Araştırma Makalesi
BibTex RIS Kaynak Göster

Yapay Zekâ Destekli Gözetim ile İlgili Çalışmaların Bibliyometrik Analizi

Yıl 2025, Cilt: 27 Sayı: 4, 1418 - 1448, 22.12.2025
https://doi.org/10.32709/akusosbil.1675072

Öz

Yapay zekâ destekli gözetim, izlemeyle sınırlı kalmayıp bireylerin davranışlarını tahmin eden, sınıflandıran ve yönlendiren yeni bir denetim mekanizması oluşturmuştur. Bu sistemler, gözetimi teknik bir araçtan çok öznelliği yeniden kuran, kararları şekillendiren ve toplumsal rolleri belirleyen müdahale biçimine dönüştürmüştür. Yapay zekâ veriye dayalı öğrenme, öngörü ve karar mekanizmaları aracılığıyla insan davranışını hem kavramlaştıran hem de biçimlendiren bir işlev üstlenmektedir. Gözetim ise bireylerin izlenmesinin ötesinde sınıflandırma, karşılaştırma ve kontrol altına alma eylemidir. Bu dönüşüm gözetimin etik, toplumsal ve politik boyutlarının yeniden ele alınmasını zorunlu kılmaktadır. Bu çalışma, yapay zekâ destekli gözetimle ilgili literatürdeki yönelimleri incelemeyi amaçlamaktadır. 2021–2025 yılları arasında Web of Science veri tabanında yayımlanmış 2340 yayın bibliyometrik analiz yöntemiyle değerlendirilmiştir. Veriler, VOSviewer ve Biblioshiny (R-Stüdyo) programları kullanılarak analiz edilmiştir. Bulgular, literatürde teknik disiplinlerin baskın olduğunu, özellikle “machine learning”, “privacy” ve “ethics” gibi kavramların öne çıktığını, ABD, Çin ve İngiltere gibi ülkelerde merkezileştiğini ve yazarlar arası iş birliğinin belirli kümelerde yoğunlaştığını göstermektedir. Bibliyometrik bulgular çalışmaların yalnızca teknoloji eksenli değil, aynı zamanda mahremiyet, etik ve normatif düzenlemeler gibi alanlarda da derinleştiğini göstermektedir. Bireyler yalnızca izlenen nesneler değil, aynı zamanda algoritmik karar süreçlerine maruz kalan özneler olarak konumlandırmaktadır. Bu bağlamda çalışma, disiplinler arası etkileşimi teşvik ederken, yapay zekâ çağında toplumsal denetimin yeni biçimlerine dair eleştirel bir farkındalık oluşturmayı hedeflemektedir.

Etik Beyan

Bu çalışmanın tüm hazırlanma süreçlerinde etik kurallara ve bilimsel atıf gösterme ilkelerine riayet edildiğini yazar beyan eder. Aksi bir durumun tespiti halinde Afyon Kocatepe Üniversitesi Sosyal Bilimler Dergisi’nin hiçbir sorumluluğu olmayıp, tüm sorumluluk makale yazarlarına aittir.

Kaynakça

  • Acosta, J. N., Falcone, G. J., Rajpurkar, P., & Topol, E. J. (2022). Multimodal biomedical AI. Nature Medicine, 28(9), 1773–1784. https://doi.org/10.1038/s41591-022-01981-2
  • Adedinsewo, D. A., Pollak, A. W., Phillips, S. D., Smith, T. L., Svatikova, A., Hayes, S. N., & Carter, R. E. (2022). Cardiovascular disease screening in women: Leveraging artificial intelligence and digital tools. Circulation Research, 130(4), 673–690. https://doi.org/10.1161/CIRCRESAHA.121.319876
  • Ahmed, F., Mohanta, J. C., Keshari, A., & Yadav, P. S. (2022). Recent advances in unmanned aerial vehicles: A review. Arabian Journal for Science and Engineering, 47(7), 7963–7984. https://doi.org/10.1007/s13369-022-06738-0
  • Allam, Z., Sharifi, A., Bibri, S. E., Jones, D. S., & Krogstie, J. (2022). The metaverse as a virtual form of smart cities: Opportunities and challenges for environmental, economic, and social sustainability in urban futures. Smart Cities, 5(3), 771–801. https://doi.org/10.3390/smartcities5030040
  • Andrejevic, M. (2007). iSpy: Surveillance and power in the interactive era. Lawrence, KS: University Press of Kansas.
  • Aria, M. ve Cuccurullo, C. (2017). Bibliometrix: An R-tool for comprehensive science mapping analysis. Journal of Informetrics, 11(4), 959-975. doi.org/10.1016/j.joi.2017.08.007
  • Azar, A. T., Koubaa, A., Ali Mohamed, N., Ibrahim, H. A., Ibrahim, Z. F., Kazim, M., & Casalino, G. (2021). Drone deep reinforcement learning: A review. Electronics, 10(9), 999. https://doi.org/10.3390/electronics10090999
  • Baccour, E., Mhaisen, N., Abdellatif, A. A., Erbad, A., Mohamed, A., Hamdi, M., & Guizani, M. (2022). Pervasive AI for IoT applications: A survey on resource-efficient distributed artificial intelligence. IEEE Communications Surveys & Tutorials, 24(4), 2366–2418. https://doi.org/10.1109/COMST.2022.3200740
  • Bhatti, M. T., Khan, M. G., Aslam, M., & Fiaz, M. J. (2021). Weapon detection in real-time CCTV videos using deep learning. IEEE Access, 9, 34366–34382. https://doi.org/10.1109/ACCESS.2021.3059170
  • Bourdieu, P. (1993). The field of cultural production: Essays on art and literature (R. Johnson, Ed.). New York: Columbia University Press.
  • Brown, J. R. G., Mansour, N. M., Wang, P., Chuchuca, M. A., Minchenberg, S. B., Chandnani, M., & Berzin, T. M. (2022). Deep learning computer-aided polyp detection reduces adenoma miss rate: A United States multi-center randomized tandem colonoscopy study (CADeT-CS Trial). Clinical Gastroenterology and Hepatology, 20(7), 1499–1507. https://doi.org/10.1016/j.cgh.2021.09.009
  • Brown, S. A., Chung, B. Y., Doshi, K., Hamid, A., Pederson, E., Maddula, R., & Cardio-Oncology Artificial Intelligence Informatics and Precision Equity (CAIPE) Research Team Investigators. (2023). Patient similarity and other artificial intelligence machine learning algorithms in clinical decision aid for shared decision-making in the Prevention of Cardiovascular Toxicity (PACT): A feasibility trial design. Cardio-Oncology, 9(1), 7. https://doi.org/10.1186/s40959-022-00151-0
  • Burrell, J. ve Fourcade, M. (2021). The society of algorithms. Annual Review of Sociology, 47, 213-237. doi.org/10.1146/annurev-soc-090820-020800
  • Castells, M. (2000). The rise of the network society (2nd ed.). Oxford: Wiley-Blackwell Publishing.
  • Chen, L. B., Liu, Y. H., Huang, X. R., Chen, W. H., & Wang, W. C. (2022). Design and implementation of a smart seawater aquarium system based on artificial intelligence of things technology. IEEE Sensors Journal, 22(20), 19908–19918. https://doi.org/10.1109/JSEN.2022.3200958
  • Coşkun, A. (2023). Dijital gözetim kavramının literatürdeki gelişimi: Bibliyometrik bir inceleme. Kastamonu İletişim Araştırmaları Dergisi, 11, 51-75. doi.org/10.56676/kiad.1358349
  • Couldry, N. ve Mejias, U. A. (2019). The costs of connection: How data ıs colonizing human life and appropriating it for capitalism. Stanford, CA: Stanford University Press.
  • Çetin, M. ve Asıl, S. (2017). Günümüz toplumunda gözetim olgusu. Third Sector Social Economic Review, 52(1), 180-205. doi.org/10.15659/3.sektor-sosyal-ekonomi.17.05.684
  • Deleuze, G. (1992). Postscript on the societies of control. October, 59(Winter), 3-7. http://www.jstor.org/stable/778828 (Erişim tarihi: 30.06.2025).
  • Dong, J., Wu, H., Zhou, D., Li, K., Zhang, Y., Ji, H., & Liu, Z. (2021). Application of big data and artificial intelligence in COVID-19 prevention, diagnosis, treatment and management decisions in China. Journal of Medical Systems, 45(9), 84. https://doi.org/10.1007/s10916-021-01757-0
  • Foucault, M. (1977). Discipline and punish: The birth of the prison (A. Sheridan, Çev.). New York, NY: Vintage Books.
  • Gunasekeran, D. V., Tseng, R. M. W. W., Tham, Y. C. ve Wong, T. Y. (2021). Applications of digital health for public health responses to covıd-19: A systematic scoping review of artificial intelligence, telehealth and related technologies. NPJ Digital Medicine, 4(40), 1-6. doi.org/10.1038/s41746-021-00412-9
  • Gupta, P., Liao, S., Ezekiel, M., Novak, N., Rossi, A., LaCross, N., & Rohrwasser, A. (2023). Wastewater genomic surveillance captures early detection of Omicron in Utah. Microbiology Spectrum, 11(3), e00391–23. https://doi.org/10.1128/spectrum.00391-23
  • Hall, S. (Ed.). (2017). Temsil: Kültürel temsiller ve anlamlandırma uygulamaları (İ. Dündar, Çev.). İstanbul: Pinhan Yayıncılık.
  • Han, T., Zhu, J., Chen, X., Chen, R., Jiang, Y., Wang, S., & Xu, C. (2022). Application of artificial intelligence in a real-world research for predicting the risk of liver metastasis in T1 colorectal cancer. Cancer Cell International, 22(1), 28. https://doi.org/10.1186/s12935-021-02424-7
  • Harari, Y. N. (2016). Homo deus: Yarının kısa bir tarihi (P. N. Tanelli, Çev.). İstanbul: Kolektif Kitap.
  • Heinrich, A., Heitmayer, M., Smith, E., ve Zhang, Y. (2024). Experiencing hybrid spaces a scoping literature review of empirical studies on human experiences in cyber-physical environments. Computers in Human Behavior, 164, 108502. doi.org/10.1016/j.chb.2024.108502.
  • Himeur, Y., Al-Maadeed, S., Kheddar, H., Al-Maadeed, N., Abualsaud, K., Mohamed, A., & Khattab, T. (2023). Video surveillance using deep transfer learning and deep domain adaptation: Towards better generalization. Engineering Applications of Artificial Intelligence, 119, 105698. https://doi.org/10.1016/j.engappai.2022.105698
  • Hsiao, W. W. W., Le, T. N., Pham, D. M., Ko, H. H., Chang, H. C., Lee, C. C., & Chiang, W. H. (2021). Recent advances in novel lateral flow technologies for detection of COVID-19. Biosensors, 11(9), 295. https://doi.org/10.3390/bios11090295
  • Kickbusch, I., Piselli, D., Agrawal, A., Balicer, R., Banner, O., Adelhardt, M., ... ve Xue, L. (2021). The Lancet and financial times commission on governing health futures 2030: Growing up in a digital world. The Lancet, 398(10312), 1727-1776. doi.org/10.1016/S0140-6736(21)01824-9
  • Kim, J., Placido, D., Yuan, B., Hjaltelin, J. X., Zheng, C., Haue, A. D., Chmura, P. J., & Sander, C. (2023). A deep learning algorithm to predict risk of pancreatic cancer from disease trajectories. Nature Medicine, 29(5), 1113–1122. https://doi.org/10.1038/s41591-023-02332-5
  • Koşar, M. (2023). Sosyal medyada görünürlük ve gözetim: YouTube örneği. Uluslararası İnsan Bilimleri Dergisi, 20(2), 442-462. doi.org/10.14687/ijhs.v20i2.7424
  • Kumar, R., & Kumar, S. (2023). Survey on artificial intelligence-based human action recognition in video sequences. Optical Engineering, 62(2), 023102. https://doi.org/10.1117/1.OE.62.2.023102
  • Latour, B. (2005). Reassembling the social: An introduction to actor-network-theory. Oxford: Oxford University Press.
  • Lee, C., Szymański, P., Weidinger, F., Lordereau-Richard, I., Himmelmann, A., Arca, M., Chaves, J., & James, S. (2023). Real world evidence: Perspectives from a European Society of Cardiology cardiovascular round table with contribution from the European Medicines Agency. European Heart Journal–Quality of Care and Clinical Outcomes, 9(2), 109–118. https://doi.org/10.1093/ehjqcco/qcad009
  • Li, P., Wang, Y., Li, H., Cheng, B., Wu, S., Ye, H., & Fang, X. (2023). Prediction of postoperative infection in elderly using deep learning-based analysis: An observational cohort study. Aging Clinical and Experimental Research, 35(3), 639–647. https://doi.org/10.1007/s40520-022-02325-3
  • Liu, Z., Xu, J., Li, J., Plaza, A., Zhang, S., & Wang, L. (2022). Moving ship optimal association for maritime surveillance: Fusing AIS and Sentinel-2 data. IEEE Transactions on Geoscience and Remote Sensing, 60, 1–18. https://doi.org/10.1109/TGRS.2022.3227938
  • Lyon, D. (2001). Surveillance society: Monitoring everyday life. Buckingham: Open University Press.
  • Mathiesen, T. (1997). The viewer society: Michel Foucault’s panopticon revisited. Theoretical Criminology, 1(2), 215-234.
  • Messmann, H., Bisschops, R., Antonelli, G., Libânio, D., Sinonquel, P., Abdelrahim, M., & Dinis-Ribeiro, M. (2022). Expected value of artificial intelligence in gastrointestinal endoscopy: European Society of Gastrointestinal Endoscopy (ESGE) position statement. Endoscopy, 54(12), 1211–1231. https://doi.org/10.1055/a-1950-5694
  • Muhammad, K., Khan, S., Del Ser, J., & De Albuquerque, V. H. C. (2020). Deep learning for multigrade brain tumor classification in smart healthcare systems: A prospective survey. IEEE Transactions on Neural Networks and Learning Systems, 32(2), 507–522. https://doi.org/10.1109/TNNLS.2020.2995800
  • Naik, N., Hameed, B. M. Z., Shetty, D. K., Swain, D., Shah, M., Paul, R., ... ve Somani, B. K. (2022). Legal and ethical consideration in artificial intelligence in healthcare: Who takes responsibility? Frontiers in Surgery, 9, 862322. doi.org/10.3389/fsurg.2022.862322
  • Najem, E. J., Shaikh, M. J. S., Shinagare, A. B. ve Krajewski, K. M. (2025). Navigating advanced renal cell carcinoma in the era of artificial intelligence. Cancer Imaging, 25(16), 1-12. doi.org/10.1186/s40644-025-00835-7
  • Park, J., Patel, K., & Lee, W. H. (2024). Recent advances in algal bloom detection and prediction technology using machine learning. Science of The Total Environment, 938, 173546. https://doi.org/10.1016/j.scitotenv.2024.173546
  • Park, Y. J., & Jones S. M. (2023). Surveillance, security, and AI as technological acceptance. AI & Society, 38(6), 2667–2678. https://doi.org/10.1007/s00146-021-01331-9
  • Placido, D., Yuan, B., Hjaltelin, J. X., Zheng, C., Haue, A. D., Chmura, P. J., ... ve Sander, C. (2023). A deep learning algorithm to predict risk of pancreatic cancer from disease trajectories. Nature Medicine, 29(5), 1113-1122. doi.org/10.1038/s41591-023-02332-5
  • Posegga, O. (2023). Unlocking big data: At the crossroads of computer science and the social sciences. L. A. Kurtumerova (Ed.), Unlocking big data: At the crossroads of computer science and the social sciences içinde (ss. 115–129). Edward Elgar Publishing. doi.org/10.4337/9781789906769.00013
  • Racine, E. E. (2025). Que(e)rying artificial intelligence use for infectious disease surveillance: The need for a reparative algorithmic praxis. Big Data & Society, 12(1), 1-6. doi.org/10.1177/20539517241289440
  • Rao, Y. C., Satyanarayana, M., Lavanya, P., Chandra, G. R., Rao, L. S., & Srujan, A. S. (2025). Design of near-infrared imaging system using Nd-YAG laser at 1064 nm and gated InGaAs camera. Journal of Optics, 1–11. https://doi.org/10.1007/s12596-025-02548-3
  • Schiller, H. I. (1989). Culture, Inc.: The corporate takeover of public expression. New York: Oxford University Press.
  • Seo, K., Tang, J., Roll, I., Fels, S. ve Yoon, D. (2021). The impact of artificial intelligence on learner-instructor interaction in online learning. International Journal of Educational Technology in Higher Education, 18(1), 54. doi.org/10.1186/s41239-021-00292-9
  • Sezer, Ö. (2024). Gözetim toplumu bağlamında algoritmalar tarafından dönüştürülen halkla ilişkiler (Doktora tezi). Marmara Üniversitesi Sosyal Bilimler Enstitüsü, İstanbul.
  • Sharma, S. K., Al‐Wanain, M. I., Alowaidi, M., & Alsaghier, H. (2022). Mobile healthcare (m‐Health) based on artificial intelligence in Healthcare 4.0. Expert Systems, 41(6), e13025. https://doi.org/10.1111/exsy.13025
  • Sikora, P., Malina, L., Kiac, M., Martinasek, Z., Riha, K., Prinosil, J., & Srivastava, G. (2020). Artificial intelligence-based surveillance system for railway crossing traffic. IEEE Sensors Journal, 21(14), 15515–15526. https://doi.org/10.1109/JSEN.2020.3031861
  • Sözkesen, M. E., Şahin, Y. ve Vatandaş, C. (2024). Z kuşağının dijital ortamlarda gözetim farkındalığını incelemeye yönelik bir araştırma. İletişim ve Toplum Araştırmaları Dergisi, 4(1), 41-66. doi.org/10.59534/jcss.1378075
  • Tan, J. L., Chinnaratha, M. A., Woodman, R., Martin, R., Chen, H. T., Carneiro, G., & Singh, R. (2022). Diagnostic accuracy of artificial intelligence (AI) to detect early neoplasia in Barrett's esophagus: A non-comparative systematic review and meta-analysis. Frontiers in Medicine, 9, 890720. https://doi.org/10.3389/fmed.2022.890720
  • Thompson, J. B. (1995). The media and modernity: A social theory of the media. Cambridge: Polity Press.
  • Tüfekci, Z. (2017). Twitter and tear gas: The power and fragility of networked protest. New Haven & London: Yale University Press.
  • Uyanık, G. ve Çelik, T. (2024). Mobil uygulamalar ve veri gözetimi: Türkiye’deki mobil uygulama kullanıcılarının gizlilik endişeleri üzerine bir araştırma. Gümüşhane Üniversitesi İletişim Fakültesi Elektronik Dergisi (e-gifder), 12(3), 1532-1557. doi.org/10.19145/e-gifder.1409185
  • Van Dijck, J. (2013). The culture of connectivity: A critical history of social media. Oxford: Oxford University Press.
  • Wallace, M. B., Sharma, P., Bhandari, P., East, J., Antonelli, G., Lorenzetti, R., & Hassan, C. (2022). Impact of artificial intelligence on miss rate of colorectal neoplasia. Gastroenterology, 163(1), 295–304. https://doi.org/10.1053/j.gastro.2022.03.007
  • Watch, R. W., Duong, M. T., Zhang, Y. ve Nguyen, T. T. (2023). The dark side of generative artificial intelligence: A critical analysis of controversies and risks of ChatGPT. Entrepreneurial Business and Economics Review, 11(4), 7-20. doi.org/10.15678/EBER.2023.110401
  • Wei, J., Liu, S., Li, Z., Liu, C., Qin, K., Liu, X., & Wang, J. (2022). Ground-level NO₂ surveillance from space across China for high resolution using interpretable spatiotemporally weighted artificial intelligence. Environmental Science & Technology, 56(14), 9988–9998. https://doi.org/10.1021/acs.est.2c03834
  • Yalçın, H. (2010). Millî Folklor dergisinin bibliyometrik profili (2007-2009). Millî Folklor, 22(85), 205-211.
  • Yıldız, E. ve Karadaş, B. (2023). Dijital gözetim bağlamında sosyal medya algoritmaları: Instagram örneği. Uluslararası Güncel Sosyal Bilimler Dergisi, 6(1), 69-90. doi.org/10.5281/zenodo.8172062
  • Yin, Y., Cheng, X., Shi, F., Zhao, M., Li, G., ve Chen, S. (2022). An enhanced lightweight convolutional neural network for ship detection in maritime surveillance system. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 15, 5811–5825. https://doi.org/10.1109/JSTARS.2022.3187454
  • Zhang, F., Pan, Z., & Lu, Y. (2023). AIoT-enabled smart surveillance for personal data digitalization: Contextual personalization-privacy paradox in smart home. Information & Management, 60(2), 103736. https://doi.org/10.1016/j.im.2022.10373
  • Zuboff, S. (2019). The age of surveillance capitalism: The fight for a human future at the new frontier of power. New York: PublicAffairs

Bibliometric Analysis of Research on Artificial Intelligence Driven Surveillance

Yıl 2025, Cilt: 27 Sayı: 4, 1418 - 1448, 22.12.2025
https://doi.org/10.32709/akusosbil.1675072

Öz

Artificial intelligence (AI)-enabled surveillance has evolved beyond passive observation, functioning as a sophisticated mechanism for predicting, classifying, and shaping behavior. These systems intervene to shape subjectivity, decisions, and social roles. AI both conceptualizes and structures human behavior, with surveillance going beyond monitoring to include classification, comparison, and control. This shift calls for renewed ethical, social, and political scrutiny of AI-driven surveillance. This study investigates the dominant trends in the scholarly literature on AI-driven surveillance. A bibliometric analysis of 2,340 publications indexed in the Web of Science between 2021 and 2025 was conducted using VOSviewer. The findings reveal a predominance of technical disciplines, with key terms such as “machine learning,” “privacy,” and “ethics” prominently featured. Research is primarily concentrated in the United States, China, and the United Kingdom, with author collaboration networks forming distinct clusters. Keyword co-occurrence analysis highlights thematic clusters around “ethics,” “privacy,” “human rights,” “transparency,” and “accountability.” The results indicate a growing focus not only on technological advancements but also on ethical, normative, and societal considerations. Individuals are increasingly positioned within algorithmic decision-making frameworks, transitioning from passive subjects to active participants in AI-driven systems. This study advocates for interdisciplinary collaboration and aims to promote critical awareness of emerging forms of social control in the era of AI.

Kaynakça

  • Acosta, J. N., Falcone, G. J., Rajpurkar, P., & Topol, E. J. (2022). Multimodal biomedical AI. Nature Medicine, 28(9), 1773–1784. https://doi.org/10.1038/s41591-022-01981-2
  • Adedinsewo, D. A., Pollak, A. W., Phillips, S. D., Smith, T. L., Svatikova, A., Hayes, S. N., & Carter, R. E. (2022). Cardiovascular disease screening in women: Leveraging artificial intelligence and digital tools. Circulation Research, 130(4), 673–690. https://doi.org/10.1161/CIRCRESAHA.121.319876
  • Ahmed, F., Mohanta, J. C., Keshari, A., & Yadav, P. S. (2022). Recent advances in unmanned aerial vehicles: A review. Arabian Journal for Science and Engineering, 47(7), 7963–7984. https://doi.org/10.1007/s13369-022-06738-0
  • Allam, Z., Sharifi, A., Bibri, S. E., Jones, D. S., & Krogstie, J. (2022). The metaverse as a virtual form of smart cities: Opportunities and challenges for environmental, economic, and social sustainability in urban futures. Smart Cities, 5(3), 771–801. https://doi.org/10.3390/smartcities5030040
  • Andrejevic, M. (2007). iSpy: Surveillance and power in the interactive era. Lawrence, KS: University Press of Kansas.
  • Aria, M. ve Cuccurullo, C. (2017). Bibliometrix: An R-tool for comprehensive science mapping analysis. Journal of Informetrics, 11(4), 959-975. doi.org/10.1016/j.joi.2017.08.007
  • Azar, A. T., Koubaa, A., Ali Mohamed, N., Ibrahim, H. A., Ibrahim, Z. F., Kazim, M., & Casalino, G. (2021). Drone deep reinforcement learning: A review. Electronics, 10(9), 999. https://doi.org/10.3390/electronics10090999
  • Baccour, E., Mhaisen, N., Abdellatif, A. A., Erbad, A., Mohamed, A., Hamdi, M., & Guizani, M. (2022). Pervasive AI for IoT applications: A survey on resource-efficient distributed artificial intelligence. IEEE Communications Surveys & Tutorials, 24(4), 2366–2418. https://doi.org/10.1109/COMST.2022.3200740
  • Bhatti, M. T., Khan, M. G., Aslam, M., & Fiaz, M. J. (2021). Weapon detection in real-time CCTV videos using deep learning. IEEE Access, 9, 34366–34382. https://doi.org/10.1109/ACCESS.2021.3059170
  • Bourdieu, P. (1993). The field of cultural production: Essays on art and literature (R. Johnson, Ed.). New York: Columbia University Press.
  • Brown, J. R. G., Mansour, N. M., Wang, P., Chuchuca, M. A., Minchenberg, S. B., Chandnani, M., & Berzin, T. M. (2022). Deep learning computer-aided polyp detection reduces adenoma miss rate: A United States multi-center randomized tandem colonoscopy study (CADeT-CS Trial). Clinical Gastroenterology and Hepatology, 20(7), 1499–1507. https://doi.org/10.1016/j.cgh.2021.09.009
  • Brown, S. A., Chung, B. Y., Doshi, K., Hamid, A., Pederson, E., Maddula, R., & Cardio-Oncology Artificial Intelligence Informatics and Precision Equity (CAIPE) Research Team Investigators. (2023). Patient similarity and other artificial intelligence machine learning algorithms in clinical decision aid for shared decision-making in the Prevention of Cardiovascular Toxicity (PACT): A feasibility trial design. Cardio-Oncology, 9(1), 7. https://doi.org/10.1186/s40959-022-00151-0
  • Burrell, J. ve Fourcade, M. (2021). The society of algorithms. Annual Review of Sociology, 47, 213-237. doi.org/10.1146/annurev-soc-090820-020800
  • Castells, M. (2000). The rise of the network society (2nd ed.). Oxford: Wiley-Blackwell Publishing.
  • Chen, L. B., Liu, Y. H., Huang, X. R., Chen, W. H., & Wang, W. C. (2022). Design and implementation of a smart seawater aquarium system based on artificial intelligence of things technology. IEEE Sensors Journal, 22(20), 19908–19918. https://doi.org/10.1109/JSEN.2022.3200958
  • Coşkun, A. (2023). Dijital gözetim kavramının literatürdeki gelişimi: Bibliyometrik bir inceleme. Kastamonu İletişim Araştırmaları Dergisi, 11, 51-75. doi.org/10.56676/kiad.1358349
  • Couldry, N. ve Mejias, U. A. (2019). The costs of connection: How data ıs colonizing human life and appropriating it for capitalism. Stanford, CA: Stanford University Press.
  • Çetin, M. ve Asıl, S. (2017). Günümüz toplumunda gözetim olgusu. Third Sector Social Economic Review, 52(1), 180-205. doi.org/10.15659/3.sektor-sosyal-ekonomi.17.05.684
  • Deleuze, G. (1992). Postscript on the societies of control. October, 59(Winter), 3-7. http://www.jstor.org/stable/778828 (Erişim tarihi: 30.06.2025).
  • Dong, J., Wu, H., Zhou, D., Li, K., Zhang, Y., Ji, H., & Liu, Z. (2021). Application of big data and artificial intelligence in COVID-19 prevention, diagnosis, treatment and management decisions in China. Journal of Medical Systems, 45(9), 84. https://doi.org/10.1007/s10916-021-01757-0
  • Foucault, M. (1977). Discipline and punish: The birth of the prison (A. Sheridan, Çev.). New York, NY: Vintage Books.
  • Gunasekeran, D. V., Tseng, R. M. W. W., Tham, Y. C. ve Wong, T. Y. (2021). Applications of digital health for public health responses to covıd-19: A systematic scoping review of artificial intelligence, telehealth and related technologies. NPJ Digital Medicine, 4(40), 1-6. doi.org/10.1038/s41746-021-00412-9
  • Gupta, P., Liao, S., Ezekiel, M., Novak, N., Rossi, A., LaCross, N., & Rohrwasser, A. (2023). Wastewater genomic surveillance captures early detection of Omicron in Utah. Microbiology Spectrum, 11(3), e00391–23. https://doi.org/10.1128/spectrum.00391-23
  • Hall, S. (Ed.). (2017). Temsil: Kültürel temsiller ve anlamlandırma uygulamaları (İ. Dündar, Çev.). İstanbul: Pinhan Yayıncılık.
  • Han, T., Zhu, J., Chen, X., Chen, R., Jiang, Y., Wang, S., & Xu, C. (2022). Application of artificial intelligence in a real-world research for predicting the risk of liver metastasis in T1 colorectal cancer. Cancer Cell International, 22(1), 28. https://doi.org/10.1186/s12935-021-02424-7
  • Harari, Y. N. (2016). Homo deus: Yarının kısa bir tarihi (P. N. Tanelli, Çev.). İstanbul: Kolektif Kitap.
  • Heinrich, A., Heitmayer, M., Smith, E., ve Zhang, Y. (2024). Experiencing hybrid spaces a scoping literature review of empirical studies on human experiences in cyber-physical environments. Computers in Human Behavior, 164, 108502. doi.org/10.1016/j.chb.2024.108502.
  • Himeur, Y., Al-Maadeed, S., Kheddar, H., Al-Maadeed, N., Abualsaud, K., Mohamed, A., & Khattab, T. (2023). Video surveillance using deep transfer learning and deep domain adaptation: Towards better generalization. Engineering Applications of Artificial Intelligence, 119, 105698. https://doi.org/10.1016/j.engappai.2022.105698
  • Hsiao, W. W. W., Le, T. N., Pham, D. M., Ko, H. H., Chang, H. C., Lee, C. C., & Chiang, W. H. (2021). Recent advances in novel lateral flow technologies for detection of COVID-19. Biosensors, 11(9), 295. https://doi.org/10.3390/bios11090295
  • Kickbusch, I., Piselli, D., Agrawal, A., Balicer, R., Banner, O., Adelhardt, M., ... ve Xue, L. (2021). The Lancet and financial times commission on governing health futures 2030: Growing up in a digital world. The Lancet, 398(10312), 1727-1776. doi.org/10.1016/S0140-6736(21)01824-9
  • Kim, J., Placido, D., Yuan, B., Hjaltelin, J. X., Zheng, C., Haue, A. D., Chmura, P. J., & Sander, C. (2023). A deep learning algorithm to predict risk of pancreatic cancer from disease trajectories. Nature Medicine, 29(5), 1113–1122. https://doi.org/10.1038/s41591-023-02332-5
  • Koşar, M. (2023). Sosyal medyada görünürlük ve gözetim: YouTube örneği. Uluslararası İnsan Bilimleri Dergisi, 20(2), 442-462. doi.org/10.14687/ijhs.v20i2.7424
  • Kumar, R., & Kumar, S. (2023). Survey on artificial intelligence-based human action recognition in video sequences. Optical Engineering, 62(2), 023102. https://doi.org/10.1117/1.OE.62.2.023102
  • Latour, B. (2005). Reassembling the social: An introduction to actor-network-theory. Oxford: Oxford University Press.
  • Lee, C., Szymański, P., Weidinger, F., Lordereau-Richard, I., Himmelmann, A., Arca, M., Chaves, J., & James, S. (2023). Real world evidence: Perspectives from a European Society of Cardiology cardiovascular round table with contribution from the European Medicines Agency. European Heart Journal–Quality of Care and Clinical Outcomes, 9(2), 109–118. https://doi.org/10.1093/ehjqcco/qcad009
  • Li, P., Wang, Y., Li, H., Cheng, B., Wu, S., Ye, H., & Fang, X. (2023). Prediction of postoperative infection in elderly using deep learning-based analysis: An observational cohort study. Aging Clinical and Experimental Research, 35(3), 639–647. https://doi.org/10.1007/s40520-022-02325-3
  • Liu, Z., Xu, J., Li, J., Plaza, A., Zhang, S., & Wang, L. (2022). Moving ship optimal association for maritime surveillance: Fusing AIS and Sentinel-2 data. IEEE Transactions on Geoscience and Remote Sensing, 60, 1–18. https://doi.org/10.1109/TGRS.2022.3227938
  • Lyon, D. (2001). Surveillance society: Monitoring everyday life. Buckingham: Open University Press.
  • Mathiesen, T. (1997). The viewer society: Michel Foucault’s panopticon revisited. Theoretical Criminology, 1(2), 215-234.
  • Messmann, H., Bisschops, R., Antonelli, G., Libânio, D., Sinonquel, P., Abdelrahim, M., & Dinis-Ribeiro, M. (2022). Expected value of artificial intelligence in gastrointestinal endoscopy: European Society of Gastrointestinal Endoscopy (ESGE) position statement. Endoscopy, 54(12), 1211–1231. https://doi.org/10.1055/a-1950-5694
  • Muhammad, K., Khan, S., Del Ser, J., & De Albuquerque, V. H. C. (2020). Deep learning for multigrade brain tumor classification in smart healthcare systems: A prospective survey. IEEE Transactions on Neural Networks and Learning Systems, 32(2), 507–522. https://doi.org/10.1109/TNNLS.2020.2995800
  • Naik, N., Hameed, B. M. Z., Shetty, D. K., Swain, D., Shah, M., Paul, R., ... ve Somani, B. K. (2022). Legal and ethical consideration in artificial intelligence in healthcare: Who takes responsibility? Frontiers in Surgery, 9, 862322. doi.org/10.3389/fsurg.2022.862322
  • Najem, E. J., Shaikh, M. J. S., Shinagare, A. B. ve Krajewski, K. M. (2025). Navigating advanced renal cell carcinoma in the era of artificial intelligence. Cancer Imaging, 25(16), 1-12. doi.org/10.1186/s40644-025-00835-7
  • Park, J., Patel, K., & Lee, W. H. (2024). Recent advances in algal bloom detection and prediction technology using machine learning. Science of The Total Environment, 938, 173546. https://doi.org/10.1016/j.scitotenv.2024.173546
  • Park, Y. J., & Jones S. M. (2023). Surveillance, security, and AI as technological acceptance. AI & Society, 38(6), 2667–2678. https://doi.org/10.1007/s00146-021-01331-9
  • Placido, D., Yuan, B., Hjaltelin, J. X., Zheng, C., Haue, A. D., Chmura, P. J., ... ve Sander, C. (2023). A deep learning algorithm to predict risk of pancreatic cancer from disease trajectories. Nature Medicine, 29(5), 1113-1122. doi.org/10.1038/s41591-023-02332-5
  • Posegga, O. (2023). Unlocking big data: At the crossroads of computer science and the social sciences. L. A. Kurtumerova (Ed.), Unlocking big data: At the crossroads of computer science and the social sciences içinde (ss. 115–129). Edward Elgar Publishing. doi.org/10.4337/9781789906769.00013
  • Racine, E. E. (2025). Que(e)rying artificial intelligence use for infectious disease surveillance: The need for a reparative algorithmic praxis. Big Data & Society, 12(1), 1-6. doi.org/10.1177/20539517241289440
  • Rao, Y. C., Satyanarayana, M., Lavanya, P., Chandra, G. R., Rao, L. S., & Srujan, A. S. (2025). Design of near-infrared imaging system using Nd-YAG laser at 1064 nm and gated InGaAs camera. Journal of Optics, 1–11. https://doi.org/10.1007/s12596-025-02548-3
  • Schiller, H. I. (1989). Culture, Inc.: The corporate takeover of public expression. New York: Oxford University Press.
  • Seo, K., Tang, J., Roll, I., Fels, S. ve Yoon, D. (2021). The impact of artificial intelligence on learner-instructor interaction in online learning. International Journal of Educational Technology in Higher Education, 18(1), 54. doi.org/10.1186/s41239-021-00292-9
  • Sezer, Ö. (2024). Gözetim toplumu bağlamında algoritmalar tarafından dönüştürülen halkla ilişkiler (Doktora tezi). Marmara Üniversitesi Sosyal Bilimler Enstitüsü, İstanbul.
  • Sharma, S. K., Al‐Wanain, M. I., Alowaidi, M., & Alsaghier, H. (2022). Mobile healthcare (m‐Health) based on artificial intelligence in Healthcare 4.0. Expert Systems, 41(6), e13025. https://doi.org/10.1111/exsy.13025
  • Sikora, P., Malina, L., Kiac, M., Martinasek, Z., Riha, K., Prinosil, J., & Srivastava, G. (2020). Artificial intelligence-based surveillance system for railway crossing traffic. IEEE Sensors Journal, 21(14), 15515–15526. https://doi.org/10.1109/JSEN.2020.3031861
  • Sözkesen, M. E., Şahin, Y. ve Vatandaş, C. (2024). Z kuşağının dijital ortamlarda gözetim farkındalığını incelemeye yönelik bir araştırma. İletişim ve Toplum Araştırmaları Dergisi, 4(1), 41-66. doi.org/10.59534/jcss.1378075
  • Tan, J. L., Chinnaratha, M. A., Woodman, R., Martin, R., Chen, H. T., Carneiro, G., & Singh, R. (2022). Diagnostic accuracy of artificial intelligence (AI) to detect early neoplasia in Barrett's esophagus: A non-comparative systematic review and meta-analysis. Frontiers in Medicine, 9, 890720. https://doi.org/10.3389/fmed.2022.890720
  • Thompson, J. B. (1995). The media and modernity: A social theory of the media. Cambridge: Polity Press.
  • Tüfekci, Z. (2017). Twitter and tear gas: The power and fragility of networked protest. New Haven & London: Yale University Press.
  • Uyanık, G. ve Çelik, T. (2024). Mobil uygulamalar ve veri gözetimi: Türkiye’deki mobil uygulama kullanıcılarının gizlilik endişeleri üzerine bir araştırma. Gümüşhane Üniversitesi İletişim Fakültesi Elektronik Dergisi (e-gifder), 12(3), 1532-1557. doi.org/10.19145/e-gifder.1409185
  • Van Dijck, J. (2013). The culture of connectivity: A critical history of social media. Oxford: Oxford University Press.
  • Wallace, M. B., Sharma, P., Bhandari, P., East, J., Antonelli, G., Lorenzetti, R., & Hassan, C. (2022). Impact of artificial intelligence on miss rate of colorectal neoplasia. Gastroenterology, 163(1), 295–304. https://doi.org/10.1053/j.gastro.2022.03.007
  • Watch, R. W., Duong, M. T., Zhang, Y. ve Nguyen, T. T. (2023). The dark side of generative artificial intelligence: A critical analysis of controversies and risks of ChatGPT. Entrepreneurial Business and Economics Review, 11(4), 7-20. doi.org/10.15678/EBER.2023.110401
  • Wei, J., Liu, S., Li, Z., Liu, C., Qin, K., Liu, X., & Wang, J. (2022). Ground-level NO₂ surveillance from space across China for high resolution using interpretable spatiotemporally weighted artificial intelligence. Environmental Science & Technology, 56(14), 9988–9998. https://doi.org/10.1021/acs.est.2c03834
  • Yalçın, H. (2010). Millî Folklor dergisinin bibliyometrik profili (2007-2009). Millî Folklor, 22(85), 205-211.
  • Yıldız, E. ve Karadaş, B. (2023). Dijital gözetim bağlamında sosyal medya algoritmaları: Instagram örneği. Uluslararası Güncel Sosyal Bilimler Dergisi, 6(1), 69-90. doi.org/10.5281/zenodo.8172062
  • Yin, Y., Cheng, X., Shi, F., Zhao, M., Li, G., ve Chen, S. (2022). An enhanced lightweight convolutional neural network for ship detection in maritime surveillance system. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 15, 5811–5825. https://doi.org/10.1109/JSTARS.2022.3187454
  • Zhang, F., Pan, Z., & Lu, Y. (2023). AIoT-enabled smart surveillance for personal data digitalization: Contextual personalization-privacy paradox in smart home. Information & Management, 60(2), 103736. https://doi.org/10.1016/j.im.2022.10373
  • Zuboff, S. (2019). The age of surveillance capitalism: The fight for a human future at the new frontier of power. New York: PublicAffairs
Toplam 68 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular İletişim Çalışmaları, İletişim Teknolojisi ve Dijital Medya Çalışmaları, Yeni Medya
Bölüm Araştırma Makalesi
Yazarlar

Sermin Asıl 0000-0002-3450-5416

Gönderilme Tarihi 13 Nisan 2025
Kabul Tarihi 25 Temmuz 2025
Yayımlanma Tarihi 22 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 27 Sayı: 4

Kaynak Göster

APA Asıl, S. (2025). Yapay Zekâ Destekli Gözetim ile İlgili Çalışmaların Bibliyometrik Analizi. Afyon Kocatepe Üniversitesi Sosyal Bilimler Dergisi, 27(4), 1418-1448. https://doi.org/10.32709/akusosbil.1675072