Derleme
BibTex RIS Kaynak Göster

Biosensor Studies For The Diagnosis Of Pancreas Cancer In Early Stages

Yıl 2023, Cilt: 6 Sayı: 1, 81 - 94, 15.06.2023

Öz

Pancreatic cancer is a type of cancer with a poor prognosis and high mortality rate. Pancreatic cancer, which is an aggressive type of cancer, is very difficult to detect early and is usually diagnosed in later stages. The 5-year survival rate in diagnosed patients is 6% on average. Therefore, early detection of pancreatic cancer has an important role in increasing the survival rate and reducing mortality rates as a result of early intervention. Imaging techniques such as biopsy, ultrasound, and magnetic resonance are used as traditional methods in the diagnosis of pancreatic cancer, but these techniques are expensive, take a lot of time and need to be performed and analyzed by experts in the field in order to obtain accurate and precise results. For this reason, biosensors, which are more accessible, inexpensive, can be used by everyone, and have a high probability of giving accurate results, have been suggested to be used in the diagnosis of pancreatic cancer. In this study, biosensor studies for the detection of biomarkers such as miRNA and protein, which are revealed in the presence of pancreatic cancer, are included.

Kaynakça

  • Abe, K., Kitago, M., Kitagawa, Y. & Hirasawa, A.2021. Hereditary pancreatic cancer. Int. J. Clin. Oncol. 26, 1784–1792.
  • Ahmadi, Y. & Kim, K. H. 2020. Functionalization and customization of polyurethanes for biosensing applications: A state-of-the-art review. TrAC Trends Anal. Chem. 126, 115881.
  • Ambai, V. T., Singh, V., Boorman, D. W. & Neufeld, N. J. 2021. Celiac plexus neurolysis for abdominal cancers: going beyond pancreatic cancer pain. PAIN Reports. 6, e930.
  • Ambartsumyan, O., Gribanyov, D., Kukushkin, V., Kopylov, A. & Zavyalova, E. 2020. SERS Based Biosensors for Virus Determination with Oligonucleotides as Recognition Elements. Int. J. Mol. Sci. 21, 3373.
  • Anik, Ü. & Timur, S. 2016. Towards the electrochemical diagnosis of cancer: nanomaterialbased immunosensors and cytosensors. RSC Adv. 6, 111831–111841.
  • Aydın B., E., Aydın, M. & Kemal Sezgintürk, M. 2019. Biosensors and the evaluation of food contaminant biosensors in terms of their performance criteria. Inter.Jour. of Envi. Analyt. Chem. 100, 602–622.
  • Blum, R. & Kloog, Y. 2014. Metabolism addiction in pancreatic cancer. Cell Death Dis. 52 5, e1065–e1065.
  • Cao, H., Fang, X., Li, H., Li, H. & Kong, J. 2017.Ultrasensitive detection of mucin 1 biomarker by immuno-loop-mediated isothermal amplification. Talanta. 164, 588–592.
  • Cao, X., Ye, Y. & Liu, S. 2011. Gold nanoparticle-based signal amplification for biosensing. Anal. Biochem. 417, 1–16.
  • Cesewski, E. & Johnson, B. N. 2020. Electrochemical biosensors for pathogen detection. Biosens. Bioelectron. 159, 112214.
  • Chen, Ss. C., Chen, K. T. & Jou, A. F. J. 2021. Polydopamine-gold composite-based electrochemical biosensor using dual-amplification strategy for detecting pancreatic cancerassociated microRNA. Biosens. Bioelectron. 173, 112815.
  • Conroy, T. et al. 2016. Current standards and new innovative approaches for treatment of pancreatic cancer. Eur. J. Cancer. 57, 10–22.
  • Cornman-Homonoff, J., Holzwanger, D. J., Lee, K. S., Madoff, D. C. & Li, D. 2017. Palliative Care Interventions in the Cancer Patient: Celiac Plexus Block and Neurolysis in the Management of Chronic Upper Abdominal Pain. Semin. Intervent. Radiol. 34, 376.
  • D’amora, M. et al. 2019. Carbon Nano-Onions as Non-Cytotoxic Carriers for Cellular Uptake of Glycopeptides and Proteins. Nanomater. Vol. 9, Page 1069 9, 1069.
  • Dobosz, Ł. et al. 2016. Pain in pancreatic cancer: review of medical and surgical remedies. ANZ J. Surg. 86, 756–761.
  • Dutta K. S. et al. 2012. Serum HSP70: a novel biomarker for early detection of pancreatic cancer. Pancreas. 41(4): 530–534. Eatemadi, A. et al. 2017. Role of protease and protease inhibitors in cancer pathogenesis and treatment. Biomed. Pharmacother. 86, 221–231.
  • El-Dib, F. I., Hussein, M. H. M., Hefni, H. H. H., Eshaq, G. & Elmetwally, A. E. 2014. Synthesis and characterization of crosslinked chitosan immobilized on bentonite and its grafted products with polyaniline. J. Appl. Polym. Sci. 131, 41078.
  • Freelove, R. & Walling, A. D. 2006. Pancreatic Cancer: Diagnosis and Management. Am. Fam. Physician. 73, 485–492.
  • Foley, K., Kim, V., Jaffee, E. & Zheng, L. 2016. Current progress in immunotherapy for pancreatic cancer. Cancer Lett. 381, 244–251.
  • Ghafouri-Fard, S., Fathi, M., Zhai, T., Taheri, M. & Dong, 2021. P. LncRNAs: Novel Biomarkers for Pancreatic Cancer. Biomol. 11, 1665 11, 1665.
  • Goonetilleke, K. S. & Siriwardena, A. K. 2007. Systematic review of carbohydrate antigen (CA19-9) as a biochemical marker in the diagnosis of pancreatic cancer. Eur. J. Surg. Oncol. 33, 266–270.
  • Gunawan, F. et al. 2018. Comparison of platform host cell protein ELISA to process-specific host cell protein ELISA. Biotechnol. Bioeng. 115, 382–389.
  • Gurumallesh, P., Alagu, K., Ramakrishnan, B. & Muthusamy, S. 2019. A systematic reconsideration on proteases. Int. J. Biol. Macromol. 128, 254–267.
  • Huang, Z. nan, Wang, X. ling & Yang, D. Suo. 2015. Adsorption of Cr(VI) in wastewater using magnetic multi-wall carbon nanotubes. Water Sci. Eng. 8, 226–232.
  • Ibáñez-Redín, G. et al. 2019. Screen-printed interdigitated electrodes modified with nanostructured carbon nano-onion films for detecting the cancer biomarker CA19-9. Mater. Sci. Eng. C. 99, 1502–1508.
  • Ideno, N., Mori, Y., Nakamura, M. & Ohtsuka, T. 2020. Early Detection of Pancreatic Cancer: Role of Biomarkers in Pancreatic Fluid Samples. Diagnostics. 10, 1056 10, 1056.
  • Jain, P. K., Lee, K. S., El-Sayed, I. H. & El-Sayed, M. A. 2006. Calculated Absorption and Scattering Properties of Gold Nanoparticles of Different Size, Shape, and Composition: Applications in Biological Imaging and Biomedicine. J. Phys. Chem. B. 110, 7238–7248.
  • Jain, P. K., Huang, X., El-Sayed, I. H. & El-Sayed, M. 2008. A. Noble Metals on the Nanoscale: Optical and Photothermal Properties and Some Applications in Imaging, Sensing, Biology, and Medicine. Acc. Chem. Res. 41, 1578–1586.
  • Joshi, G. K. et al. 2014. Highly specific plasmonic biosensors for ultrasensitive MicroRNA detection in plasma from pancreatic cancer patients. Nano Lett. 14, 6955–6963.
  • Justino, C. I. L., Duarte, A. C. & Rocha-Santos, T. A. 2016. P. Immunosensors in Clinical Laboratory Diagnostics. Adv. Clin. Chem. 73, 65–108.
  • Kaur, H., Bruno, J. G., Kumar, A. & Sharma, T. K. 2018. Aptamers in the Therapeutics and Diagnostics Pipelines. Theranostics. 8, 4016.
  • Kelber, J. A. et al. 2012. KRas Induces a Src/PEAK1/ErbB2 Kinase Amplification Loop That Drives Metastatic Growth and Therapy Resistance in Pancreatic CancerKRas-Induced PEAK1 Signaling in Pancreatic Cancer. Cancer Res. 72, 2554–2564.
  • Khodashenas, S., Khalili, S. & Forouzandeh Moghadam, M. 2019. A cell ELISA based method for exosome detection in diagnostic and therapeutic applications. Biotechnol. Lett. 41, 523–531.
  • Klein, A. P. et al. 2004. Prospective Risk of Pancreatic Cancer in Familial Pancreatic Cancer Kindreds. Cancer Res. 64, 2634–2638. Koopmann, J. et al. 2004. Serum Macrophage Inhibitory Cytokine 1 as a Marker of Pancreatic and Other Periampullary Cancers. Clin. Cancer Res. 10, 2386–2392.
  • Li, J. J. et al. 2021. The role of microbiome in pancreatic cancer. Cancer Metastasis Rev. 40, 777–789.
  • Li, N. et al. 2020. A SERS-colorimetric dual-mode aptasensor for the detection of cancer biomarker MUC1. Anal. Bioanal. Chem. 412, 5707–5718.
  • Li, Q. et al. 2020. Aptamers: a novel targeted theranostic platform for pancreatic ductal adenocarcinoma. Radiat. Oncol. 15, 1–12.
  • Li, X., Ye, S. & Luo, X. 2016 Sensitive SERS detection of miRNA: Via enzyme-free DNA machine signal amplification. Chem. Commun. 52, 10269–10272.
  • Li, Y. et al. 2017. Manganese dioxide nanoparticle-based colorimetric immunoassay for the detection of alpha-fetoprotein. Microchim. Acta. 184, 2767–2774.
  • Lin, X. et al. 2019. Robust oxidase mimicking activity of protamine-stabilized platinum nanoparticles units and applied for colorimetric sensor of trypsin and inhibitor. Sensors Actuators B Chem. 284, 346–353.
  • Liu, J. L. et al. 2018. Morphology-Controlled 9,10-Diphenylanthracene Nanoblocks as Electrochemiluminescence Emitters for icroRNA Detection with One-Step DNA Walker Amplification. Anal. Chem. 90, 5298–5305.
  • Liu, P. et al. 2019. Differential secretome of pancreatic cancer cells in serum-containing conditioned medium reveals CCT8 as a new biomarker of pancreatic cancer invasion and metastasis. Cancer Cell Int. 19, 1–10.
  • Luo, G. et al. 2017. CA19-9-Low&Lewis (+) pancreatic cancer: A unique subtype. Cancer Lett. 385, 46– 50.
  • Ma, D. et al. 2018. Quantitative detection of exosomal microRNA extracted from human blood based on surface-enhanced Raman scattering. Biosens. Bioelectron. 101, 167–173.
  • Meng, Q. et al. 2017. Diagnostic and prognostic value of carcinoembryonic antigen in pancreatic cancer: a systematic review and meta-analysis. Onco. Targets. Ther. 10, 4591–4598.
  • Miyoshi, E. & Kamada, Y. 2016. Application of glycoscience to the early detection of pancreatic cancer. Cancer Sci. 107, 1357–1362.
  • Moschovis, D., Bamias, G. & Delladetsima, I. 2016. Mucins in neoplasms of pancreas, ampulla of Vater and biliary system. World J. Gastrointest. Oncol. 8, 725–734.
  • Muñoz-San Martín, C. et al. 2020. A novel peptide-based electrochemical biosensor for the determination of a metastasis-linked protease in pancreatic cancer cells. Anal. Bioanal. Chem. 412, 6177–6188.
  • Mykhailiv, O., Zubyk, H. & Plonska-Brzezinska, M. E. 2017. Carbon nano-onions: Unique carbon nanostructures with fascinating properties and their potential applications. Inorganica Chim. Acta. 468, 49–66.
  • Olsen, J. V., Ong, S. E. & Mann, M. 2004. Trypsin Cleaves Exclusively C-terminal to Arginine and Lysine Residues. Mol. Cell. Proteomics. 3, 608–614.
  • Pang, Y. et al. 2019. Dual-SERS biosensor for one-step detection of microRNAs in exosome and residual plasma of blood samples for diagnosing pancreatic cancer. Biosens. Bioelectron. 130, 204–213.
  • Pietryga, J. A. & Morgan, D. E. 2015. Imaging preoperatively for pancreatic adenocarcinoma. J. Gastrointest. Oncol. 6, 343.
  • Piroozmand, F., Mohammadipanah, F. & Faridbod, F. 2020. Emerging biosensors in detection of natural products. Synth. Syst. Biotechnol. 5, 293–303.
  • Prasad, K. S. et al. 2020. A low-cost nanomaterial-based electrochemical immunosensor on paper for high-sensitivity early detection of pancreatic cancer. Sensors Actuators B Chem. 305, 127516.
  • Previdi, M. C., Carotenuto, P., Zito, D., Pandolfo, R. & Braconi, C. 2016. Noncoding RNAs asnovel biomarkers in pancreatic cancer: what do we know?.Future Oncol. 13, 443–453.
  • Qian, L. et al. 2019. Biosensors for early diagnosis of pancreatic cancer: a review. Transl. Res. 213, 67–89.
  • Richter, M. M. 2004. Electrochemiluminescence (ECL). Chem. Rev. 104, 3003–3036.
  • Rulyak, S. J., Lowenfels, A. B., Maisonneuve, P. & Brentnall, T. A. 2003. Risk factors for the development of pancreatic cancer in familial pancreatic cancer kindreds. Gastroenterology 124, 1292–1299.
  • Shangguan, D. et al. 2006. From the Cover: Aptamers evolved from live cells as effective molecular probes for cancer study. Proc. Natl. Acad. Sci. U. S. A. 103, 11838.
  • Sharma, A. et al. 2022. Potentialities of aptasensors in cancer diagnosis. Mater. Lett. 308, 131240.
  • Sierzega, M., Młynarski, D., Tomaszewska, R. & Kulig, J. 2016. Semiquantitative immunohistochemistry for mucin (MUC1, MUC2, MUC3, MUC4, MUC5AC, and MUC6) profiling of pancreatic ductal cell denocarcinoma improves diagnostic and prognostic performance. Histopathology. 69, 582–591.
  • Simeone, D. M. et al. 2007. CEACAM1, a novel serum biomarker for pancreatic cancer. Pancreas 34, 436–443.
  • Singh, N. et al. 2014. Plasma cathepsin L: A prognostic marker for pancreatic cancer. World J. Gastroenterol. 20, 17532.
  • Soares, A. C. et al. 2018. A simple architecture with self-assembled monolayers to build immunosensors for detecting the pancreatic cancer biomarker CA19-9. Analyst.143, 3302– 3308.
  • Soares, J. C. et al. 2017. Immunosensor for Pancreatic Cancer Based on Electrospun Nanofibers Coated with Carbon Nanotubes or Gold Nanoparticles. ACS Omega. 2, 6975–6983.
  • Sun, L. et al. 2017. Over-expression of alpha-enolase as a prognostic biomarker in patients with pancreatic cancer. Int. J. Med. Sci. 14, 655–661.
  • Strehlitz, B., Nikolaus, N. & Stoltenburg, R. 2008. Protein Detection with Aptamer Biosensors. Sensors. 8, 4296–4307.
  • Szunerits, S. & Boukherroub, R. 2013. Graphene-based biosensors. Interface Focus 8.
  • Thind, A. & Wilson, C. 2016. Exosomal miRNAs as cancer biomarkers and therapeutic targets. J. Extracell. Vesicles 5.
  • Torequl Islam, M. 2017. Biosensors, the Emerging Tools in the Identification and Detection of Cancer Markers. J. Gynecol. Womens Heal. 5.
  • Tsai, S. et al. 2020. Importance of Normalization of CA19-9 Levels following Neoadjuvant Therapy in Patients with Localized Pancreatic Cancer. Ann. Surg. 271, 740–747.
  • Turk, B., Turk, D. & Turk, V. 2012. Protease signalling: the cutting edge. EMBO J. 31, 1630– 1643.
  • Wang, H. L. et al. 2017. MicroRNA-196b inhibits late apoptosis of pancreatic cancer cells by targeting CADM1. Sci. Reports. 71 7, 1–13.
  • Wang, J. 2006. Electrochemical biosensors: Towards point-of-care cancer diagnostics. Biosens. Bioelectron. 21, 1887–1892.
  • Wei, X., Zhu, M. J., Yan, H., Lu, C. & Xu, J. J. 2019. Recent Advances in Aggregation-Induced Electrochemiluminescence. Chem. – A Eur. J. 25, 12671–12683.
  • Wu, P., Zhao, T., Zhang, J., Wu, L. & Hou, X. 2014. Analyte-activable probe for protease based on cytochrome C-capped Mn: ZnS quantum dots. Anal. Chem. 86, 10078–10083.
  • Xie, Y., Chen, A., Du, D. & Lin, Y. 2011. Graphene-based immunosensor for electrochemical quantification of phosphorylated p53 (S15). Anal. Chim. Acta. 699, 44–48.
  • Yang, Y., Hong, H., Zhang, Y. & Cai, W. 2009. Molecular Imaging of Proteases in Cancer. Cancer Growth Metastasis 2, CGM.S2814.
  • Ye, H. et al. 2017. An Enzyme-Free Signal Amplification Technique for Ultrasensitive Colorimetric Assay of Disease Biomarkers. ACS Nano. 11, 2052–2059.
  • Yokoyama, S. et al. 2016. Aberrant methylation of MUC1 and MUC4 promoters are potential prognostic biomarkers for pancreatic ductal adenocarcinomas. Oncotarget. 7, 42553–42565.
  • Zhao, F., Liu, J. & Luo, J. 2019. Development of a High-Quality ELISA Method for Dinotefuran Based on a Novel and Newly-Designed Antigen. Mol. 24, 2426.
  • Zhu, G. et al. 2019. Paper-based immunosensors: Current trends in the types and applied detection techniques. TrAC Trends Anal. Chem. 111, 100–117.
  • Zong, C. et al. 2018. Surface-Enhanced Raman Spectroscopy for Bioanalysis: Reliability and Challenges. Chem. Rev. 118, 4946–4980.

Pankreas Kanserinin Erken Evrelerde Teşhisi için Yapılan Biyosensör Çalışmaları

Yıl 2023, Cilt: 6 Sayı: 1, 81 - 94, 15.06.2023

Öz

Pankreas kanseri, kötü prognoza ve yüksek ölüm oranına sahip bir kanser türüdür. Agresif bir kanser türü olan pankreas kanserinin erken tespit edilmesi oldukça zordur ve genellikle ileriki evrelerde kesin olarak teşhis koyulmaktadır. Teşhis konulan hastalarda 5 yıllık sağkalım oranı ortalama % 6’dır. Bu yüzden, pankreas kanserinin erken teşhis edilmesi, erken müdahale sonucu sağkalım oranını arttırmada ve ölüm oranlarını azaltmada önemli bir role sahiptir. Pankreas kanserinin teşhis edilmesinde geleneksel yöntemler olarak biyopsi, ultrason, manyetik rezonans gibi görüntüleme teknikleri kullanılır ancak bu teknikler pahalı, çok zaman almakta ve doğru, kesin sonuçlar alabilmek için alanında uzman kişiler tarafından yapılması ve analiz edilmesi gerekmektedir. Bu nedenle daha kolay ulaşılabilen, ucuz, herkes tarafından kullanılabilme özelliğine sahip ve doğru sonuç verme olasılığı yüksek araçlar olan biyosensörler, pankreas kanserinin teşhisinde kullanılması önerilmiştir. Bu çalışmada pankreas kanserinin varlığında açığa çıkan miRNA, protein gibi biyobelirteçlerin tespitine yönelik biyosensör çalışmalarına yer verilmiştir.

Kaynakça

  • Abe, K., Kitago, M., Kitagawa, Y. & Hirasawa, A.2021. Hereditary pancreatic cancer. Int. J. Clin. Oncol. 26, 1784–1792.
  • Ahmadi, Y. & Kim, K. H. 2020. Functionalization and customization of polyurethanes for biosensing applications: A state-of-the-art review. TrAC Trends Anal. Chem. 126, 115881.
  • Ambai, V. T., Singh, V., Boorman, D. W. & Neufeld, N. J. 2021. Celiac plexus neurolysis for abdominal cancers: going beyond pancreatic cancer pain. PAIN Reports. 6, e930.
  • Ambartsumyan, O., Gribanyov, D., Kukushkin, V., Kopylov, A. & Zavyalova, E. 2020. SERS Based Biosensors for Virus Determination with Oligonucleotides as Recognition Elements. Int. J. Mol. Sci. 21, 3373.
  • Anik, Ü. & Timur, S. 2016. Towards the electrochemical diagnosis of cancer: nanomaterialbased immunosensors and cytosensors. RSC Adv. 6, 111831–111841.
  • Aydın B., E., Aydın, M. & Kemal Sezgintürk, M. 2019. Biosensors and the evaluation of food contaminant biosensors in terms of their performance criteria. Inter.Jour. of Envi. Analyt. Chem. 100, 602–622.
  • Blum, R. & Kloog, Y. 2014. Metabolism addiction in pancreatic cancer. Cell Death Dis. 52 5, e1065–e1065.
  • Cao, H., Fang, X., Li, H., Li, H. & Kong, J. 2017.Ultrasensitive detection of mucin 1 biomarker by immuno-loop-mediated isothermal amplification. Talanta. 164, 588–592.
  • Cao, X., Ye, Y. & Liu, S. 2011. Gold nanoparticle-based signal amplification for biosensing. Anal. Biochem. 417, 1–16.
  • Cesewski, E. & Johnson, B. N. 2020. Electrochemical biosensors for pathogen detection. Biosens. Bioelectron. 159, 112214.
  • Chen, Ss. C., Chen, K. T. & Jou, A. F. J. 2021. Polydopamine-gold composite-based electrochemical biosensor using dual-amplification strategy for detecting pancreatic cancerassociated microRNA. Biosens. Bioelectron. 173, 112815.
  • Conroy, T. et al. 2016. Current standards and new innovative approaches for treatment of pancreatic cancer. Eur. J. Cancer. 57, 10–22.
  • Cornman-Homonoff, J., Holzwanger, D. J., Lee, K. S., Madoff, D. C. & Li, D. 2017. Palliative Care Interventions in the Cancer Patient: Celiac Plexus Block and Neurolysis in the Management of Chronic Upper Abdominal Pain. Semin. Intervent. Radiol. 34, 376.
  • D’amora, M. et al. 2019. Carbon Nano-Onions as Non-Cytotoxic Carriers for Cellular Uptake of Glycopeptides and Proteins. Nanomater. Vol. 9, Page 1069 9, 1069.
  • Dobosz, Ł. et al. 2016. Pain in pancreatic cancer: review of medical and surgical remedies. ANZ J. Surg. 86, 756–761.
  • Dutta K. S. et al. 2012. Serum HSP70: a novel biomarker for early detection of pancreatic cancer. Pancreas. 41(4): 530–534. Eatemadi, A. et al. 2017. Role of protease and protease inhibitors in cancer pathogenesis and treatment. Biomed. Pharmacother. 86, 221–231.
  • El-Dib, F. I., Hussein, M. H. M., Hefni, H. H. H., Eshaq, G. & Elmetwally, A. E. 2014. Synthesis and characterization of crosslinked chitosan immobilized on bentonite and its grafted products with polyaniline. J. Appl. Polym. Sci. 131, 41078.
  • Freelove, R. & Walling, A. D. 2006. Pancreatic Cancer: Diagnosis and Management. Am. Fam. Physician. 73, 485–492.
  • Foley, K., Kim, V., Jaffee, E. & Zheng, L. 2016. Current progress in immunotherapy for pancreatic cancer. Cancer Lett. 381, 244–251.
  • Ghafouri-Fard, S., Fathi, M., Zhai, T., Taheri, M. & Dong, 2021. P. LncRNAs: Novel Biomarkers for Pancreatic Cancer. Biomol. 11, 1665 11, 1665.
  • Goonetilleke, K. S. & Siriwardena, A. K. 2007. Systematic review of carbohydrate antigen (CA19-9) as a biochemical marker in the diagnosis of pancreatic cancer. Eur. J. Surg. Oncol. 33, 266–270.
  • Gunawan, F. et al. 2018. Comparison of platform host cell protein ELISA to process-specific host cell protein ELISA. Biotechnol. Bioeng. 115, 382–389.
  • Gurumallesh, P., Alagu, K., Ramakrishnan, B. & Muthusamy, S. 2019. A systematic reconsideration on proteases. Int. J. Biol. Macromol. 128, 254–267.
  • Huang, Z. nan, Wang, X. ling & Yang, D. Suo. 2015. Adsorption of Cr(VI) in wastewater using magnetic multi-wall carbon nanotubes. Water Sci. Eng. 8, 226–232.
  • Ibáñez-Redín, G. et al. 2019. Screen-printed interdigitated electrodes modified with nanostructured carbon nano-onion films for detecting the cancer biomarker CA19-9. Mater. Sci. Eng. C. 99, 1502–1508.
  • Ideno, N., Mori, Y., Nakamura, M. & Ohtsuka, T. 2020. Early Detection of Pancreatic Cancer: Role of Biomarkers in Pancreatic Fluid Samples. Diagnostics. 10, 1056 10, 1056.
  • Jain, P. K., Lee, K. S., El-Sayed, I. H. & El-Sayed, M. A. 2006. Calculated Absorption and Scattering Properties of Gold Nanoparticles of Different Size, Shape, and Composition: Applications in Biological Imaging and Biomedicine. J. Phys. Chem. B. 110, 7238–7248.
  • Jain, P. K., Huang, X., El-Sayed, I. H. & El-Sayed, M. 2008. A. Noble Metals on the Nanoscale: Optical and Photothermal Properties and Some Applications in Imaging, Sensing, Biology, and Medicine. Acc. Chem. Res. 41, 1578–1586.
  • Joshi, G. K. et al. 2014. Highly specific plasmonic biosensors for ultrasensitive MicroRNA detection in plasma from pancreatic cancer patients. Nano Lett. 14, 6955–6963.
  • Justino, C. I. L., Duarte, A. C. & Rocha-Santos, T. A. 2016. P. Immunosensors in Clinical Laboratory Diagnostics. Adv. Clin. Chem. 73, 65–108.
  • Kaur, H., Bruno, J. G., Kumar, A. & Sharma, T. K. 2018. Aptamers in the Therapeutics and Diagnostics Pipelines. Theranostics. 8, 4016.
  • Kelber, J. A. et al. 2012. KRas Induces a Src/PEAK1/ErbB2 Kinase Amplification Loop That Drives Metastatic Growth and Therapy Resistance in Pancreatic CancerKRas-Induced PEAK1 Signaling in Pancreatic Cancer. Cancer Res. 72, 2554–2564.
  • Khodashenas, S., Khalili, S. & Forouzandeh Moghadam, M. 2019. A cell ELISA based method for exosome detection in diagnostic and therapeutic applications. Biotechnol. Lett. 41, 523–531.
  • Klein, A. P. et al. 2004. Prospective Risk of Pancreatic Cancer in Familial Pancreatic Cancer Kindreds. Cancer Res. 64, 2634–2638. Koopmann, J. et al. 2004. Serum Macrophage Inhibitory Cytokine 1 as a Marker of Pancreatic and Other Periampullary Cancers. Clin. Cancer Res. 10, 2386–2392.
  • Li, J. J. et al. 2021. The role of microbiome in pancreatic cancer. Cancer Metastasis Rev. 40, 777–789.
  • Li, N. et al. 2020. A SERS-colorimetric dual-mode aptasensor for the detection of cancer biomarker MUC1. Anal. Bioanal. Chem. 412, 5707–5718.
  • Li, Q. et al. 2020. Aptamers: a novel targeted theranostic platform for pancreatic ductal adenocarcinoma. Radiat. Oncol. 15, 1–12.
  • Li, X., Ye, S. & Luo, X. 2016 Sensitive SERS detection of miRNA: Via enzyme-free DNA machine signal amplification. Chem. Commun. 52, 10269–10272.
  • Li, Y. et al. 2017. Manganese dioxide nanoparticle-based colorimetric immunoassay for the detection of alpha-fetoprotein. Microchim. Acta. 184, 2767–2774.
  • Lin, X. et al. 2019. Robust oxidase mimicking activity of protamine-stabilized platinum nanoparticles units and applied for colorimetric sensor of trypsin and inhibitor. Sensors Actuators B Chem. 284, 346–353.
  • Liu, J. L. et al. 2018. Morphology-Controlled 9,10-Diphenylanthracene Nanoblocks as Electrochemiluminescence Emitters for icroRNA Detection with One-Step DNA Walker Amplification. Anal. Chem. 90, 5298–5305.
  • Liu, P. et al. 2019. Differential secretome of pancreatic cancer cells in serum-containing conditioned medium reveals CCT8 as a new biomarker of pancreatic cancer invasion and metastasis. Cancer Cell Int. 19, 1–10.
  • Luo, G. et al. 2017. CA19-9-Low&Lewis (+) pancreatic cancer: A unique subtype. Cancer Lett. 385, 46– 50.
  • Ma, D. et al. 2018. Quantitative detection of exosomal microRNA extracted from human blood based on surface-enhanced Raman scattering. Biosens. Bioelectron. 101, 167–173.
  • Meng, Q. et al. 2017. Diagnostic and prognostic value of carcinoembryonic antigen in pancreatic cancer: a systematic review and meta-analysis. Onco. Targets. Ther. 10, 4591–4598.
  • Miyoshi, E. & Kamada, Y. 2016. Application of glycoscience to the early detection of pancreatic cancer. Cancer Sci. 107, 1357–1362.
  • Moschovis, D., Bamias, G. & Delladetsima, I. 2016. Mucins in neoplasms of pancreas, ampulla of Vater and biliary system. World J. Gastrointest. Oncol. 8, 725–734.
  • Muñoz-San Martín, C. et al. 2020. A novel peptide-based electrochemical biosensor for the determination of a metastasis-linked protease in pancreatic cancer cells. Anal. Bioanal. Chem. 412, 6177–6188.
  • Mykhailiv, O., Zubyk, H. & Plonska-Brzezinska, M. E. 2017. Carbon nano-onions: Unique carbon nanostructures with fascinating properties and their potential applications. Inorganica Chim. Acta. 468, 49–66.
  • Olsen, J. V., Ong, S. E. & Mann, M. 2004. Trypsin Cleaves Exclusively C-terminal to Arginine and Lysine Residues. Mol. Cell. Proteomics. 3, 608–614.
  • Pang, Y. et al. 2019. Dual-SERS biosensor for one-step detection of microRNAs in exosome and residual plasma of blood samples for diagnosing pancreatic cancer. Biosens. Bioelectron. 130, 204–213.
  • Pietryga, J. A. & Morgan, D. E. 2015. Imaging preoperatively for pancreatic adenocarcinoma. J. Gastrointest. Oncol. 6, 343.
  • Piroozmand, F., Mohammadipanah, F. & Faridbod, F. 2020. Emerging biosensors in detection of natural products. Synth. Syst. Biotechnol. 5, 293–303.
  • Prasad, K. S. et al. 2020. A low-cost nanomaterial-based electrochemical immunosensor on paper for high-sensitivity early detection of pancreatic cancer. Sensors Actuators B Chem. 305, 127516.
  • Previdi, M. C., Carotenuto, P., Zito, D., Pandolfo, R. & Braconi, C. 2016. Noncoding RNAs asnovel biomarkers in pancreatic cancer: what do we know?.Future Oncol. 13, 443–453.
  • Qian, L. et al. 2019. Biosensors for early diagnosis of pancreatic cancer: a review. Transl. Res. 213, 67–89.
  • Richter, M. M. 2004. Electrochemiluminescence (ECL). Chem. Rev. 104, 3003–3036.
  • Rulyak, S. J., Lowenfels, A. B., Maisonneuve, P. & Brentnall, T. A. 2003. Risk factors for the development of pancreatic cancer in familial pancreatic cancer kindreds. Gastroenterology 124, 1292–1299.
  • Shangguan, D. et al. 2006. From the Cover: Aptamers evolved from live cells as effective molecular probes for cancer study. Proc. Natl. Acad. Sci. U. S. A. 103, 11838.
  • Sharma, A. et al. 2022. Potentialities of aptasensors in cancer diagnosis. Mater. Lett. 308, 131240.
  • Sierzega, M., Młynarski, D., Tomaszewska, R. & Kulig, J. 2016. Semiquantitative immunohistochemistry for mucin (MUC1, MUC2, MUC3, MUC4, MUC5AC, and MUC6) profiling of pancreatic ductal cell denocarcinoma improves diagnostic and prognostic performance. Histopathology. 69, 582–591.
  • Simeone, D. M. et al. 2007. CEACAM1, a novel serum biomarker for pancreatic cancer. Pancreas 34, 436–443.
  • Singh, N. et al. 2014. Plasma cathepsin L: A prognostic marker for pancreatic cancer. World J. Gastroenterol. 20, 17532.
  • Soares, A. C. et al. 2018. A simple architecture with self-assembled monolayers to build immunosensors for detecting the pancreatic cancer biomarker CA19-9. Analyst.143, 3302– 3308.
  • Soares, J. C. et al. 2017. Immunosensor for Pancreatic Cancer Based on Electrospun Nanofibers Coated with Carbon Nanotubes or Gold Nanoparticles. ACS Omega. 2, 6975–6983.
  • Sun, L. et al. 2017. Over-expression of alpha-enolase as a prognostic biomarker in patients with pancreatic cancer. Int. J. Med. Sci. 14, 655–661.
  • Strehlitz, B., Nikolaus, N. & Stoltenburg, R. 2008. Protein Detection with Aptamer Biosensors. Sensors. 8, 4296–4307.
  • Szunerits, S. & Boukherroub, R. 2013. Graphene-based biosensors. Interface Focus 8.
  • Thind, A. & Wilson, C. 2016. Exosomal miRNAs as cancer biomarkers and therapeutic targets. J. Extracell. Vesicles 5.
  • Torequl Islam, M. 2017. Biosensors, the Emerging Tools in the Identification and Detection of Cancer Markers. J. Gynecol. Womens Heal. 5.
  • Tsai, S. et al. 2020. Importance of Normalization of CA19-9 Levels following Neoadjuvant Therapy in Patients with Localized Pancreatic Cancer. Ann. Surg. 271, 740–747.
  • Turk, B., Turk, D. & Turk, V. 2012. Protease signalling: the cutting edge. EMBO J. 31, 1630– 1643.
  • Wang, H. L. et al. 2017. MicroRNA-196b inhibits late apoptosis of pancreatic cancer cells by targeting CADM1. Sci. Reports. 71 7, 1–13.
  • Wang, J. 2006. Electrochemical biosensors: Towards point-of-care cancer diagnostics. Biosens. Bioelectron. 21, 1887–1892.
  • Wei, X., Zhu, M. J., Yan, H., Lu, C. & Xu, J. J. 2019. Recent Advances in Aggregation-Induced Electrochemiluminescence. Chem. – A Eur. J. 25, 12671–12683.
  • Wu, P., Zhao, T., Zhang, J., Wu, L. & Hou, X. 2014. Analyte-activable probe for protease based on cytochrome C-capped Mn: ZnS quantum dots. Anal. Chem. 86, 10078–10083.
  • Xie, Y., Chen, A., Du, D. & Lin, Y. 2011. Graphene-based immunosensor for electrochemical quantification of phosphorylated p53 (S15). Anal. Chim. Acta. 699, 44–48.
  • Yang, Y., Hong, H., Zhang, Y. & Cai, W. 2009. Molecular Imaging of Proteases in Cancer. Cancer Growth Metastasis 2, CGM.S2814.
  • Ye, H. et al. 2017. An Enzyme-Free Signal Amplification Technique for Ultrasensitive Colorimetric Assay of Disease Biomarkers. ACS Nano. 11, 2052–2059.
  • Yokoyama, S. et al. 2016. Aberrant methylation of MUC1 and MUC4 promoters are potential prognostic biomarkers for pancreatic ductal adenocarcinomas. Oncotarget. 7, 42553–42565.
  • Zhao, F., Liu, J. & Luo, J. 2019. Development of a High-Quality ELISA Method for Dinotefuran Based on a Novel and Newly-Designed Antigen. Mol. 24, 2426.
  • Zhu, G. et al. 2019. Paper-based immunosensors: Current trends in the types and applied detection techniques. TrAC Trends Anal. Chem. 111, 100–117.
  • Zong, C. et al. 2018. Surface-Enhanced Raman Spectroscopy for Bioanalysis: Reliability and Challenges. Chem. Rev. 118, 4946–4980.
Toplam 83 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Zikriye Özbek 0000-0002-9112-1478

Nurşah Gür 0009-0008-7753-3581

Erken Görünüm Tarihi 6 Haziran 2023
Yayımlanma Tarihi 15 Haziran 2023
Gönderilme Tarihi 12 Mayıs 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 6 Sayı: 1

Kaynak Göster

APA Özbek, Z., & Gür, N. (2023). Biosensor Studies For The Diagnosis Of Pancreas Cancer In Early Stages. International Journal of Engineering Technology and Applied Science, 6(1), 81-94.