Araştırma Makalesi
BibTex RIS Kaynak Göster

AN EXCHANGE RATE MODEL FOR TURKEY USING THE ARTIFICIAL NEURAL NETWORKS

Yıl 2007, Cilt: 9 Sayı: 1, 289 - 310, 01.06.2007

Öz

The success of decisions depends not only on the behaviors of
decision makers (governments, producers, consumers, and so on) but
also the ability of forecasting future correctly. Forecasting modeling
has a great importance for many research areas as well as economics.
In recent years artificial neural networks (ANNs) have increasingly
been used for forecasting in economics. In this study both ANNs and
vector auto regression method (VAR) are used to solve the exchange
rate model developed for Turkey and the results obtained from the two
methods are compared.

Kaynakça

  • CENTRAL BANK OF THE REPUPLIC OF TURKEY (2007), Statistical Data, www.tcmb.gov.tr.
  • GONZALES, S. (2000), “Neural Networks for Macroeconomic Forecasting: A Complementary Approach to Linear Regression Models”, Canada Department of Finance Working Papers, 2000-07.
  • GRANGER, C. W. J. (1969), “Investigating Casual Relations by Econometric Models andCross-Spectral Methods”, Econometrica, 37, pp. 424-438.
  • GREENE, W. H. (1993), Econometric Analysis, Second Edition, Prentice-Hall.
  • HAYKIN, S. (1999), Neural Networks: A Comprehensive Foundation, Prentice- Hall.
  • KAASTRA, I., and M. BOYD (1996), “Designing A Neural Network For Forecasting Financial and Econometric Time Series”, Neurocomputing, 10 (3), pp. 215-236.
  • KOHONEN, T. (1982), “Self-organized Formation of Topologically Correct Feature Maps”, Biological Cybernetics, 43, pp. 59-69.
  • MINSKY, M., and S. PAPERT (1969), Perceptrons, MIT Press. SIMS, C. (1980), “Macroeconomics and Reality”, Econometrica, 48, pp. 1-49.
  • TURKISH STATISTICAL INSTITUTE (2007), Statistics, www.tuik.gov.tr.
  • ZHANG, G., B.E. PATUWO., and M.Y. HU (1998), “Forecasting with Artificial Neural Networks: The State of the Art”, International Journal of Forecasting, 14, pp. 35-62.
  • ZURADA, J. M. (1992), Introduction of Artificial Neural Systems, West Publishing Company.

AN EXCHANGE RATE MODEL FOR TURKEY USING THE ARTIFICIAL NEURAL NETWORKS

Yıl 2007, Cilt: 9 Sayı: 1, 289 - 310, 01.06.2007

Öz

Verilen kararlar.n ba/ar.l. olmas. yaln.zca karar vericilerin
(hükümetler, üreticiler, tüketiciler, v.b.) davran./lar.na ba2l. olmay.p,
ayn. zamanda gelece2i do2ru biçimde tahmin edebilme yetene2ine de
ba2l.d.r. Tahmin modellemesi birçok ara/t.rma alan. ve ekonomi için
büyük bir öneme sahiptir. Son y.llarda yapay sinir a2lar. (YSA)
ekonomide tahmin amac.yla artan bir biçimde kullan.lmaya
ba/lanm./t.r. Bu çal./mada hem YSA hem de vektör otoregresif metot (VAR) Türkiye için geli/tirilen döviz kuru modelinin çözümünde
kullan.lmakta ve iki metodun sonuçlar. birbirleri ile
kar/.la/t.r.lmaktad.r

Kaynakça

  • CENTRAL BANK OF THE REPUPLIC OF TURKEY (2007), Statistical Data, www.tcmb.gov.tr.
  • GONZALES, S. (2000), “Neural Networks for Macroeconomic Forecasting: A Complementary Approach to Linear Regression Models”, Canada Department of Finance Working Papers, 2000-07.
  • GRANGER, C. W. J. (1969), “Investigating Casual Relations by Econometric Models andCross-Spectral Methods”, Econometrica, 37, pp. 424-438.
  • GREENE, W. H. (1993), Econometric Analysis, Second Edition, Prentice-Hall.
  • HAYKIN, S. (1999), Neural Networks: A Comprehensive Foundation, Prentice- Hall.
  • KAASTRA, I., and M. BOYD (1996), “Designing A Neural Network For Forecasting Financial and Econometric Time Series”, Neurocomputing, 10 (3), pp. 215-236.
  • KOHONEN, T. (1982), “Self-organized Formation of Topologically Correct Feature Maps”, Biological Cybernetics, 43, pp. 59-69.
  • MINSKY, M., and S. PAPERT (1969), Perceptrons, MIT Press. SIMS, C. (1980), “Macroeconomics and Reality”, Econometrica, 48, pp. 1-49.
  • TURKISH STATISTICAL INSTITUTE (2007), Statistics, www.tuik.gov.tr.
  • ZHANG, G., B.E. PATUWO., and M.Y. HU (1998), “Forecasting with Artificial Neural Networks: The State of the Art”, International Journal of Forecasting, 14, pp. 35-62.
  • ZURADA, J. M. (1992), Introduction of Artificial Neural Systems, West Publishing Company.
Toplam 11 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Araştırma Makaleleri
Yazarlar

Harun Öztürkler Bu kişi benim

. . Bu kişi benim

Şenol Altan Bu kişi benim

Yayımlanma Tarihi 1 Haziran 2007
Gönderilme Tarihi 8 Eylül 2015
Yayımlandığı Sayı Yıl 2007 Cilt: 9 Sayı: 1

Kaynak Göster

APA Öztürkler, H., ., .., & Altan, Ş. (2007). AN EXCHANGE RATE MODEL FOR TURKEY USING THE ARTIFICIAL NEURAL NETWORKS. Afyon Kocatepe Üniversitesi İktisadi Ve İdari Bilimler Fakültesi Dergisi, 9(1), 289-310.

28220