Loading [a11y]/accessibility-menu.js
Araştırma Makalesi
BibTex RIS Kaynak Göster

İlkokul ve Ortaokul Matematik Ders Kitabı Etkinliklerinin Gerçek Hayatla İlişkilendirme Açısından İncelenmesi

Yıl 2022, Cilt: 24 Sayı: 1, 45 - 65, 27.03.2022
https://doi.org/10.32709/akusosbil.885878

Öz

Bu çalışmanın amacı ilkokul ve ortaokul matematik ders kitaplarında yer alan etkinlikleri gerçek hayatla ilişkilendirme açısından incelemektir. Bu amaçla her bir sınıf seviyesinden (1-8. sınıflar) birer matematik ders kitabı olmak üzere toplamda sekiz kitaptaki 254 etkinlik incelenmiştir. Çalışmada doküman analizi yöntemi kullanılmış olup, etkinlikler Gainsburg’un (2008) ‘basit analojiler, klasik sözel problemler, gerçek verinin analizi, toplumda matematiğin tartışılması, matematik kavramlarının somut/uygulamalı gösterimleri, gerçek olguların matematiksel modellenmesi’ kategorileri kullanılarak analiz edilmiştir. Tüm ders kitapları birlikte düşünüldüğünde, etkinliklerin %52’sinde gerçek hayatla ilişkilendirmeye yer verilmiş, %48’inde ise yer verilmemiştir. Ders kitabı özelinde düşünüldüğünde, gerçek hayatla ilişkilendirme ilkokul seviyesinde en fazla 2. sınıf (%69) ve en az 4. sınıf (%15) etkinliklerinde; ortaokul seviyesinde ise en fazla 6. sınıf (%57) ve en az 8. sınıf (%27) etkinliklerinde yer bulmuştur. Gerçek hayatla ilişkilendirmenin olduğu etkinliklerin büyük çoğunluğunun matematik kavramlarının somut/uygulamalı gösterimleri formatında olduğu bulunmuştur. Ders kitaplarında ‘gerçek olguların matematiksel modellenmesi’ ile ‘toplumda matematiğin tartışılması’ kategorilerine karşılık gelebilecek etkinliklere yer verilmediği, basit analojiler, klasik sözel problemler, gerçek verinin analizi kategorilerine karşılık gelen etkinliklere ise az sayıda yer verildiği görülmüştür. Gerçek hayatla ilişkilendirme içeren etkinliklerin ağırlıklı olarak ilgili kazanımların uygulamalı pekiştirilmesine yönelik olduğu, etkinliklerde öğrencilere genelde yönerge takipçiliği rolü verildiği ve etkinliklerin etkin problem çözme ve matematiksel modelleme yapma gibi üst düzey düşünme becerilerini kullanmayı gerektirmediği görülmüştür.

Kaynakça

  • Altay, M. K., Erhan, G. K., ve Batı, E. (2020). Contexts used for real life connections in mathematics textbook for 6th graders. İlköğretim Online, 19(1), 310-323. doi:10.17051/ilkonline.2020.656880
  • Altay, M. K., Yalvaç, B., & Yeltekin, E. (2017). 8th grade student's skill of connecting mathematics to real Life. Journal of Education and Training Studies, 5(10), 158-166. doi: https://doi.org/10.11114/jets.v5i10.2614
  • Altun, M., & Bozkurt, I. (2017). Matematik okuryazarlığı problemleri için yeni bir sınıflama önerisi. Eğitim ve Bilim, 42(190), 171-188. doi: http://dx.doi.org/10.15390/EB.2017.6916
  • Ausubel, D. (1968). Educational psychology: A cognitive view. New York: Holt, Rinehart & Winston.
  • Baki, A., Çatlıoğlu, H., Coştu, S., & Birgin, O. (2009). Conceptions of high school students about mathematical connections to the real-life. Procedia-Social and Behavioral Sciences, 1(1), 1402-1407. doi:10.1016/j.sbspro.2009.01.247
  • Bingölbali, E. (2008). Türev kavramına ilişkin öğrenme zorlukları ve kavramsal anlama için öneriler. M. F. Özmantar, E. Bingölbali ve H. Akkoç (Ed.), Matematiksel kavram yanılgıları ve çözüm önerileri içinde (s. 223–255). Ankara: Pegem Akademi Yayıncılık.
  • Bingölbali, E., & Bingölbali, F. (2020a). Divergent thinking and convergent thinking: Are they promoted in mathematics textbooks?. International Journal of Contemporary Educational Research, 7(1), 240-252.
  • Bingölbali, E., & Bingölbali, F. (2020b). Çok doğru cevaplı ve çok çözüm metotlu etkinliklerin ortaokul matematik ders kitaplarındaki yeri. International Journal of Educational Studies in Mathematics, 7(4), 214-235.
  • Bingölbali, E., & Coşkun, M. (2016). İlişkilendirme becerisinin matematik öğretiminde kullanımının geliştirilmesi için kavramsal çerçeve önerisi. Eğitim ve Bilim, 41(183), 233-249.
  • Bingölbali, F. (2017). Matematik öğretmenlerinin ders kitaplarını okuma yeterliklerinin incelenmesi ve bir mesleki gelişim programı önerisi (Yayımlanmamış doktora tezi). Gaziantep Üniversitesi, Eğitim Bilimleri Enstitüsü, Gaziantep.
  • Boaler, J. (1993). The role of contexts in the mathematics classroom: Do they make mathematics more" real"?. For the learning of mathematics, 13(2), 12-17.
  • Chevallard, Y. (1991). La transposition didactique du savoir savant au savoir enseigné. La transposition didactique du savoir savant au savoir enseigné avec un exemple d’analyse de la transposition didactique (pp. 1-124). Grenoble: La Pensée Sauvage Edition.
  • Coşkun, M. (2013). Matematik derslerinde ilişkilendirmeye ne ölçüde yer verilmektedir?: Sınıf içi uygulamalardan örnekler (Yayımlanmamış yüksek lisans tezi). Gaziantep Üniversitesi Eğitim Bilimleri Enstitüsü, Gaziantep.
  • Dede, Y., Doğan, M. F. ve Aslan-Tutak, F. (2020, Ed.). Matematik eğitiminde etkinlikler ve uygulamaları. Ankara: Pegem Akademi Yayınları.
  • Diana, N. D., Suryadi, D., & Dahlan, J. A. (2020). Analysis of students’ mathematical connection abilities in solving problem of circle material: transposition study. Journal for the Education of Gifted Young Scientists, 8(2), 829-842. doi: 10.17478/jegys.689673
  • Dilegelen, Y. (2018). 5. sınıf matematik ders kitaplarının İlişkilendirme becerisi açısından incelenmesi (Yayımlanmamış yüksek lisans tezi). Gaziantep Üniversitesi Eğitim Bilimleri Enstitüsü, Gaziantep.
  • Doyle, W. (1988). Work in mathematics classes: The context of students' thinking during instruction. Educational Psychologist, 23(2), 167-180. doi: 10.1207/s15326985ep2302_6
  • Dündar, T. ve Ezentaş, R. (2020). Ortaokul Öğrencilerinin Günlük Hayat Tecrübelerinin Bağlamsal Problem Çözümüne Yansımaları. Fen Matematik Girişimcilik ve Teknoloji Eğitimi Dergisi, 3(1), 10-24.
  • Eli, J. A., Mohr-Schroeder, M. J., ve Lee, C. W. (2011). Exploring mathematical connections of prospective middle-grades teachers through card-sorting tasks. Mathematics Education Research Journal, 23(3), 297-319. doi:10.1007/s13394-011-0017-0
  • Fan, L., Zhu, Y., & Miao, Z. (2013). Textbook research in mathematics education: development status and directions. ZDM, 45(5), 633-646. doi:10.1007/s11858-013-0539-x
  • Gainsburg, J. (2008). Real-world connections in secondary mathematics teaching. Journal of Mathematics Teacher Education, 11(3), 199-219. doi: 10.1007/s10857-007-9070-8
  • García-García, J., ve Dolores-Flores, C. (2018). Intra-mathematical connections made by high school students in performing Calculus tasks. International Journal of Mathematical Education in Science and Technology, 49(2), 227-252. doi: 10.1080/0020739X.2017.1355994
  • Gravemeijer, K., & Doorman, M. (1999). Context problems in realistic mathematics education: A calculus course as an example. Educational Studies in Mathematics, 39(1-3), 111-129. doi: 10.1023/A:1003749919816
  • Gueudet, G., Pepin, B., Restrepo, A., Sabra, H., & Trouche, L. (2018). E-textbooks and connectivity: proposing an analytical framework. International Journal of Science and Mathematics Education, 16(3), 539-558. doi: 10.1007/s10763-016-9782-2
  • Haggarty, L., & Pepin, B. (2002). An investigation of mathematics textbooks and their use in English, French and German classrooms: Who gets an opportunity to learn what?. British Educational Research Journal, 28(4), 567-590. doi: 10.1080/0141192022000005832
  • Hiebert, J. , Gallimore, R. , Garnier, H. , Givving, K.B. , Hollingsworth, H. , Jacobs, J. , et al. (2003). Teaching mathematics in seven countries: Results from the TIMSS 1999 video study. Washington, DC : National Center for Education Statistics.
  • Hiebert, J., & Carpenter, T. (1992). Learning and teaching with understanding. In D. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 65–97). New York: Macmillan.
  • Hiebert, J., & Lefevre, P. (1986). Conceptual and procedural knowledge in mathematics: An introductory analysis. In J. Hiebert (Ed.), Conceptual and procedural knowledge: The case of mathematics (pp. 1-27). Hillsdale, NJ: Erlbaum.
  • Hiebert, J., Carpenter, T.P., Fennema, E., Fuson, K.C., Wearne, D.Murray, H. (1997). Making sense: Teaching and learning mathematics with understanding. Portsmouth, NH: Heinemann.
  • House, P. A., & Coxford, A. F. (1995). Connecting Mathematics across the Curriculum. 1995 Yearbook. National Council of Teachers of Mathematics, 1906 Association Drive, Reston, VA 22091-1593.
  • Karakoç, G., & Alacacı, C. (2015). Real world connections in high school mathematics curriculum and teaching. Turkish Journal of Computer and Mathematics Education, 6(1), 31-46. doi: 10.16949/turcomat.76099
  • Kertil, M., Erbaş, A. K., & Çetinkaya, B. (2017). İlköğretim matematik öğretmen adaylarının değişim oranı ile ilgili düşünme biçimlerinin bir modelleme etkinliği bağlamında incelenmesi. Turkish Journal of Computer and Mathematics Education, 8(1), 188-217. doi:10.16949/turkbilmat.304212
  • Kwon, O. N., Park, J. H., & Park, J. S. (2006). Cultivating divergent thinking in mathematics through an open-ended approach. Asia Pacific Education Review, 7(1), 51-61. doi: 10.1007/BF03036784
  • Lappan, G., & Phillips, E. (2009). Challenges in US mathematics education through a curriculum developer lens. Educational Designer, 1(3), 1-19.
  • Lee, J. E. (2012). Prospective elementary teachers’ perceptions of real-life connections reflected in posing and evaluating story problems. Journal of Mathematics Teacher Education, 15(6), 429-452. doi: 10.1007/s10857-012-9220-5
  • Leikin, R., & Levav-Waynberg, A. (2007). Exploring mathematics teacher knowledge to explain the gap between theory-based recommendations and school practice in the use of connecting tasks. Educational Studies in Mathematics, 66(3), 349-371. doi:10.1007/s10649-006-9071-z
  • Leikin, R., Levav-Waynberg, A., Gurevich, I., & Mednikov, L. (2006). Implementation of multiple solution connecting tasks: Do students' attitudes support teachers' reluctance?. Focus on Learning Problems in Mathematics, 28(1), 1-22.
  • Lesh, R., & Doerr, H. M. (2003). Foundations of a models and modeling perspective on mathematics teaching, learning, and problem solving. In R. Lesh, & H. M. Doerr (Eds.), Beyond constructivism: Models and modeling perspectives on mathematics problem solving, learning, and teaching (pp. 3–33). Mahwah, NJ: Lawrence Erlbaum.
  • Mandacı Şahin, S. (2019). Investigation of preservice teachers’ mathematical connection skills through concept maps. International Journal of Education Technology and Scientific Researches, 4 (10), 322-339. doi: 10.35826/ijetsar.36
  • Merriam, Sharan B. (2009). Qualitative research: A guide to design and implementation (2nd ed.). San Francisco, CA: Jossey-Bass.
  • Milli Eğitim Bakanlığı [MEB] (2013). İlköğretim matematik dersi (5, 6, 7., ve 8. Sınıflar) matematik dersi öğretim programı. Ankara: Milli Eğitim Bakanlığı.
  • Milli Eğitim Bakanlığı [MEB] (2018). Matematik dersi öğretim programı (İlkokul ve ortaokul 1, 2, 3, 4, 5, 6, 7 ve 8. Sınıflar). Ankara: Milli Eğitim Bakanlığı.
  • Mosvold, R. (2008). Real-life connections in Japan and the Netherlands: National teaching patterns and cultural beliefs. Erişim Tarihi: Temmuz, 2020. https://uis.brage.unit.no/uis-xmlui/bitstream/handle/11250/185486/Real-life%20connections%20in%20Japan%20and%20the%20Netherlands.pdf?sequence=2
  • Mumcu, H. Y. (2018). Matematiksel ilişkilendirme becerisinin kuramsal boyutta incelenmesi: Türev kavramı örneği. Turkish Journal of Computer and Mathematics Education, 9(2), 211-248. doi: 10.16949/turkbilmat.379891
  • Narlı, S. (2016). İlişkilendirme becerisi ve muhtevası. E. Bingölbali, S. Arslan ve İ.Ö. Zembat (Ed.) Matematik eğitiminde teoriler. s.231- 244. Ankara: Pegem Akademi.
  • National Council of teachers of Mathematics (2009). Focus in high school mathematics: Reasoning and sense making. Reston, VA: Author.
  • National Council of Teachers of Mathematics. (1989). Curriculum and evaluation standards for school mathematics. Reston, VA: Author.
  • National Council of Teachers of Mathematics. (2000). Principles and standardsfor school mathematics. Reston, VA: Author.
  • Özgeldi, M., & Osmanoğlu, A. (2017). Matematiğin gerçek hayatla ilişkilendirilmesi: Ortaokul matematik öğretmeni adaylarının nasıl ilişkilendirme kurduklarına yönelik bir inceleme. Turkish Journal of Computer and Mathematics Education, 8(3), 438-458. doi: 10.16949/turkbilmat.298081
  • Ozgen, K. (2013). Self-efficacy beliefs in mathematical literacy and connections between mathematics and real world: The case of high school students. Journal of International Education Research (JIER), 9(4), 305-316. doi: 10.19030/jier.v9i4.8082
  • Özgen, K. (2018). Lise öğrencilerinin matematiksel ilişkilendirmeye yönelik görüşlerinin incelenmesi. Dokuz Eylül Üniversitesi Buca Eğitim Fakültesi Dergisi, (45), 1-22.
  • Özgen, K., & Bindak, R. (2018). Matematiksel ilişkilendirme öz yeterlik ölçeğinin geliştirilmesi. Kastamonu Education Journal, 26(3), 913-924. doi: 10.24106/kefdergi.413386
  • Pepin, B., & Haggarty, L. (2007). Making connections and seeking understanding: Mathematical tasks in English, French and German textbooks. Paper presented at the American Educational Research Association, Chicago.
  • Pirasa, N. (2016). The connection competencies of pre-service mathematics teachers about geometric concepts to daily-life. Universal Journal of Educational Research, 4(12), 2840-2851. doi: 10.13189/ujer.2016.041218
  • Popovic, G., & Lederman, J. S. (2015). Implications of informal education experiences for mathematics teachers' ability to make connections beyond formal classroom. School Science and Mathematics, 115(3), 129-140. doi: 10.1111/ssm.12114
  • Remillard, J. T. (2011). Modes of engagement: Understanding teachers’ transactions with mathematics curriculum resources. In G. Gueudet, B. Pepin, & L. Trouche (Eds.), From text to ‘lived’ resources: Mathematics curriculum materials and teacher development (pp. 105–122). Dordrecht: Springer.
  • Rittle-Johnson, B., & Alibali, M. W. (1999). Conceptual and procedural knowledge of mathematics: Does one lead to the other?. Journal of Educational Psychology, 91(1), 175-189. doi: 10.1037/0022-0663.91.1.175
  • Schmidt, W. H. (2012). Measuring content through textbooks: The cumulative effect of middle-school tracking. In G. Gueudet, B. Pepin, & L. Trouche (Eds.), From text to ‘lived’ resources: Mathematics curriculum materials and teacher development (pp. 143–160). Dordrecht: Springer.
  • Seah, W. T., & Bishop, A. J. (2000, April 24-28). Values in mathematics textbooks: A view through two Australasian regions. Paper presented at the 81st Annual Meeting of the American Educational Research Association, New Orleans, LA.
  • Skemp, R. R. (1976). Relational understanding and instrumental understanding. Mathematics Teaching, 77(1), 20-26.
  • Stein, M. K., & Smith, M. S. (1998). Mathematical tasks as a framework for reflection: From research to practice. Mathematics Teaching in the Middle School, 3(4), 268-275. doi: 10.5951/MTMS.3.4.0268
  • Stein, M. K., Smith, M. S., Henningsen, M. A. ve Silver, E. A. (2000). Implementing standards-based mathematics instructions: A casebook for professional development. New York: Teachers College.
  • Stylianides, A. J., & Stylianides, G. J. (2008). Studying the classroom implementation of tasks: High-level mathematical tasks embedded in ‘real-life’contexts. Teaching and Teacher Education, 24(4), 859-875. doi: 10.1016/j.tate.2007.11.015
  • Valverde, G. A., Bianchi, L. J.,Wolfe, R. G., Schmidt,W. H., & Houang, R. T. (2002). According to the book: Using TIMSS to investigate the translation of policy into practice through the world of textbook. Dordrecht, the Netherlands: Kluwer.
  • Van den Heuvel-Panhuizen, M., & Drijvers, P. (2020). Realistic mathematics education. In Lerman, S. (Ed.) Encyclopedia of mathematics education, 713-717. Netherlands: Springer.
  • Watson, A., & Ohtani, M. (2015). Task design in mathematics education: An ICMI study 22. Berlin: Springer.
  • Watson, A., Ohtani, M., Ainley, J., Frant, J .B., Doorman, M., Kieran, C., Leung, A., Margolinas, C., Sullivan, P., Thompson, D. & Yang, Y. (2013). Task design in mathematics education. In C. Margolinas (Ed.). Proceedings of ICMI Study 22 (1), 9-16. UK: Oxford University.
  • Yanik, H. B., & Serin, G. (2016). Two fifth grade teachers' use of real-world situations in science and mathematics lessons. The Clearing House: A Journal of Educational Strategies, Issues and Ideas, 89(1), 28-37.
  • Yavuzsoy-Köse, N. (2016). Didaktik dönüşüm teorisi. İçinde Bingölbali, E., Arslan, S. & Zembat, İ. Ö (Eds.) Matematik Eğitiminde Teoriler, (s.393-412). Pegem Akademi: Ankara.
  • Yekrek, E., & Özgeldi, M. (2019). Ortaokul matematik ders kitaplarının konuya giriş bölümlerinin gerçek hayat ilişki ve bağlamları kapsamında incelenmesi. 4th International Symposium of Turkish Computer and Mathematics Education, İzmir.
  • Yilmaz, Z., & Ozyigit, S. E. (2017). Analysis of real world problems in mathematics textbooks of early twentieth and twenty-first century Turkish education: political and social reflections. BSHM Bulletin: Journal of the British Society for the History of Mathematics, 32(2), 171-182.
  • Yorulmaz, A., & Çokçalışkan, H. (2017). Sınıf öğretmeni adaylarının matematiksel ilişkilendirmeye yönelik görüşleri. Uluslararası Temel Eğitim Araştırmaları Dergisi, 1(1), 8-16.

An Investigation of Primary and Middle School Mathematics Textbook Tasks in Terms of Real Life Connection

Yıl 2022, Cilt: 24 Sayı: 1, 45 - 65, 27.03.2022
https://doi.org/10.32709/akusosbil.885878

Öz

This study examined the tasks in primary and middle school mathematics textbooks in terms of real-life connection. 254 tasks in eight textbooks were examined. Document analysis method was used and tasks were analyzed using Gainsburg's (2008) real-life connection categories: “simple analogies, classical word problems, real-data analysis, discussions of mathematics in society, hands-on representations of mathematics concepts, mathematically modelling real-phenomena”. 48% of the tasks in eight books included real-life connection, %52 of them did not have this connection. The 2nd grade textbook (69%) at the primary level and the 6th grade textbook (57%) at the middle school level contained the highest rate of real-life connection tasks while the 4th (15%) and the 8th grade ones (27%) contained the least of such tasks for the respective levels. Most tasks with real-life connection were in the form of ‘hands-on representations of mathematics concepts’. Both ‘mathematically modelling real-phenomena’ and ‘discussions of mathematics in society’ tasks were not encountered. ‘Simple analogies’, ‘classical word problems’ and ‘analysis of real data’ tasks were given with a small number. The real-life connection tasks were mainly related to the concepts’ application, students were generally given the role of instruction follow-up, and these tasks did not require the use of high-level thinking skills such as mathematical modelling and problem solving. 

Kaynakça

  • Altay, M. K., Erhan, G. K., ve Batı, E. (2020). Contexts used for real life connections in mathematics textbook for 6th graders. İlköğretim Online, 19(1), 310-323. doi:10.17051/ilkonline.2020.656880
  • Altay, M. K., Yalvaç, B., & Yeltekin, E. (2017). 8th grade student's skill of connecting mathematics to real Life. Journal of Education and Training Studies, 5(10), 158-166. doi: https://doi.org/10.11114/jets.v5i10.2614
  • Altun, M., & Bozkurt, I. (2017). Matematik okuryazarlığı problemleri için yeni bir sınıflama önerisi. Eğitim ve Bilim, 42(190), 171-188. doi: http://dx.doi.org/10.15390/EB.2017.6916
  • Ausubel, D. (1968). Educational psychology: A cognitive view. New York: Holt, Rinehart & Winston.
  • Baki, A., Çatlıoğlu, H., Coştu, S., & Birgin, O. (2009). Conceptions of high school students about mathematical connections to the real-life. Procedia-Social and Behavioral Sciences, 1(1), 1402-1407. doi:10.1016/j.sbspro.2009.01.247
  • Bingölbali, E. (2008). Türev kavramına ilişkin öğrenme zorlukları ve kavramsal anlama için öneriler. M. F. Özmantar, E. Bingölbali ve H. Akkoç (Ed.), Matematiksel kavram yanılgıları ve çözüm önerileri içinde (s. 223–255). Ankara: Pegem Akademi Yayıncılık.
  • Bingölbali, E., & Bingölbali, F. (2020a). Divergent thinking and convergent thinking: Are they promoted in mathematics textbooks?. International Journal of Contemporary Educational Research, 7(1), 240-252.
  • Bingölbali, E., & Bingölbali, F. (2020b). Çok doğru cevaplı ve çok çözüm metotlu etkinliklerin ortaokul matematik ders kitaplarındaki yeri. International Journal of Educational Studies in Mathematics, 7(4), 214-235.
  • Bingölbali, E., & Coşkun, M. (2016). İlişkilendirme becerisinin matematik öğretiminde kullanımının geliştirilmesi için kavramsal çerçeve önerisi. Eğitim ve Bilim, 41(183), 233-249.
  • Bingölbali, F. (2017). Matematik öğretmenlerinin ders kitaplarını okuma yeterliklerinin incelenmesi ve bir mesleki gelişim programı önerisi (Yayımlanmamış doktora tezi). Gaziantep Üniversitesi, Eğitim Bilimleri Enstitüsü, Gaziantep.
  • Boaler, J. (1993). The role of contexts in the mathematics classroom: Do they make mathematics more" real"?. For the learning of mathematics, 13(2), 12-17.
  • Chevallard, Y. (1991). La transposition didactique du savoir savant au savoir enseigné. La transposition didactique du savoir savant au savoir enseigné avec un exemple d’analyse de la transposition didactique (pp. 1-124). Grenoble: La Pensée Sauvage Edition.
  • Coşkun, M. (2013). Matematik derslerinde ilişkilendirmeye ne ölçüde yer verilmektedir?: Sınıf içi uygulamalardan örnekler (Yayımlanmamış yüksek lisans tezi). Gaziantep Üniversitesi Eğitim Bilimleri Enstitüsü, Gaziantep.
  • Dede, Y., Doğan, M. F. ve Aslan-Tutak, F. (2020, Ed.). Matematik eğitiminde etkinlikler ve uygulamaları. Ankara: Pegem Akademi Yayınları.
  • Diana, N. D., Suryadi, D., & Dahlan, J. A. (2020). Analysis of students’ mathematical connection abilities in solving problem of circle material: transposition study. Journal for the Education of Gifted Young Scientists, 8(2), 829-842. doi: 10.17478/jegys.689673
  • Dilegelen, Y. (2018). 5. sınıf matematik ders kitaplarının İlişkilendirme becerisi açısından incelenmesi (Yayımlanmamış yüksek lisans tezi). Gaziantep Üniversitesi Eğitim Bilimleri Enstitüsü, Gaziantep.
  • Doyle, W. (1988). Work in mathematics classes: The context of students' thinking during instruction. Educational Psychologist, 23(2), 167-180. doi: 10.1207/s15326985ep2302_6
  • Dündar, T. ve Ezentaş, R. (2020). Ortaokul Öğrencilerinin Günlük Hayat Tecrübelerinin Bağlamsal Problem Çözümüne Yansımaları. Fen Matematik Girişimcilik ve Teknoloji Eğitimi Dergisi, 3(1), 10-24.
  • Eli, J. A., Mohr-Schroeder, M. J., ve Lee, C. W. (2011). Exploring mathematical connections of prospective middle-grades teachers through card-sorting tasks. Mathematics Education Research Journal, 23(3), 297-319. doi:10.1007/s13394-011-0017-0
  • Fan, L., Zhu, Y., & Miao, Z. (2013). Textbook research in mathematics education: development status and directions. ZDM, 45(5), 633-646. doi:10.1007/s11858-013-0539-x
  • Gainsburg, J. (2008). Real-world connections in secondary mathematics teaching. Journal of Mathematics Teacher Education, 11(3), 199-219. doi: 10.1007/s10857-007-9070-8
  • García-García, J., ve Dolores-Flores, C. (2018). Intra-mathematical connections made by high school students in performing Calculus tasks. International Journal of Mathematical Education in Science and Technology, 49(2), 227-252. doi: 10.1080/0020739X.2017.1355994
  • Gravemeijer, K., & Doorman, M. (1999). Context problems in realistic mathematics education: A calculus course as an example. Educational Studies in Mathematics, 39(1-3), 111-129. doi: 10.1023/A:1003749919816
  • Gueudet, G., Pepin, B., Restrepo, A., Sabra, H., & Trouche, L. (2018). E-textbooks and connectivity: proposing an analytical framework. International Journal of Science and Mathematics Education, 16(3), 539-558. doi: 10.1007/s10763-016-9782-2
  • Haggarty, L., & Pepin, B. (2002). An investigation of mathematics textbooks and their use in English, French and German classrooms: Who gets an opportunity to learn what?. British Educational Research Journal, 28(4), 567-590. doi: 10.1080/0141192022000005832
  • Hiebert, J. , Gallimore, R. , Garnier, H. , Givving, K.B. , Hollingsworth, H. , Jacobs, J. , et al. (2003). Teaching mathematics in seven countries: Results from the TIMSS 1999 video study. Washington, DC : National Center for Education Statistics.
  • Hiebert, J., & Carpenter, T. (1992). Learning and teaching with understanding. In D. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 65–97). New York: Macmillan.
  • Hiebert, J., & Lefevre, P. (1986). Conceptual and procedural knowledge in mathematics: An introductory analysis. In J. Hiebert (Ed.), Conceptual and procedural knowledge: The case of mathematics (pp. 1-27). Hillsdale, NJ: Erlbaum.
  • Hiebert, J., Carpenter, T.P., Fennema, E., Fuson, K.C., Wearne, D.Murray, H. (1997). Making sense: Teaching and learning mathematics with understanding. Portsmouth, NH: Heinemann.
  • House, P. A., & Coxford, A. F. (1995). Connecting Mathematics across the Curriculum. 1995 Yearbook. National Council of Teachers of Mathematics, 1906 Association Drive, Reston, VA 22091-1593.
  • Karakoç, G., & Alacacı, C. (2015). Real world connections in high school mathematics curriculum and teaching. Turkish Journal of Computer and Mathematics Education, 6(1), 31-46. doi: 10.16949/turcomat.76099
  • Kertil, M., Erbaş, A. K., & Çetinkaya, B. (2017). İlköğretim matematik öğretmen adaylarının değişim oranı ile ilgili düşünme biçimlerinin bir modelleme etkinliği bağlamında incelenmesi. Turkish Journal of Computer and Mathematics Education, 8(1), 188-217. doi:10.16949/turkbilmat.304212
  • Kwon, O. N., Park, J. H., & Park, J. S. (2006). Cultivating divergent thinking in mathematics through an open-ended approach. Asia Pacific Education Review, 7(1), 51-61. doi: 10.1007/BF03036784
  • Lappan, G., & Phillips, E. (2009). Challenges in US mathematics education through a curriculum developer lens. Educational Designer, 1(3), 1-19.
  • Lee, J. E. (2012). Prospective elementary teachers’ perceptions of real-life connections reflected in posing and evaluating story problems. Journal of Mathematics Teacher Education, 15(6), 429-452. doi: 10.1007/s10857-012-9220-5
  • Leikin, R., & Levav-Waynberg, A. (2007). Exploring mathematics teacher knowledge to explain the gap between theory-based recommendations and school practice in the use of connecting tasks. Educational Studies in Mathematics, 66(3), 349-371. doi:10.1007/s10649-006-9071-z
  • Leikin, R., Levav-Waynberg, A., Gurevich, I., & Mednikov, L. (2006). Implementation of multiple solution connecting tasks: Do students' attitudes support teachers' reluctance?. Focus on Learning Problems in Mathematics, 28(1), 1-22.
  • Lesh, R., & Doerr, H. M. (2003). Foundations of a models and modeling perspective on mathematics teaching, learning, and problem solving. In R. Lesh, & H. M. Doerr (Eds.), Beyond constructivism: Models and modeling perspectives on mathematics problem solving, learning, and teaching (pp. 3–33). Mahwah, NJ: Lawrence Erlbaum.
  • Mandacı Şahin, S. (2019). Investigation of preservice teachers’ mathematical connection skills through concept maps. International Journal of Education Technology and Scientific Researches, 4 (10), 322-339. doi: 10.35826/ijetsar.36
  • Merriam, Sharan B. (2009). Qualitative research: A guide to design and implementation (2nd ed.). San Francisco, CA: Jossey-Bass.
  • Milli Eğitim Bakanlığı [MEB] (2013). İlköğretim matematik dersi (5, 6, 7., ve 8. Sınıflar) matematik dersi öğretim programı. Ankara: Milli Eğitim Bakanlığı.
  • Milli Eğitim Bakanlığı [MEB] (2018). Matematik dersi öğretim programı (İlkokul ve ortaokul 1, 2, 3, 4, 5, 6, 7 ve 8. Sınıflar). Ankara: Milli Eğitim Bakanlığı.
  • Mosvold, R. (2008). Real-life connections in Japan and the Netherlands: National teaching patterns and cultural beliefs. Erişim Tarihi: Temmuz, 2020. https://uis.brage.unit.no/uis-xmlui/bitstream/handle/11250/185486/Real-life%20connections%20in%20Japan%20and%20the%20Netherlands.pdf?sequence=2
  • Mumcu, H. Y. (2018). Matematiksel ilişkilendirme becerisinin kuramsal boyutta incelenmesi: Türev kavramı örneği. Turkish Journal of Computer and Mathematics Education, 9(2), 211-248. doi: 10.16949/turkbilmat.379891
  • Narlı, S. (2016). İlişkilendirme becerisi ve muhtevası. E. Bingölbali, S. Arslan ve İ.Ö. Zembat (Ed.) Matematik eğitiminde teoriler. s.231- 244. Ankara: Pegem Akademi.
  • National Council of teachers of Mathematics (2009). Focus in high school mathematics: Reasoning and sense making. Reston, VA: Author.
  • National Council of Teachers of Mathematics. (1989). Curriculum and evaluation standards for school mathematics. Reston, VA: Author.
  • National Council of Teachers of Mathematics. (2000). Principles and standardsfor school mathematics. Reston, VA: Author.
  • Özgeldi, M., & Osmanoğlu, A. (2017). Matematiğin gerçek hayatla ilişkilendirilmesi: Ortaokul matematik öğretmeni adaylarının nasıl ilişkilendirme kurduklarına yönelik bir inceleme. Turkish Journal of Computer and Mathematics Education, 8(3), 438-458. doi: 10.16949/turkbilmat.298081
  • Ozgen, K. (2013). Self-efficacy beliefs in mathematical literacy and connections between mathematics and real world: The case of high school students. Journal of International Education Research (JIER), 9(4), 305-316. doi: 10.19030/jier.v9i4.8082
  • Özgen, K. (2018). Lise öğrencilerinin matematiksel ilişkilendirmeye yönelik görüşlerinin incelenmesi. Dokuz Eylül Üniversitesi Buca Eğitim Fakültesi Dergisi, (45), 1-22.
  • Özgen, K., & Bindak, R. (2018). Matematiksel ilişkilendirme öz yeterlik ölçeğinin geliştirilmesi. Kastamonu Education Journal, 26(3), 913-924. doi: 10.24106/kefdergi.413386
  • Pepin, B., & Haggarty, L. (2007). Making connections and seeking understanding: Mathematical tasks in English, French and German textbooks. Paper presented at the American Educational Research Association, Chicago.
  • Pirasa, N. (2016). The connection competencies of pre-service mathematics teachers about geometric concepts to daily-life. Universal Journal of Educational Research, 4(12), 2840-2851. doi: 10.13189/ujer.2016.041218
  • Popovic, G., & Lederman, J. S. (2015). Implications of informal education experiences for mathematics teachers' ability to make connections beyond formal classroom. School Science and Mathematics, 115(3), 129-140. doi: 10.1111/ssm.12114
  • Remillard, J. T. (2011). Modes of engagement: Understanding teachers’ transactions with mathematics curriculum resources. In G. Gueudet, B. Pepin, & L. Trouche (Eds.), From text to ‘lived’ resources: Mathematics curriculum materials and teacher development (pp. 105–122). Dordrecht: Springer.
  • Rittle-Johnson, B., & Alibali, M. W. (1999). Conceptual and procedural knowledge of mathematics: Does one lead to the other?. Journal of Educational Psychology, 91(1), 175-189. doi: 10.1037/0022-0663.91.1.175
  • Schmidt, W. H. (2012). Measuring content through textbooks: The cumulative effect of middle-school tracking. In G. Gueudet, B. Pepin, & L. Trouche (Eds.), From text to ‘lived’ resources: Mathematics curriculum materials and teacher development (pp. 143–160). Dordrecht: Springer.
  • Seah, W. T., & Bishop, A. J. (2000, April 24-28). Values in mathematics textbooks: A view through two Australasian regions. Paper presented at the 81st Annual Meeting of the American Educational Research Association, New Orleans, LA.
  • Skemp, R. R. (1976). Relational understanding and instrumental understanding. Mathematics Teaching, 77(1), 20-26.
  • Stein, M. K., & Smith, M. S. (1998). Mathematical tasks as a framework for reflection: From research to practice. Mathematics Teaching in the Middle School, 3(4), 268-275. doi: 10.5951/MTMS.3.4.0268
  • Stein, M. K., Smith, M. S., Henningsen, M. A. ve Silver, E. A. (2000). Implementing standards-based mathematics instructions: A casebook for professional development. New York: Teachers College.
  • Stylianides, A. J., & Stylianides, G. J. (2008). Studying the classroom implementation of tasks: High-level mathematical tasks embedded in ‘real-life’contexts. Teaching and Teacher Education, 24(4), 859-875. doi: 10.1016/j.tate.2007.11.015
  • Valverde, G. A., Bianchi, L. J.,Wolfe, R. G., Schmidt,W. H., & Houang, R. T. (2002). According to the book: Using TIMSS to investigate the translation of policy into practice through the world of textbook. Dordrecht, the Netherlands: Kluwer.
  • Van den Heuvel-Panhuizen, M., & Drijvers, P. (2020). Realistic mathematics education. In Lerman, S. (Ed.) Encyclopedia of mathematics education, 713-717. Netherlands: Springer.
  • Watson, A., & Ohtani, M. (2015). Task design in mathematics education: An ICMI study 22. Berlin: Springer.
  • Watson, A., Ohtani, M., Ainley, J., Frant, J .B., Doorman, M., Kieran, C., Leung, A., Margolinas, C., Sullivan, P., Thompson, D. & Yang, Y. (2013). Task design in mathematics education. In C. Margolinas (Ed.). Proceedings of ICMI Study 22 (1), 9-16. UK: Oxford University.
  • Yanik, H. B., & Serin, G. (2016). Two fifth grade teachers' use of real-world situations in science and mathematics lessons. The Clearing House: A Journal of Educational Strategies, Issues and Ideas, 89(1), 28-37.
  • Yavuzsoy-Köse, N. (2016). Didaktik dönüşüm teorisi. İçinde Bingölbali, E., Arslan, S. & Zembat, İ. Ö (Eds.) Matematik Eğitiminde Teoriler, (s.393-412). Pegem Akademi: Ankara.
  • Yekrek, E., & Özgeldi, M. (2019). Ortaokul matematik ders kitaplarının konuya giriş bölümlerinin gerçek hayat ilişki ve bağlamları kapsamında incelenmesi. 4th International Symposium of Turkish Computer and Mathematics Education, İzmir.
  • Yilmaz, Z., & Ozyigit, S. E. (2017). Analysis of real world problems in mathematics textbooks of early twentieth and twenty-first century Turkish education: political and social reflections. BSHM Bulletin: Journal of the British Society for the History of Mathematics, 32(2), 171-182.
  • Yorulmaz, A., & Çokçalışkan, H. (2017). Sınıf öğretmeni adaylarının matematiksel ilişkilendirmeye yönelik görüşleri. Uluslararası Temel Eğitim Araştırmaları Dergisi, 1(1), 8-16.
Toplam 72 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Eğitim
Yazarlar

Erhan Bingölbali 0000-0001-5373-9341

Mustafa Özdiner Bu kişi benim 0000-0003-3296-4739

Yayımlanma Tarihi 27 Mart 2022
Gönderilme Tarihi 24 Şubat 2021
Yayımlandığı Sayı Yıl 2022 Cilt: 24 Sayı: 1

Kaynak Göster

APA Bingölbali, E., & Özdiner, M. (2022). İlkokul ve Ortaokul Matematik Ders Kitabı Etkinliklerinin Gerçek Hayatla İlişkilendirme Açısından İncelenmesi. Afyon Kocatepe Üniversitesi Sosyal Bilimler Dergisi, 24(1), 45-65. https://doi.org/10.32709/akusosbil.885878