakovic, R., Panizon, E. and Rossi, G., 2014. Chemical ordering in magic-size Ag-Pd nanoparticles. Physical Chemistry Chemical Physics, 16, 26478-26484. https://doi.org/10.1039/C4CP02143F
  • Borbon-Gonzalez, D.J., Pacheco-Contreras, R., Posada-Amarillas, A., Schön, J.C., Johnston, R.L. and Montejano-Carrizales, J.M., 2009. Structural insights into 19-atom Pd/Pt nanoparticles: A computational perspective. The Journal of Physical Chemistry C, 113, 15904–15908. https://doi.org/10.1021/jp904518e
  • Calderón Gómez, J.C., Moliner, R. and Lázaro, M.J., 2016. Palladium-based catalysts as electrodes for direct methanol fuel cells: A last ten years review. Catalysts, 6, 130. https://doi.org/10.3390/catal6090130
  • Casey-Stevens, C.A., Yang, M., Weal, G.R., McIntyre, S.M., Nally, B.K. and Garden, A.L., 2021. A theoretical investigation of 38-atom CuPd clusters: the effect of potential parameterisation on structure and segregation. Physical Chemistry Chemical Physics, 23, 15950-15964. https://doi.org/10.1039/D1CP00810B
  • Choi, K. and Vannice, M.A., 1991. CO oxidation over Pd and Cu catalysts V. Al2O3-supported bimetallic Pd-Cu particles. Journal of Catalysis, 131, 36-50. https://doi.org/10.1016/0021-9517(91)90321-T
  • Diyarbakır, S., Can, H. and Metin, Ö., 2015. Reduced graphene oxide supported CuPd alloy nanoparticles as efficient catalysts for the Sonogashira Cross-Coupling reactions. ACS Applied Materials & Interfaces, 7, 3199–3206. https://doi.org/10.1021/am507764u
  • Feng, X., Shi, D., Jia, J., Wang, C. and Yao, L., 2022. Structural, mixing, electronic and magnetic properties of small Cu-Pd nanoalloy clusters. Materials Today Communications, 31, 103222. https://doi.org/10.1016/j.mtcomm.2022.103222
  • Fernandez, E.M., Balbas, L.C., Peres, L.A., Michaelian, K. and Garzon, I.L., 2005. Structural properties of bimetallic clusters from density functional calculations. International Journal Of Modern Physics B, 19, 2339-2344. https://doi.org/10.1142/S0217979205030931
  • Ferrando, R., Jellinek, J. and Johnston, R.L., 2008. Nanoalloys: from theory to applications of alloy clusters and nanoparticles. Chemical Reviews, 108, 845–910. https://doi.org/10.1021/cr040090g
  • Ferrando, R., 2015. Symmetry breaking and morphological instabilities in core–shell metallic nanoparticles. Journal of Physics: Condensed Matter, 27, 013003. https://doi.org/10.1088/0953-8984/27/1/013003 Ferrando, R., 2016. Structure and properties of nanoalloys. Richard E. Palmer (Series Editör), Elsevier, 1-327.
  • Ferrando, R., 2018. Stress-driven structural transitions in bimetallic nanoparticles. Frontiers of Nanoscience, 12, 189–204. https://doi.org/10.1016/B978-0-08-102232-0.00006-3
  • Garip, A.K., Arslan, H., Rapetti, D. and Ferrando, R., 2020. A DFT study of chemical ordering and oxygen adsorption in AuPtPd ternary nanoalloys. Materials Today Communications, 25, 1015. https://doi.org/10.1016/j.mtcomm.2020.101545
  • Garip, A.K. and Taran, S., 2020. Structural and dynamics properties of double icosahedral Pd-Ag-Pt trimetallic clusters. International Journal of Modern Physics B, 34, 2050063. https://doi.org/10.1142/S0217979220500630
  • Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G.L., Cococcioni, M., Dabo, I., Dal Corso, A., De Gironcoli, S., Fabris, S., Fratesi, G., Gebauer, R., Gerstmann, U., Gougoussis, C., Kokalj, A., Lazzeri, M., Martin-Samos, L., Marzari, N., Mauri, F., Mazzarello, R., Paolini, S., Pasquarello, A., Paulatto, L., Sbraccia, C., Scandolo, S., Sclauzero, G., Seitsonen, A.P., Smogunov, A., Umari, P. and Wentzcovitch, R.M., 2009. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. Journal of Physics:Condensed Matter, 21, 395502. https://doi.org/10.1088/0953-8984/21/39/395502
  • Giannozzi, P., Andreussi, O., Brumme, T., Bunau, O., Nardelli, M.B., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Cococcioni, M., Colonna, N., Carnimeo, I., Dal Corso, A., De Gironcoli, S., Delugas, P., DiStasio Jr, R.A., Ferretti, A., Floris, A., Fratesi, G., Fugallo, G., Gebauer, R., Gerstmann, U., Giustino, F., Gorni, T., Jia, J., Kawamura, M., Ko, H., Kokalj, A., Küçükbenli, E., Lazzeri M., Marsili, M., Marzari, N., Mauri, F., Nguyen, N.L., Nguyen, H., De La Roza, A., Paulatto, L., Ponce, S., Rocca, D., Sabatini, R., Santra, B., Schlipf, M., Seitsonen, A.P., Smogunov, A., Timrov, I., Thonhauser, T., Umari, P., Vast, N., Wu, X. and Baroni, S., 2017. Advanced capabilities for materials modelling with Quantum ESPRESSO. Journal of Physics:Condensed Matter, 29, 465901 https://doi.org/10.1088/1361-648X/aa8f79
  • Guo, S., Zhang, X., Zhu, W., He, K., Su, D., Mendoza-Garcia, A., Ho, S.F., Lu, G. and Sun, S., 2014. Nanocatalyst superior to Pt for oxygen reduction reaction: the case of core/shell Ag(Au)/CuPd nanoparticles. Journal of the American Chemical Society, 136, 15026–15033. https://doi.org/10.1021/ja508256g
  • Janthon, P., Kozlov, S.M., Vines, F., Limtrakul, J. and Illas, F., 2013. Establishing the accuracy of broadly used density functionals in describing bulk properties of transition metals. Journal of Chemical Theory and Computation, 9, 1631–1640. https://doi.org/10.1021/ct3010326
  • Johnston, R.L., 2012. Metal nanoparticles and nanoalloys. Richard E. Palmer (Series Editör), Frontiers of Nanoscience Book Series, Elsevier, 4–42.
  • Koraychy, E.Y.E. and Ferrando, R., 2023. Growth pathways of exotic Cu@Au core@shell structures: the key role of misfit strain. Nanoscale, 15, 2384–93. https://doi.org/10.1039/D2NR05810C
  • Laasonen, K., Panizon, E., Bochicchio, D. and Ferrando, R., 2013. Competition between Icosahedral Motifs in AgCu, AgNi, and AgCo Nanoalloys: A Combined Atomistic-DFT Study. The Journal of Physical Chemistry C, 117, 26405–26413. https://doi.org/10.1021/jp410379u
  • Leppert, L. and Kümmel, S., 2011. The electronic structure of Gold-Platinum nanoparticles: collecting clues for why they are special. The Journal of Physical Chemistry C, 115, 6694–6702. https://doi.org/10.1021/jp112224t
  • Leppert, L., 2013. Structural and Electronic Properties of Transition Metal Nanoalloys and Magnetic Compounds.
  • Li, M., Xia, Z., Luo, M., He, L., Tao, L., Yang, W., Yu, Y. and Guo, S., 2021. Structural regulation of Pd-based nanoalloys for advanced electrocatalysis. Small Science, 1, 2100061. https://doi.org/10.1002/smsc.202100061
  • Liu, Q., Zhang, Y. and Qian, P., 2023. Molecular dynamics study on the thermodynamic stability and structural evolution of crown-jewel structured PdCu nanoalloys. RSC Advances, 13, 7963-7971. https://doi.org/10.1039/D2RA08024A
  • Lloyd, L.D., Johnston, R.L., Salhi, S. and Wilson, N.T., 2004. Theoretical investigation of isomer stability in platinum–palladium nanoalloy clusters. Journal of Materials Chemistry, 14, 1691-1704. https://doi.org/10.1039/B313811A
  • Longo; R.C., Noya, E.G. and Gallego, L.J., 2005. A density-functional study of the structures, binding energies and total spins of Ni–Fe clusters using nonlocal norm-conserving pseudopotentials and the generalized gradient approximation. The Journal of Chemical Physics, 122, 084311. https://doi.org/10.1063/1.1849133
  • Mandal, K., Bhattacharjee, D., Roy, P.S., Bhattacharya, S.K. and Dasgupta, S., 2015. Room temperature synthesis of Pd–Cu nanoalloy catalyst with enhanced electrocatalytic activity for the methanol oxidation reaction. Applied Catalysis A: General, 492, 100–106. https://doi.org/10.1016/j.apcata.2014.12.012
  • Meng, H., Zeng, D. and Xie, F., 2015. Recent development of Pd-based electrocatalysts for proton exchange membrane fuel cells. Catalysts, 5, 1221-1274. https://doi.org/10.3390/catal5031221
  • Montejano-Carrizales, J.M., Iniguez, M.P. and Alonso, J.A., 1994. Embedded-atom method applied to bimetallic clusters: The Cu-Ni and Cu-Pd systems. Physical Review B, 49, 16649. https://doi.org/10.1103/PhysRevB.49.16649
  • Montejano-Carrizales, J.M., Aguilera-Granja, F., Goyhenex, C., Pierron-Bohnes, V. and Morán-López, J.L., 2014. Structural, electronic and magnetic properties of ConPtM−n, for M=13, 19, and 55, from first principles. Journal of Magnetism and Magnetic Materials, 355, 215-224. https://doi.org/10.1016/j.jmmm.2013.10.035
  • Nasrollahzadeh, M., Jaleh B. and Ehsani, A., 2014. Preparation of carbon supported CuPd nanoparticles as novel heterogeneous catalysts for the reduction of nitroarenes and the phosphine-free Suzuki–Miyaura coupling reaction. New Journal of Chemistry, 39, 1148-1153. https://doi.org/10.1039/C4NJ01788A
  • Pirart, J., Front, A., Rapetti, D., Andreazza-Vignolle, C., Andreazza, P., Mottet, C. and Ferrando, R., 2019. Reversed size-dependent stabilization of ordered nanophases. Nature Communications, 10, 1982. https://doi.org/10.1038/s41467-019-09841-3
  • Perdew, J.P., Burke, K. and Ernzerhof, M., 1996. Generalized gradient approximation made simple. Physical Review Letters, 77, 3865-3868. https://doi.org/10.1103/PhysRevLett.77.3865
  • Ren, S., Sun, J. and Hao, Y., 2014. Analysis of structures and melting properties of the 19-atom Ni–Co clusters. International Journal of Modern Physics B, 28, 1450171. https://doi.org/10.1142/S0217979214501719
  • Rey, C., Garcia-Rodeja, J. and Gallego, L.J., 1996. Computer simulation of the ground-state atomic configurations of Ni-Al clusters using the embedded-atom model. Physical Review B, 54, 2942. https://doi.org/10.1103/PhysRevB.54.2942
  • Roy, P.S., Bagchi, J. and Bhattacharya, S.K., 2012. The size-dependent anode-catalytic activity of nickel-supported Palladium nanoparticles for ethanol alkaline fuel cells. Catalysis Science & Technology, 2, 2302-2310. https://doi.org/10.1039/C2CY20264F
  • Sengar, S.K., Mehta, B.R. and Gupta, G., 2011. Charge transfer, lattice distortion, and quantum confinement effects in Pd, Cu, and Pd–Cu nanoparticles; size and alloying induced modifications in binding energy. Applied Physics Letters, 98, 193115. https://doi.org/10.1063/1.3590272
  • Sharma, G., Kumar, D., Kumar, A., Al-Muhtaseb, A.H., Pathania, D., Naushad, M. and Mola, G.T., 2017. Revolution from monometallic to trimetallic nanoparticle composites, various synthesis methods and their applications: A review. Materials Science and Engineering: C, 71, 1216-1230. https://doi.org/10.1016/j.msec.2016.11.002
  • Skoda, F., Astier, M.P., Pajonk, G.M. and Primet M., 1994. Surface characterization of palladium--copper bimetallic catalysts by FTIR spectroscopy and test reactions. Catalysis Letters, 29, 159-168. https://doi.org/10.1007/BF00814262
  • Stukowski, A., 2010. Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool. Modelling and Simulation in Materials Science and Engineering, 18, 015012. https://doi.org/10.1088/0965-0393/18/1/015012
  • Stukowski, A., 2012. Structure identification methods for atomistic simulations of crystalline materials. Modelling and Simulation in Materials Science and Engineering, 20, 045021. https://doi.org/10.1088/0965-0393/20/4/045021
  • Sun, L.T., Shi, D.P., Guo, C.Z., Xiao, X.Y. and Bai, J., 2015. A Molecular dynamics study on the physical properties of (CuPd)147 alloy nanoparticles. Applied Mechanics and Materials, 723, 497-501. https://doi.org/10.4028/www.scientific.net/AMM.723.497
  • Taran, S. and Arslan, H., 2020. Stability and magnetic behaviour of 19-,23-and 26-atom trimetallic Pt-Ni-Ag nanoalloys. Molecular Physics, 118, e1818859. https://doi.org/10.1080/00268976.2020.1818859
  • Taran, S., Garip, A.K. and Arslan, H., 2020. Chemical ordering effect on structural stability of trimetallic Cu-Au Pt nanoalloys. Physica Scripta, 95, 085404. https://doi.org/10.1088/1402-4896/aba3ab
  • Vanderbilt, D., 1990. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Physical Review B, 41, 7892-7895. https://doi.org/10.1103/PhysRevB.41.7892
  • Wang, L., Yang, Y., Wang, N. and Huang, S., 2016. Theoretical investigation of structural, electronic and magnetic properties for PtnNi55−n (n=0–55) nanoparticles. Computational Materials Science, 117, 15-23. https://doi.org/10.1016/j.commatsci.2016.01.016
  • Wu, X. and Zhang, Y., 2024. Structural differences of Cu Pd clusters with three potential parameters. Chemical Physics Letters, 842, 141200. https://doi.org/10.1016/j.cplett.2024.141200
  • Xing, F., Jeon, J., Toyao, T., Shimizu, K. and Furukawa, S., 2019. A Cu–Pd single-atom alloy catalyst for highly efficient NO reduction. Chemical Science, 10, 8292-8298. https://doi.org/10.1039/C9SC03172C
  • Yıldırım, H., 2022. Theoretical investigation of Fe-Rh binary nanoalloys: Chemical ordering and magnetic behavior. International Journal of Modern Physics B, 36, 2250022. https://doi.org/10.1142/S0217979222500229
  • Yıldırım, H., Kanbur, U. and Arslan, H., 2022. Poly icosahedral Co–Fe–Pd nanoalloy: Isomerism effect on the structural and magnetic properties from DFT. Physica B: Condensed Matter, 641, 414122. https://doi.org/10.1016/j.physb.2022.414122 Yıldırım, H. and Arslan, H., 2024. The structural motif transformations in 71-atom PtAlCu nanoalloys: A combined Atomistic- DFT study. Materials Chemistry and Physics, 322, 129543. https://doi.org/10.1016/j.matchemphys.2024.129543
  • Yıldırım, H., Taran, S. and Arslan, H., 2024. Understanding the shape effect on the structural, energetic, magnetic, and pressure properties of the 38 atom-Co-Fe-Pd nanoalloys using Gupta and DFT calculations. Physica Scripta, 99, 065414. https://doi.org/10.1088/1402-4896/ad4ca3

Investigation of the structural, energetic, and pressure properties of the Cu-Pd nanoalloys: Combined Study of the Atomistic and Density Functional Theory Calculations

Yıl 2025, Cilt: 25 Sayı: 5, 1053 - 1061, 01.10.2025
https://doi.org/10.35414/akufemubid.1643569

Öz

Binary nanoalloys exhibit tunable catalytic properties due to their further structural variety. Increasing studies in the literature show that Pd-based binary heterogeneous catalysts are designed to improve efficiency and reduce cost. This study aimed to show the composition effect on structural, energetic, and pressure properties of 19-atom CunPd19-n (n=0-19) nanoalloys by combining Gupta and DFT calculations. It was confirmed that the atomic radius determines the preference of Cu and Pd atoms to locate in the inner site or on the surface of the nanoalloy. CunPd19-n (n=0-19) nanoalloys were energetically suitable for mixing according to both Gupta and DFT level excess energy analysis. The relationship between the number of Cu-Pd bonds and excess energy was confirmed. It was obtained that the pressure values of CunPd19-n (n=0-19) nanoalloys were proper for the natural pressure model of metal nanoparticles.

Proje Numarası

KBÜBAP-25-DS-008

Kaynakça

  • Aguilera-Granja, F., Vega, A., Rogan, J., Andrade, X. and Garcia, G., 2006. Theoretical investigation of free standing CoPd nanoclusters as a function of cluster size and stoichiometry in the Pd-rich phase: Geometry, chemical order, magnetism, and metallic behavior. Physical Review B, 74, 224405. https://doi.org/10.1103/PhysRevB.74.224405
  • Arslan, H., 2008. Structures and energetic of palladium-cobalt binary clusters. International Journal of Modern Physics C, 19, 1243-1255. https://doi.org/10.1142/S0129183108012832
  • Arslan, H. and Irmak, A.E., 2009. Heat capacity of 13- and 19-atom Pd–Co binary clusters: parallel tempering Monte Carlo study. International Journal of Modern Physics C, 20, 1737–1747. https://doi.org/10.1142/S0129183109014709
  • Bell, A.T., 2003. The impact of nanoscience on heterogeneous catalysis. Science, 299, 1688-1691. https://doi.org/10.1126/science.1083671.
  • Bochicchio, D., Negro, F. and Ferrando, R., 2013. Competition between structural motifs in gold-platinum nanoalloys. Computational and Theoretical Chemistry, 1021, 177–182. https://doi.org/10.1016/j.comptc.2013.07.017
  • Bochicchio, D., Ferrando, R., Novakovic, R., Panizon, E. and Rossi, G., 2014. Chemical ordering in magic-size Ag-Pd nanoparticles. Physical Chemistry Chemical Physics, 16, 26478-26484. https://doi.org/10.1039/C4CP02143F
  • Borbon-Gonzalez, D.J., Pacheco-Contreras, R., Posada-Amarillas, A., Schön, J.C., Johnston, R.L. and Montejano-Carrizales, J.M., 2009. Structural insights into 19-atom Pd/Pt nanoparticles: A computational perspective. The Journal of Physical Chemistry C, 113, 15904–15908. https://doi.org/10.1021/jp904518e
  • Calderón Gómez, J.C., Moliner, R. and Lázaro, M.J., 2016. Palladium-based catalysts as electrodes for direct methanol fuel cells: A last ten years review. Catalysts, 6, 130. https://doi.org/10.3390/catal6090130
  • Casey-Stevens, C.A., Yang, M., Weal, G.R., McIntyre, S.M., Nally, B.K. and Garden, A.L., 2021. A theoretical investigation of 38-atom CuPd clusters: the effect of potential parameterisation on structure and segregation. Physical Chemistry Chemical Physics, 23, 15950-15964. https://doi.org/10.1039/D1CP00810B
  • Choi, K. and Vannice, M.A., 1991. CO oxidation over Pd and Cu catalysts V. Al2O3-supported bimetallic Pd-Cu particles. Journal of Catalysis, 131, 36-50. https://doi.org/10.1016/0021-9517(91)90321-T
  • Diyarbakır, S., Can, H. and Metin, Ö., 2015. Reduced graphene oxide supported CuPd alloy nanoparticles as efficient catalysts for the Sonogashira Cross-Coupling reactions. ACS Applied Materials & Interfaces, 7, 3199–3206. https://doi.org/10.1021/am507764u
  • Feng, X., Shi, D., Jia, J., Wang, C. and Yao, L., 2022. Structural, mixing, electronic and magnetic properties of small Cu-Pd nanoalloy clusters. Materials Today Communications, 31, 103222. https://doi.org/10.1016/j.mtcomm.2022.103222
  • Fernandez, E.M., Balbas, L.C., Peres, L.A., Michaelian, K. and Garzon, I.L., 2005. Structural properties of bimetallic clusters from density functional calculations. International Journal Of Modern Physics B, 19, 2339-2344. https://doi.org/10.1142/S0217979205030931
  • Ferrando, R., Jellinek, J. and Johnston, R.L., 2008. Nanoalloys: from theory to applications of alloy clusters and nanoparticles. Chemical Reviews, 108, 845–910. https://doi.org/10.1021/cr040090g
  • Ferrando, R., 2015. Symmetry breaking and morphological instabilities in core–shell metallic nanoparticles. Journal of Physics: Condensed Matter, 27, 013003. https://doi.org/10.1088/0953-8984/27/1/013003 Ferrando, R., 2016. Structure and properties of nanoalloys. Richard E. Palmer (Series Editör), Elsevier, 1-327.
  • Ferrando, R., 2018. Stress-driven structural transitions in bimetallic nanoparticles. Frontiers of Nanoscience, 12, 189–204. https://doi.org/10.1016/B978-0-08-102232-0.00006-3
  • Garip, A.K., Arslan, H., Rapetti, D. and Ferrando, R., 2020. A DFT study of chemical ordering and oxygen adsorption in AuPtPd ternary nanoalloys. Materials Today Communications, 25, 1015. https://doi.org/10.1016/j.mtcomm.2020.101545
  • Garip, A.K. and Taran, S., 2020. Structural and dynamics properties of double icosahedral Pd-Ag-Pt trimetallic clusters. International Journal of Modern Physics B, 34, 2050063. https://doi.org/10.1142/S0217979220500630
  • Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G.L., Cococcioni, M., Dabo, I., Dal Corso, A., De Gironcoli, S., Fabris, S., Fratesi, G., Gebauer, R., Gerstmann, U., Gougoussis, C., Kokalj, A., Lazzeri, M., Martin-Samos, L., Marzari, N., Mauri, F., Mazzarello, R., Paolini, S., Pasquarello, A., Paulatto, L., Sbraccia, C., Scandolo, S., Sclauzero, G., Seitsonen, A.P., Smogunov, A., Umari, P. and Wentzcovitch, R.M., 2009. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. Journal of Physics:Condensed Matter, 21, 395502. https://doi.org/10.1088/0953-8984/21/39/395502
  • Giannozzi, P., Andreussi, O., Brumme, T., Bunau, O., Nardelli, M.B., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Cococcioni, M., Colonna, N., Carnimeo, I., Dal Corso, A., De Gironcoli, S., Delugas, P., DiStasio Jr, R.A., Ferretti, A., Floris, A., Fratesi, G., Fugallo, G., Gebauer, R., Gerstmann, U., Giustino, F., Gorni, T., Jia, J., Kawamura, M., Ko, H., Kokalj, A., Küçükbenli, E., Lazzeri M., Marsili, M., Marzari, N., Mauri, F., Nguyen, N.L., Nguyen, H., De La Roza, A., Paulatto, L., Ponce, S., Rocca, D., Sabatini, R., Santra, B., Schlipf, M., Seitsonen, A.P., Smogunov, A., Timrov, I., Thonhauser, T., Umari, P., Vast, N., Wu, X. and Baroni, S., 2017. Advanced capabilities for materials modelling with Quantum ESPRESSO. Journal of Physics:Condensed Matter, 29, 465901 https://doi.org/10.1088/1361-648X/aa8f79
  • Guo, S., Zhang, X., Zhu, W., He, K., Su, D., Mendoza-Garcia, A., Ho, S.F., Lu, G. and Sun, S., 2014. Nanocatalyst superior to Pt for oxygen reduction reaction: the case of core/shell Ag(Au)/CuPd nanoparticles. Journal of the American Chemical Society, 136, 15026–15033. https://doi.org/10.1021/ja508256g
  • Janthon, P., Kozlov, S.M., Vines, F., Limtrakul, J. and Illas, F., 2013. Establishing the accuracy of broadly used density functionals in describing bulk properties of transition metals. Journal of Chemical Theory and Computation, 9, 1631–1640. https://doi.org/10.1021/ct3010326
  • Johnston, R.L., 2012. Metal nanoparticles and nanoalloys. Richard E. Palmer (Series Editör), Frontiers of Nanoscience Book Series, Elsevier, 4–42.
  • Koraychy, E.Y.E. and Ferrando, R., 2023. Growth pathways of exotic Cu@Au core@shell structures: the key role of misfit strain. Nanoscale, 15, 2384–93. https://doi.org/10.1039/D2NR05810C
  • Laasonen, K., Panizon, E., Bochicchio, D. and Ferrando, R., 2013. Competition between Icosahedral Motifs in AgCu, AgNi, and AgCo Nanoalloys: A Combined Atomistic-DFT Study. The Journal of Physical Chemistry C, 117, 26405–26413. https://doi.org/10.1021/jp410379u
  • Leppert, L. and Kümmel, S., 2011. The electronic structure of Gold-Platinum nanoparticles: collecting clues for why they are special. The Journal of Physical Chemistry C, 115, 6694–6702. https://doi.org/10.1021/jp112224t
  • Leppert, L., 2013. Structural and Electronic Properties of Transition Metal Nanoalloys and Magnetic Compounds.
  • Li, M., Xia, Z., Luo, M., He, L., Tao, L., Yang, W., Yu, Y. and Guo, S., 2021. Structural regulation of Pd-based nanoalloys for advanced electrocatalysis. Small Science, 1, 2100061. https://doi.org/10.1002/smsc.202100061
  • Liu, Q., Zhang, Y. and Qian, P., 2023. Molecular dynamics study on the thermodynamic stability and structural evolution of crown-jewel structured PdCu nanoalloys. RSC Advances, 13, 7963-7971. https://doi.org/10.1039/D2RA08024A
  • Lloyd, L.D., Johnston, R.L., Salhi, S. and Wilson, N.T., 2004. Theoretical investigation of isomer stability in platinum–palladium nanoalloy clusters. Journal of Materials Chemistry, 14, 1691-1704. https://doi.org/10.1039/B313811A
  • Longo; R.C., Noya, E.G. and Gallego, L.J., 2005. A density-functional study of the structures, binding energies and total spins of Ni–Fe clusters using nonlocal norm-conserving pseudopotentials and the generalized gradient approximation. The Journal of Chemical Physics, 122, 084311. https://doi.org/10.1063/1.1849133
  • Mandal, K., Bhattacharjee, D., Roy, P.S., Bhattacharya, S.K. and Dasgupta, S., 2015. Room temperature synthesis of Pd–Cu nanoalloy catalyst with enhanced electrocatalytic activity for the methanol oxidation reaction. Applied Catalysis A: General, 492, 100–106. https://doi.org/10.1016/j.apcata.2014.12.012
  • Meng, H., Zeng, D. and Xie, F., 2015. Recent development of Pd-based electrocatalysts for proton exchange membrane fuel cells. Catalysts, 5, 1221-1274. https://doi.org/10.3390/catal5031221
  • Montejano-Carrizales, J.M., Iniguez, M.P. and Alonso, J.A., 1994. Embedded-atom method applied to bimetallic clusters: The Cu-Ni and Cu-Pd systems. Physical Review B, 49, 16649. https://doi.org/10.1103/PhysRevB.49.16649
  • Montejano-Carrizales, J.M., Aguilera-Granja, F., Goyhenex, C., Pierron-Bohnes, V. and Morán-López, J.L., 2014. Structural, electronic and magnetic properties of ConPtM−n, for M=13, 19, and 55, from first principles. Journal of Magnetism and Magnetic Materials, 355, 215-224. https://doi.org/10.1016/j.jmmm.2013.10.035
  • Nasrollahzadeh, M., Jaleh B. and Ehsani, A., 2014. Preparation of carbon supported CuPd nanoparticles as novel heterogeneous catalysts for the reduction of nitroarenes and the phosphine-free Suzuki–Miyaura coupling reaction. New Journal of Chemistry, 39, 1148-1153. https://doi.org/10.1039/C4NJ01788A
  • Pirart, J., Front, A., Rapetti, D., Andreazza-Vignolle, C., Andreazza, P., Mottet, C. and Ferrando, R., 2019. Reversed size-dependent stabilization of ordered nanophases. Nature Communications, 10, 1982. https://doi.org/10.1038/s41467-019-09841-3
  • Perdew, J.P., Burke, K. and Ernzerhof, M., 1996. Generalized gradient approximation made simple. Physical Review Letters, 77, 3865-3868. https://doi.org/10.1103/PhysRevLett.77.3865
  • Ren, S., Sun, J. and Hao, Y., 2014. Analysis of structures and melting properties of the 19-atom Ni–Co clusters. International Journal of Modern Physics B, 28, 1450171. https://doi.org/10.1142/S0217979214501719
  • Rey, C., Garcia-Rodeja, J. and Gallego, L.J., 1996. Computer simulation of the ground-state atomic configurations of Ni-Al clusters using the embedded-atom model. Physical Review B, 54, 2942. https://doi.org/10.1103/PhysRevB.54.2942
  • Roy, P.S., Bagchi, J. and Bhattacharya, S.K., 2012. The size-dependent anode-catalytic activity of nickel-supported Palladium nanoparticles for ethanol alkaline fuel cells. Catalysis Science & Technology, 2, 2302-2310. https://doi.org/10.1039/C2CY20264F
  • Sengar, S.K., Mehta, B.R. and Gupta, G., 2011. Charge transfer, lattice distortion, and quantum confinement effects in Pd, Cu, and Pd–Cu nanoparticles; size and alloying induced modifications in binding energy. Applied Physics Letters, 98, 193115. https://doi.org/10.1063/1.3590272
  • Sharma, G., Kumar, D., Kumar, A., Al-Muhtaseb, A.H., Pathania, D., Naushad, M. and Mola, G.T., 2017. Revolution from monometallic to trimetallic nanoparticle composites, various synthesis methods and their applications: A review. Materials Science and Engineering: C, 71, 1216-1230. https://doi.org/10.1016/j.msec.2016.11.002
  • Skoda, F., Astier, M.P., Pajonk, G.M. and Primet M., 1994. Surface characterization of palladium--copper bimetallic catalysts by FTIR spectroscopy and test reactions. Catalysis Letters, 29, 159-168. https://doi.org/10.1007/BF00814262
  • Stukowski, A., 2010. Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool. Modelling and Simulation in Materials Science and Engineering, 18, 015012. https://doi.org/10.1088/0965-0393/18/1/015012
  • Stukowski, A., 2012. Structure identification methods for atomistic simulations of crystalline materials. Modelling and Simulation in Materials Science and Engineering, 20, 045021. https://doi.org/10.1088/0965-0393/20/4/045021
  • Sun, L.T., Shi, D.P., Guo, C.Z., Xiao, X.Y. and Bai, J., 2015. A Molecular dynamics study on the physical properties of (CuPd)147 alloy nanoparticles. Applied Mechanics and Materials, 723, 497-501. https://doi.org/10.4028/www.scientific.net/AMM.723.497
  • Taran, S. and Arslan, H., 2020. Stability and magnetic behaviour of 19-,23-and 26-atom trimetallic Pt-Ni-Ag nanoalloys. Molecular Physics, 118, e1818859. https://doi.org/10.1080/00268976.2020.1818859
  • Taran, S., Garip, A.K. and Arslan, H., 2020. Chemical ordering effect on structural stability of trimetallic Cu-Au Pt nanoalloys. Physica Scripta, 95, 085404. https://doi.org/10.1088/1402-4896/aba3ab
  • Vanderbilt, D., 1990. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Physical Review B, 41, 7892-7895. https://doi.org/10.1103/PhysRevB.41.7892
  • Wang, L., Yang, Y., Wang, N. and Huang, S., 2016. Theoretical investigation of structural, electronic and magnetic properties for PtnNi55−n (n=0–55) nanoparticles. Computational Materials Science, 117, 15-23. https://doi.org/10.1016/j.commatsci.2016.01.016
  • Wu, X. and Zhang, Y., 2024. Structural differences of Cu Pd clusters with three potential parameters. Chemical Physics Letters, 842, 141200. https://doi.org/10.1016/j.cplett.2024.141200
  • Xing, F., Jeon, J., Toyao, T., Shimizu, K. and Furukawa, S., 2019. A Cu–Pd single-atom alloy catalyst for highly efficient NO reduction. Chemical Science, 10, 8292-8298. https://doi.org/10.1039/C9SC03172C
  • Yıldırım, H., 2022. Theoretical investigation of Fe-Rh binary nanoalloys: Chemical ordering and magnetic behavior. International Journal of Modern Physics B, 36, 2250022. https://doi.org/10.1142/S0217979222500229
  • Yıldırım, H., Kanbur, U. and Arslan, H., 2022. Poly icosahedral Co–Fe–Pd nanoalloy: Isomerism effect on the structural and magnetic properties from DFT. Physica B: Condensed Matter, 641, 414122. https://doi.org/10.1016/j.physb.2022.414122 Yıldırım, H. and Arslan, H., 2024. The structural motif transformations in 71-atom PtAlCu nanoalloys: A combined Atomistic- DFT study. Materials Chemistry and Physics, 322, 129543. https://doi.org/10.1016/j.matchemphys.2024.129543
  • Yıldırım, H., Taran, S. and Arslan, H., 2024. Understanding the shape effect on the structural, energetic, magnetic, and pressure properties of the 38 atom-Co-Fe-Pd nanoalloys using Gupta and DFT calculations. Physica Scripta, 99, 065414. https://doi.org/10.1088/1402-4896/ad4ca3
Toplam 56 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Atomik, Moleküler ve Optik Fizik (Diğer)
Bölüm Makaleler
Yazarlar

Hüseyin Yıldırım 0000-0002-8554-3885

Proje Numarası KBÜBAP-25-DS-008
Erken Görünüm Tarihi 18 Eylül 2025
Yayımlanma Tarihi 1 Ekim 2025
Gönderilme Tarihi 20 Şubat 2025
Kabul Tarihi 17 Mayıs 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 25 Sayı: 5

Kaynak Göster

APA Yıldırım, H. (2025). Cu-Pd Nanoalaşımlarının Yapısal, Enerjik ve Basınç Özelliklerinin İncelenmesi: Atomistik ve Yoğunluk Fonksiyonel Teorisi Hesaplamalarının Birleştirilmiş Çalışması. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 25(5), 1053-1061. https://doi.org/10.35414/akufemubid.1643569
AMA Yıldırım H. Cu-Pd Nanoalaşımlarının Yapısal, Enerjik ve Basınç Özelliklerinin İncelenmesi: Atomistik ve Yoğunluk Fonksiyonel Teorisi Hesaplamalarının Birleştirilmiş Çalışması. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. Ekim 2025;25(5):1053-1061. doi:10.35414/akufemubid.1643569
Chicago Yıldırım, Hüseyin. “Cu-Pd Nanoalaşımlarının Yapısal, Enerjik ve Basınç Özelliklerinin İncelenmesi: Atomistik ve Yoğunluk Fonksiyonel Teorisi Hesaplamalarının Birleştirilmiş Çalışması”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 25, sy. 5 (Ekim 2025): 1053-61. https://doi.org/10.35414/akufemubid.1643569.
EndNote Yıldırım H (01 Ekim 2025) Cu-Pd Nanoalaşımlarının Yapısal, Enerjik ve Basınç Özelliklerinin İncelenmesi: Atomistik ve Yoğunluk Fonksiyonel Teorisi Hesaplamalarının Birleştirilmiş Çalışması. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 25 5 1053–1061.
IEEE H. Yıldırım, “Cu-Pd Nanoalaşımlarının Yapısal, Enerjik ve Basınç Özelliklerinin İncelenmesi: Atomistik ve Yoğunluk Fonksiyonel Teorisi Hesaplamalarının Birleştirilmiş Çalışması”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 25, sy. 5, ss. 1053–1061, 2025, doi: 10.35414/akufemubid.1643569.
ISNAD Yıldırım, Hüseyin. “Cu-Pd Nanoalaşımlarının Yapısal, Enerjik ve Basınç Özelliklerinin İncelenmesi: Atomistik ve Yoğunluk Fonksiyonel Teorisi Hesaplamalarının Birleştirilmiş Çalışması”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 25/5 (Ekim2025), 1053-1061. https://doi.org/10.35414/akufemubid.1643569.
JAMA Yıldırım H. Cu-Pd Nanoalaşımlarının Yapısal, Enerjik ve Basınç Özelliklerinin İncelenmesi: Atomistik ve Yoğunluk Fonksiyonel Teorisi Hesaplamalarının Birleştirilmiş Çalışması. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2025;25:1053–1061.
MLA Yıldırım, Hüseyin. “Cu-Pd Nanoalaşımlarının Yapısal, Enerjik ve Basınç Özelliklerinin İncelenmesi: Atomistik ve Yoğunluk Fonksiyonel Teorisi Hesaplamalarının Birleştirilmiş Çalışması”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 25, sy. 5, 2025, ss. 1053-61, doi:10.35414/akufemubid.1643569.
Vancouver Yıldırım H. Cu-Pd Nanoalaşımlarının Yapısal, Enerjik ve Basınç Özelliklerinin İncelenmesi: Atomistik ve Yoğunluk Fonksiyonel Teorisi Hesaplamalarının Birleştirilmiş Çalışması. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2025;25(5):1053-61.


Bu eser Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.