Araştırma Makalesi
BibTex RIS Kaynak Göster

Belirsiz kriter ağırlıkları altında yeni bir ÇKKV yöntemi: Yapay zekâ sohbet robotlarına (ChatGPT4, Copilot, Gemini) dayalı portföy seçimi üzerine bir uygulama

Yıl 2024, , 68 - 80, 21.10.2024
https://doi.org/10.33707/akuiibfd.1454952

Öz

Çok kriterli karar verme (ÇKKV) problemlerinin en tartışmalı noktası kriter ağırlıklandırmadır. Çünkü farklı kriter ağırlıkları genellikle farklı sonuçların ortaya çıkmasına neden olur. Bu çalışmanın amacı kriter ağırlıklarının belirsiz olduğu durumda ÇKKV problemlerini çözebilmek için yeni bir yöntem geliştirmektir. Bu kapsamda bu çalışmada Belirsiz Kriter Ağırlıklarıyla Olabilirlik Değerlendirme Sistemi (U-PES) önerilmiştir. Uzman bilgisinden (yapay zekâ sohbet robotlarından) ve geçmiş veriden yararlanılarak Borsa İstanbul’da işlem gören sekiz adet hisse senedi ile portföy oluşturmada U-PES kullanılmıştır. Buradaki kriterler; beklenen getiri, standart sapma ve Çevresel-Sosyal-Kurumsal Yönetim (ESG) bileşenleri olarak belirlenmiştir. Yapılan uygulamada uzman bilgisi ya da geçmiş veri ile elde edilen sonuçlar arasında genellikle pozitif ama yüksek düzeyde olmayan ilişki olduğu bulunmuştur.

Kaynakça

  • Ahangar, R. G. ve Fietko, A. (2023). Exploring the potential of ChatGPT in financial decision making. R. Gharoie Ahangar ve M. Napier (Ed.), Advances in Business Information Systems and Analytics içinde (ss. 94-111). IGI Global. https://doi.org/10.4018/978-1-6684-8386-2.ch005
  • Akbaş, S. ve Erbay Dalkılıç, T. (2021). A hybrid algorithm for portfolio selection: An application on the Dow Jones Index (DJI). Journal of Computational and Applied Mathematics, 398, 113678. https://doi.org/10.1016/j.cam.2021.113678
  • Aldridge, I. (2023). The AI revolution: From linear regression to ChatGPT and beyond and how it all connects to finance. The Journal of Portfolio Management, 49(9), 64-77. https://doi.org/10.3905/jpm.2023.1.519
  • Altan, İ. M. ve Kılıç, M. (2023). Science fiction to real life: BING AI as an investment advisor. Ekonomi İşletme ve Yönetim Dergisi, 7(2), 240-260. https://doi.org/10.7596/jebm.31122023.003
  • Bisht, K. ve Kumar, A. (2022). Stock portfolio selection hybridizing fuzzy base-criterion method and evidence theory in triangular fuzzy environment. Operations Research Forum, 3(4), 1-32. https://doi.org/10.1007/s43069-022-00167-3
  • Bouslah, K., Liern, V., Ouenniche, J. ve Pérez‐Gladish, B. (2023). Ranking firms based on their financial and diversity performance using multiple‐stage unweighted TOPSIS. International Transactions in Operational Research, 30(5), 2485-2505. https://doi.org/10.1111/itor.13143
  • Chen, Z., Zheng, L., Lu, C., Yuan, J. ve Zhu, D. (2023). ChatGPT informed graph neural network for stock movement prediction. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.4464002
  • Dubois, D. (2006). Possibility theory and statistical reasoning. Computational Statistics & Data Analysis, 51(1), 47-69. https://doi.org/10.1016/j.csda.2006.04.015
  • Göktaş, F. ve Duran, A. (2019). A new possibilistic mean-variance model based on the principal components analysis: an application on the Turkish holding stocks. Journal of Multiple-Valued Logic & Soft Computing, 32(5-6), 455-476.
  • Göktaş, F. ve Gökerik, M. (2024). A novel robust theoretical approach on social media advertisement platform selection. International Journal of Engineering Research and Development, 16(1), 373-382. https://doi.org/10.29137/umagd.1398580
  • Göktaş, F. ve Güçlü, F. (2024). Yeni bir çok kriterli karar verme yaklaşımı “olabilirlik değerlendirme sistemi”: Katılım fonları üzerine bir uygulama. Black Sea Journal of Engineering and Science, 7(1), 1-8. https://doi.org/10.34248/bsengineering.1341340
  • Grant, M. C. ve Boyd, S. P. (2008). Graph implementations for nonsmooth convex programs. In Recent advances in learning and control (pp. 95-110). Springer, London. https://doi.org/10.1007/978-1-84800-155-8_7
  • Hair, J. F., Money, A. H., Samouel, P. ve Page, M. (2007). Research methods for business. Education+Training, 49(4), 336-337. https://doi.org/10.1108/et.2007.49.4.336.2
  • He, Y., Romanko, O., Sienkiewicz, A., Seidman, R. ve Kwon, R. (2021). Cognitive user interface for portfolio optimization. Journal of Risk and Financial Management, 14(4), 180. https://doi.org/10.3390/jrfm14040180
  • Karami, A. ve Johansson, R. (2014). Utilization of multi attribute decision making techniques to integrate automatic and manual ranking of options. Journal of Information Science and Engineering, 30(2), 519-534. https://doi.org/10.6688/JISE.2014.30.2.14
  • Kim, J. H. (2023). What if ChatGPT were a quant asset manager. Finance Research Letters, 58, 104580. https://doi.org/10.1016/j.frl.2023.104580
  • Ko, H. ve Lee, J. (2023). Can ChatGPT improve investment decision? From a portfolio management perspective. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.4390529
  • Li, H., Cao, Y. ve Su, L. (2022). Pythagorean fuzzy multi-criteria decision-making approach based on Spearman rank correlation coefficient. Soft Computing, 26(6), 3001-3012. https://doi.org/10.1007/s00500-021-06615-2
  • Liern, V. ve Pérez-Gladish, B. (2022). Multiple criteria ranking method based on functional proximity index: Un-weighted TOPSIS. Annals of Operations Research, 311(2), 1099-1121. https://doi.org/10.1007/s10479-020-03718-1
  • López-García, A., Liern, V. ve Pérez-Gladish, B. (2023). Determining the underlying role of corporate sustainability criteria in a ranking problem using UW-TOPSIS. Annals of Operations Research, 1-24. https://doi.org/10.1007/s10479-023-05543-8
  • Lopez-Lira, A. ve Tang, Y. (2023). Can ChatGPT forecast stock price movements? Return predictability and large language models. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.4412788
  • Lu, F., Huang, L. ve Li, S. (2023). ChatGPT, generative AI, and investment advisory. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.4519182
  • Lutgens, F. ve Schotman, P. C. (2010). Robust portfolio optimisation with multiple experts. Review of Finance, 14(2), 343-383. https://doi.org/10.1093/rof/rfn028
  • Markowitz, H. (1952). Portfolio selection. The Journal of Finance, 7(1), 77-91. https://doi.org/10.2307/2975974
  • Narang, M., Joshi, M. C. ve Pal, A. K. (2021). A hybrid fuzzy COPRAS-base-criterion method for multi-criteria decision making. Soft Computing, 25(13), 8391-8399. https://doi.org/10.1007/s00500-021-05762-w
  • Oehler, A. ve Horn, M. (2024). Does ChatGPT provide better advice than robo-advisors? Finance Research Letters, 60, 104898. https://doi.org/10.1016/j.frl.2023.104898
  • Okhrin, Y. ve Schmid, W. (2006). Distributional properties of portfolio weights. Journal of Econometrics, 134(1), 235-256. https://doi.org/10.1016/j.jeconom.2005.06.022
  • Parkhid, M. ve Mohammadi, E. (2022). Bi-level portfolio optimization considering fundamental analysis in fuzzy uncertainty environments. Fuzzy Optimization and Modeling Journal, 3(3), 1-18. https://doi.org/10.30495/fomj.2022.1949729.1055
  • Pelster, M. ve Val, J. (2024). Can ChatGPT assist in picking stocks? Finance Research Letters, 59, 104786. https://doi.org/10.1016/j.frl.2023.104786
  • Pinochet, L. H. C., Moreira, M. Â. L., Fávero, L. P., Santos, M. D. ve Pardim, V. I. (2023). Collaborative work alternatives with ChatGPT based on evaluation criteria for its use in higher education: Application of the PROMETHEE-SAPEVO-M1 method. Procedia Computer Science, 221, 177-184. https://doi.org/10.1016/j.procs.2023.07.025
  • Pośpiech, E. (2019). Effective portfolios – An application of multi-criteria and fuzzy approach. Folia Oeconomica Stetinensia, 19(1), 126-139. https://doi.org/10.2478/foli-2019-0009
  • Romanko, O., Narayan, A. ve Kwon, R. H. (2023). ChatGPT-based investment portfolio selection. Operations Research Forum, 4(4), 1-27. https://doi.org/10.1007/s43069-023-00277-6
  • Saaty, T. L., Rogers, P. C. ve Pell, R. (1980). Portfolio selection through hierarchies. The Journal of Portfolio Management, 6(3), 16-21. https://doi.org/10.3905/jpm.1980.408749
  • Sanjib Biswas, Joshi, N. ve Jayanta Nath Mukhopadhyaya. (2023). ChatGPT in investment decision making: An introductory discussion. https://doi.org/10.13140/RG.2.2.36417.43369
  • Souliotis, G., Alanazi, Y. ve Papadopoulos, B. (2022). Construction of fuzzy numbers via cumulative distribution function. Mathematics, 10(18), 3350. https://doi.org/10.3390/math10183350
  • Svoboda, I. ve Lande, D. (2024). Enhancing multi-criteria decision analysis with AI: Integrating analytic hierarchy process and GPT-4 for automated decision support. https://doi.org/10.48550/arxiv.2402.07404
  • Tanaka, H. ve Guo, P. (1999). Portfolio selection based on upper and lower exponential possibility distributions. European Journal of Operational Research, 114(1), 115-126. https://doi.org/10.1016/S0377-2217(98)00033-2
  • Tiryaki, F. ve Ahlatçıoğlu, B. (2009). Fuzzy portfolio selection using fuzzy analytic hierarchy process. Information Sciences, 179(1-2), 53-69. https://doi.org/10.1016/j.ins.2008.07.023
  • Ullah, R., Ismail, H. B., Islam Khan, M. T. ve Zeb, A. (2024). Nexus between ChatGPT usage dimensions and investment decisions making in Pakistan: Moderating role of financial literacy. Technology in Society, 76, 102454. https://doi.org/10.1016/j.techsoc.2024.102454
  • Vafaei, N., Ribeiro, R. A. ve Camarinha-Matos, L. M. (2016). Normalization techniques for multi-criteria decision making: Analytical hierarchy process case study. In Doctoral Conference on Computing, Electrical and Industrial Systems (pp. 261-269). https://doi.org/10.1007/978-3-319-31165-4_26
  • Vaidogas, E. R., Zavadskas, E. K. ve Turskis, Z. (2007). Reliability measures in multicriteria decision making as applied to engineering projects. International Journal of Management and Decision Making, 8(5-6), 497-518. https://doi.org/10.1504/IJMDM.2007.013414
  • Yadav, S., Kumar, A., Mehlawat, M. K., Gupta, P. ve Charles, V. (2023). A multi-objective sustainable financial portfolio selection approach under an intuitionistic fuzzy framework. Information Sciences, 646, 119379. https://doi.org/10.1016/j.ins.2023.119379

A novel MCDM method under uncertain criteria weights: An application on portfolio selection based on artificial intelligence chatbots (ChatGPT4, Copilot, Gemini)

Yıl 2024, , 68 - 80, 21.10.2024
https://doi.org/10.33707/akuiibfd.1454952

Öz

The most controversial aspect of multi-criteria decision-making (MCDM) problems is criteria weighting. Because different criteria weights generally lead to different results. This study aims to develop a new method for solving MCDM problems with uncertain criteria weights. In this context, we propose the Possibilistic Evaluation System with Uncertain Criteria Weights (U-PES) in this study. We use U-PES to form a portfolio with eight stocks listed in Borsa Istanbul using expert knowledge (artificial intelligence chatbots) and historical data. Here, we determine the criteria as expected return, standard deviation, and Environmental-Social-Governance (ESG) components. In the application, we observe generally positive but not high-level relationships between the results obtained with expert knowledge or historical data.

Kaynakça

  • Ahangar, R. G. ve Fietko, A. (2023). Exploring the potential of ChatGPT in financial decision making. R. Gharoie Ahangar ve M. Napier (Ed.), Advances in Business Information Systems and Analytics içinde (ss. 94-111). IGI Global. https://doi.org/10.4018/978-1-6684-8386-2.ch005
  • Akbaş, S. ve Erbay Dalkılıç, T. (2021). A hybrid algorithm for portfolio selection: An application on the Dow Jones Index (DJI). Journal of Computational and Applied Mathematics, 398, 113678. https://doi.org/10.1016/j.cam.2021.113678
  • Aldridge, I. (2023). The AI revolution: From linear regression to ChatGPT and beyond and how it all connects to finance. The Journal of Portfolio Management, 49(9), 64-77. https://doi.org/10.3905/jpm.2023.1.519
  • Altan, İ. M. ve Kılıç, M. (2023). Science fiction to real life: BING AI as an investment advisor. Ekonomi İşletme ve Yönetim Dergisi, 7(2), 240-260. https://doi.org/10.7596/jebm.31122023.003
  • Bisht, K. ve Kumar, A. (2022). Stock portfolio selection hybridizing fuzzy base-criterion method and evidence theory in triangular fuzzy environment. Operations Research Forum, 3(4), 1-32. https://doi.org/10.1007/s43069-022-00167-3
  • Bouslah, K., Liern, V., Ouenniche, J. ve Pérez‐Gladish, B. (2023). Ranking firms based on their financial and diversity performance using multiple‐stage unweighted TOPSIS. International Transactions in Operational Research, 30(5), 2485-2505. https://doi.org/10.1111/itor.13143
  • Chen, Z., Zheng, L., Lu, C., Yuan, J. ve Zhu, D. (2023). ChatGPT informed graph neural network for stock movement prediction. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.4464002
  • Dubois, D. (2006). Possibility theory and statistical reasoning. Computational Statistics & Data Analysis, 51(1), 47-69. https://doi.org/10.1016/j.csda.2006.04.015
  • Göktaş, F. ve Duran, A. (2019). A new possibilistic mean-variance model based on the principal components analysis: an application on the Turkish holding stocks. Journal of Multiple-Valued Logic & Soft Computing, 32(5-6), 455-476.
  • Göktaş, F. ve Gökerik, M. (2024). A novel robust theoretical approach on social media advertisement platform selection. International Journal of Engineering Research and Development, 16(1), 373-382. https://doi.org/10.29137/umagd.1398580
  • Göktaş, F. ve Güçlü, F. (2024). Yeni bir çok kriterli karar verme yaklaşımı “olabilirlik değerlendirme sistemi”: Katılım fonları üzerine bir uygulama. Black Sea Journal of Engineering and Science, 7(1), 1-8. https://doi.org/10.34248/bsengineering.1341340
  • Grant, M. C. ve Boyd, S. P. (2008). Graph implementations for nonsmooth convex programs. In Recent advances in learning and control (pp. 95-110). Springer, London. https://doi.org/10.1007/978-1-84800-155-8_7
  • Hair, J. F., Money, A. H., Samouel, P. ve Page, M. (2007). Research methods for business. Education+Training, 49(4), 336-337. https://doi.org/10.1108/et.2007.49.4.336.2
  • He, Y., Romanko, O., Sienkiewicz, A., Seidman, R. ve Kwon, R. (2021). Cognitive user interface for portfolio optimization. Journal of Risk and Financial Management, 14(4), 180. https://doi.org/10.3390/jrfm14040180
  • Karami, A. ve Johansson, R. (2014). Utilization of multi attribute decision making techniques to integrate automatic and manual ranking of options. Journal of Information Science and Engineering, 30(2), 519-534. https://doi.org/10.6688/JISE.2014.30.2.14
  • Kim, J. H. (2023). What if ChatGPT were a quant asset manager. Finance Research Letters, 58, 104580. https://doi.org/10.1016/j.frl.2023.104580
  • Ko, H. ve Lee, J. (2023). Can ChatGPT improve investment decision? From a portfolio management perspective. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.4390529
  • Li, H., Cao, Y. ve Su, L. (2022). Pythagorean fuzzy multi-criteria decision-making approach based on Spearman rank correlation coefficient. Soft Computing, 26(6), 3001-3012. https://doi.org/10.1007/s00500-021-06615-2
  • Liern, V. ve Pérez-Gladish, B. (2022). Multiple criteria ranking method based on functional proximity index: Un-weighted TOPSIS. Annals of Operations Research, 311(2), 1099-1121. https://doi.org/10.1007/s10479-020-03718-1
  • López-García, A., Liern, V. ve Pérez-Gladish, B. (2023). Determining the underlying role of corporate sustainability criteria in a ranking problem using UW-TOPSIS. Annals of Operations Research, 1-24. https://doi.org/10.1007/s10479-023-05543-8
  • Lopez-Lira, A. ve Tang, Y. (2023). Can ChatGPT forecast stock price movements? Return predictability and large language models. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.4412788
  • Lu, F., Huang, L. ve Li, S. (2023). ChatGPT, generative AI, and investment advisory. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.4519182
  • Lutgens, F. ve Schotman, P. C. (2010). Robust portfolio optimisation with multiple experts. Review of Finance, 14(2), 343-383. https://doi.org/10.1093/rof/rfn028
  • Markowitz, H. (1952). Portfolio selection. The Journal of Finance, 7(1), 77-91. https://doi.org/10.2307/2975974
  • Narang, M., Joshi, M. C. ve Pal, A. K. (2021). A hybrid fuzzy COPRAS-base-criterion method for multi-criteria decision making. Soft Computing, 25(13), 8391-8399. https://doi.org/10.1007/s00500-021-05762-w
  • Oehler, A. ve Horn, M. (2024). Does ChatGPT provide better advice than robo-advisors? Finance Research Letters, 60, 104898. https://doi.org/10.1016/j.frl.2023.104898
  • Okhrin, Y. ve Schmid, W. (2006). Distributional properties of portfolio weights. Journal of Econometrics, 134(1), 235-256. https://doi.org/10.1016/j.jeconom.2005.06.022
  • Parkhid, M. ve Mohammadi, E. (2022). Bi-level portfolio optimization considering fundamental analysis in fuzzy uncertainty environments. Fuzzy Optimization and Modeling Journal, 3(3), 1-18. https://doi.org/10.30495/fomj.2022.1949729.1055
  • Pelster, M. ve Val, J. (2024). Can ChatGPT assist in picking stocks? Finance Research Letters, 59, 104786. https://doi.org/10.1016/j.frl.2023.104786
  • Pinochet, L. H. C., Moreira, M. Â. L., Fávero, L. P., Santos, M. D. ve Pardim, V. I. (2023). Collaborative work alternatives with ChatGPT based on evaluation criteria for its use in higher education: Application of the PROMETHEE-SAPEVO-M1 method. Procedia Computer Science, 221, 177-184. https://doi.org/10.1016/j.procs.2023.07.025
  • Pośpiech, E. (2019). Effective portfolios – An application of multi-criteria and fuzzy approach. Folia Oeconomica Stetinensia, 19(1), 126-139. https://doi.org/10.2478/foli-2019-0009
  • Romanko, O., Narayan, A. ve Kwon, R. H. (2023). ChatGPT-based investment portfolio selection. Operations Research Forum, 4(4), 1-27. https://doi.org/10.1007/s43069-023-00277-6
  • Saaty, T. L., Rogers, P. C. ve Pell, R. (1980). Portfolio selection through hierarchies. The Journal of Portfolio Management, 6(3), 16-21. https://doi.org/10.3905/jpm.1980.408749
  • Sanjib Biswas, Joshi, N. ve Jayanta Nath Mukhopadhyaya. (2023). ChatGPT in investment decision making: An introductory discussion. https://doi.org/10.13140/RG.2.2.36417.43369
  • Souliotis, G., Alanazi, Y. ve Papadopoulos, B. (2022). Construction of fuzzy numbers via cumulative distribution function. Mathematics, 10(18), 3350. https://doi.org/10.3390/math10183350
  • Svoboda, I. ve Lande, D. (2024). Enhancing multi-criteria decision analysis with AI: Integrating analytic hierarchy process and GPT-4 for automated decision support. https://doi.org/10.48550/arxiv.2402.07404
  • Tanaka, H. ve Guo, P. (1999). Portfolio selection based on upper and lower exponential possibility distributions. European Journal of Operational Research, 114(1), 115-126. https://doi.org/10.1016/S0377-2217(98)00033-2
  • Tiryaki, F. ve Ahlatçıoğlu, B. (2009). Fuzzy portfolio selection using fuzzy analytic hierarchy process. Information Sciences, 179(1-2), 53-69. https://doi.org/10.1016/j.ins.2008.07.023
  • Ullah, R., Ismail, H. B., Islam Khan, M. T. ve Zeb, A. (2024). Nexus between ChatGPT usage dimensions and investment decisions making in Pakistan: Moderating role of financial literacy. Technology in Society, 76, 102454. https://doi.org/10.1016/j.techsoc.2024.102454
  • Vafaei, N., Ribeiro, R. A. ve Camarinha-Matos, L. M. (2016). Normalization techniques for multi-criteria decision making: Analytical hierarchy process case study. In Doctoral Conference on Computing, Electrical and Industrial Systems (pp. 261-269). https://doi.org/10.1007/978-3-319-31165-4_26
  • Vaidogas, E. R., Zavadskas, E. K. ve Turskis, Z. (2007). Reliability measures in multicriteria decision making as applied to engineering projects. International Journal of Management and Decision Making, 8(5-6), 497-518. https://doi.org/10.1504/IJMDM.2007.013414
  • Yadav, S., Kumar, A., Mehlawat, M. K., Gupta, P. ve Charles, V. (2023). A multi-objective sustainable financial portfolio selection approach under an intuitionistic fuzzy framework. Information Sciences, 646, 119379. https://doi.org/10.1016/j.ins.2023.119379
Toplam 42 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Yapay Zeka (Diğer), Sayısal ve Hesaplamalı Matematik (Diğer), Finans
Bölüm Araştırma Makaleleri
Yazarlar

Furkan Göktaş 0000-0001-9291-3912

Fatih Güçlü 0000-0002-1007-4594

Erken Görünüm Tarihi 5 Temmuz 2024
Yayımlanma Tarihi 21 Ekim 2024
Gönderilme Tarihi 18 Mart 2024
Kabul Tarihi 2 Temmuz 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Göktaş, F., & Güçlü, F. (2024). Belirsiz kriter ağırlıkları altında yeni bir ÇKKV yöntemi: Yapay zekâ sohbet robotlarına (ChatGPT4, Copilot, Gemini) dayalı portföy seçimi üzerine bir uygulama. Afyon Kocatepe Üniversitesi İktisadi Ve İdari Bilimler Fakültesi Dergisi, 26(Özel Sayı), 68-80. https://doi.org/10.33707/akuiibfd.1454952

28220