Araştırma Makalesi
BibTex RIS Kaynak Göster

Salt Stress Triggered Changes in Osmoregulation and Antioxidants in Herbaceous Perennial Inula Plants (Asteraceae)

Yıl 2019, Cilt: 34 Sayı: 1, 39 - 46, 30.06.2019
https://doi.org/10.28955/alinterizbd.541949

Öz

Global demand to cure ailments is a growing
need. Inula genus extensively holds hundreds of species in warmer regions of
Europe and Asia. It is being well-known for its phytochemical and
pharmacological applications in industry thanks to its anti-inflammatory and
antimicrobial interests. However, growth and production of Inula in the
cutting-edge industry is commonly influenced by salt stress except for the
halophyte species such as the
Inula
crithmoides.
Salt tolerance level by means of changes in osmoregulation and
antioxidant systems in an herbaceous perennial Inula plant has been
biochemically evaluated here. Both salt stress treatments caused photosynthetic
pigments’ degradation, increase in the leaf levels of osmolytes, and induction
of oxidative stress indicated by the malondialdehyde (MDA). Higher hydrogen
peroxide (H
2O2) amount was recorded in high
salt concentration than low salt. High salinity caused an increase in ascorbate
(ASC) and glutathione (GSH) contents besides target enzymes of Inula leaves.
NaCl tolerance of Inula also was found comprehensible through the higher
concentrations of proline and to a lesser extent, total soluble sugar. Salt
tolerance mechanisms of this rich bioresourse needs to be further studied in
detail for herbal medicines in pharma sector.

Kaynakça

  • AbdElgawad, H., Zinta, G., Hegab, M. M., Pandey, R., Asard, H., and Abuelsoud, W., 2016. High salinity induces different oxidative stress and antioxidant responses in maize seedlings organs. Frontiers in Plant Science 7: 276.
  • Arnon, D. I., 1949. Copper enzymes in isolated chloroplasts, polyphenoxidase in Beta vulgaris. Plant physiology 24: 1-15.
  • Ashraf, M., and Foolad, M., 2007. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany 59(2): 206-216.
  • Bates, L., Waldren, R. P., Teare, I. D., 1973. Rapid determination of free proline for water-stress studies. Plant and Soil 39: 205-207.
  • Demiral, T., and Türkan, I., 2005. Comparative lipid peroxidation, antioxidant defense systems and proline content in roots of two rice cultivars differing in salt tolerance. Environmental and Experimental Botany 53: 247-257.
  • Dhindsa, R. S., and Matowe, W., 1981. Drought tolerance in two mosses: correlated with enzymatic defence against lipid peroxidation. Journal of Experimental Botany 32: 79-91.
  • Foyer, C. H., Rowell, J., Walker, D., 1983. Measurement of the ascorbate content of spinach leaf protoplasts and chloroplasts during illumination. Planta 157:239-244
  • Foyer, C. H., and Noctor, G., 2009. Redox regulation in photosynthetic organisms: signaling, acclimation, and practical implications. Antioxidants & Redox Signaling 11(4): 861-905.
  • Foyer, C. H., Halliwell, B., 1976. Presence of glutathione and glutathione reductase in chloroplast: a proposed role in ascorbic acid metabolism. Planta 133: 21-25. Griffith, O. W., 1980. Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Analytical Biochemistry 106: 207-212.
  • Hayes, J. D., McLellan, L. I., 1999. Glutathione and glutathione-dependent enzymes represent a co-ordinately regulated defence against oxidative stress. Free Radical Research 31: 273-300.
  • Hossain, M. S., and Dietz, K. J., 2016. Tuning of Redox Regulatory Mechanisms, Reactive Oxygen Species and Redox Homeostasis under Salinity Stress. Frontiers in plant science, 7: 548.
  • Katarina, S., Jajoo, A., Guruprasad, K. N., 2014. Impact of increasing Ultraviolet-B (UV-B) radiation on photosynthetic processes. J. Photochem. Journal of Photochemistry and Photobiology B: Biology 137: 55-66.
  • Karimi, H., Yusef-Zadeh, H., 2013. The effect of salinity level on the morphological and physiological traits of two grape [Vitis vinifera L.] cultivars. International Journal of Agronomy and Plant Production 4:1108-1117.
  • Kaur, H., Bhatla, S. C., 2016. Melatonin and nitric oxide modulate glutathione content and glutathione reductase activity in sunflower seedling cotyledons accompanying salt stress. Nitric Oxide 59:42-53.
  • Kumar, D., Al Hassan, M., Naranjo, M. A., Agrawal, V., Boscaiu, M., Vicente, O., 2017. Effects of salinity and drought on growth, ionic relations, compatible solutes and activation of antioxidant systems in oleander (Nerium oleander L.) PLoS ONE 12(9): e0185017. https://doi.org/10.1371/ journal.pone.0185017
  • Marco, F., Bitrián, M., Carrasco, P., Rajam, M. V., Alcázar, R., Antonio, F. T., 2015. Genetic engineering strategies for abiotic stress tolerance in plants. Plant Biology & Biotechnology 2: 579-610.
  • Maruta, T., Noshi, M., Tanouchi, A., Tamoi, M., Yabuta, Y., Yoshimura, K., Ishikawa, T., Shigeoka, S., 2012. H2O2-triggered retrograde signaling from chloroplasts to nucleus plays specific role in response to stress. The Journal of Biological Chemistry, 6:287(15): 11717-29.
  • Nikalje, G. C., Variyar, P. S., Joshi, M. V., Nikam, T. D., Suprasanna, P., 2018. Temporal and spatial changes in ion homeostasis, antioxidant defense and accumulation of flavonoids and glycolipid in a halophyte Sesuvium portulacastrum (L.) PLoS ONE 13(4): e0193394.
  • Pardo-Domènech, L. L., Tifrea, A., Grigore, M. N., Boscaiu, M., Vicente, O., 2016. Proline and glycine betaine accumulation in two succulent halophytes under natural and experimental conditions. Plant Biosystems 150: 904-915.
  • Potters, G., Horemans, N., Bellone, S., Caubergs, R. J., Trost, P., Guisez, Y., Asard, H., 2004. Dehydroascorbate influences the plant cell cycle through a glutathione-independent reduction mechanism. Plant Physiology 134(4): 1479-1487.
  • Ross, A. F., 1959. Dinitrophenol method for reducing sugar, potato processing. Potato Processing, 1:492- 493
  • Sales, C. R. G., Ribeiro, R. V., Silveira, J. A. G., Machado, E. C., Martins, M.O., Lagôa,. A. M., 2013. Superoxide dismutase and ascorbate peroxidase improve the recovery of photosynthesis in sugarcane plants subjected to water deficit and low substrate temperature. Plant Physiology and Biochemistry 73: 326-336.
  • Schiop, S. T., Al Hassan, M., Sestras, A. F., Boscaiu, M., Sestras, R. E., Vicente, O., 2015. Identification of salt stress biomarkers in Romanian Carpathian populations of Picea abies (L.) Karst. PLoS ONE 10(8): e0135419.
  • Shinozaki, K., and Yamaguchi-Shinozaki, K., 2007. Gene networks involved in drought stress response and tolerance. Journal of Experimental Botany 58(2): 221-227.
  • Singh, M., Kumar, J., Singh, S., Singh, V. P., Prasad, S. M., 2015. Roles of osmoprotectants in improving salinity and drought tolerance in plants: a review. Reviews in Environmental Science and Bio/Technology 14: 407-426.
  • Smeekens, S., 2000. Sugar-induced signal transduction in plants. Annual review of plant physiology and plant molecular biology 51: 49-81.
  • Taïbi, K., Taïbi, F., Abderrahim, L. A., Ennajah, A., Belkhodja, M., Mulet, J. M., 2016. Effect of salt stress on growth, chlorophyll content, lipid peroxidation and antioxidant defense systems in Phaseolus vulgaris L. S. South African Journal of Botany 105: 306-312.
  • Urbanek, H., Kuzniak-Gebarowska, E., Herka, K., 1991. Elicitation of defense responses in bean leaves by Botrytis cinerea polygalacturanase. Acta Physiologiae Plantarum 13:43-50.
  • Velikova, V., Yordanov, I., Edreva, A., 2000. Oxidative stress and some antioxidant systems in acid rain-treated bean plants, protective role of exogenous polyamines. Plant Science 151: 59-66.
  • Wu, J., Tang, C., Yao, S., Zhang, L., Ke, C., Feng, L., Lin, G., Ye, Y., 2015. Anti-inflammatory inositol derivatives from the whole plant of Inula cappa. Journal of Natural Products 78:2332-2338.
  • Xiang, C., Werner, B. L., Christensen, E. M., Oliver, D. J., 2001. The biological functions of glutathione revisited in arabidopsis transgenic plants with altered glutathione levels. Plant Physiology 126(2): 564-574.
  • Yang, Y., Wei, X., Shi, R., Fan, Q., An, L., 2010. Salinity-induced physiological modification in the callus from halophytes Nitraria tangutorum Bobr. Journal of Plant Growth Regulation 29: 465-476.
  • Zhou, S. Z., Guo, K., Elbaz, A. A., Yang, Z. M., 2009. Salicylic acid alleviates mercury toxicity by preventing oxidative stress in roots of Medicago sativa. Environmental and Experimental Botany 65: 27-34.
Yıl 2019, Cilt: 34 Sayı: 1, 39 - 46, 30.06.2019
https://doi.org/10.28955/alinterizbd.541949

Öz

Kaynakça

  • AbdElgawad, H., Zinta, G., Hegab, M. M., Pandey, R., Asard, H., and Abuelsoud, W., 2016. High salinity induces different oxidative stress and antioxidant responses in maize seedlings organs. Frontiers in Plant Science 7: 276.
  • Arnon, D. I., 1949. Copper enzymes in isolated chloroplasts, polyphenoxidase in Beta vulgaris. Plant physiology 24: 1-15.
  • Ashraf, M., and Foolad, M., 2007. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany 59(2): 206-216.
  • Bates, L., Waldren, R. P., Teare, I. D., 1973. Rapid determination of free proline for water-stress studies. Plant and Soil 39: 205-207.
  • Demiral, T., and Türkan, I., 2005. Comparative lipid peroxidation, antioxidant defense systems and proline content in roots of two rice cultivars differing in salt tolerance. Environmental and Experimental Botany 53: 247-257.
  • Dhindsa, R. S., and Matowe, W., 1981. Drought tolerance in two mosses: correlated with enzymatic defence against lipid peroxidation. Journal of Experimental Botany 32: 79-91.
  • Foyer, C. H., Rowell, J., Walker, D., 1983. Measurement of the ascorbate content of spinach leaf protoplasts and chloroplasts during illumination. Planta 157:239-244
  • Foyer, C. H., and Noctor, G., 2009. Redox regulation in photosynthetic organisms: signaling, acclimation, and practical implications. Antioxidants & Redox Signaling 11(4): 861-905.
  • Foyer, C. H., Halliwell, B., 1976. Presence of glutathione and glutathione reductase in chloroplast: a proposed role in ascorbic acid metabolism. Planta 133: 21-25. Griffith, O. W., 1980. Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Analytical Biochemistry 106: 207-212.
  • Hayes, J. D., McLellan, L. I., 1999. Glutathione and glutathione-dependent enzymes represent a co-ordinately regulated defence against oxidative stress. Free Radical Research 31: 273-300.
  • Hossain, M. S., and Dietz, K. J., 2016. Tuning of Redox Regulatory Mechanisms, Reactive Oxygen Species and Redox Homeostasis under Salinity Stress. Frontiers in plant science, 7: 548.
  • Katarina, S., Jajoo, A., Guruprasad, K. N., 2014. Impact of increasing Ultraviolet-B (UV-B) radiation on photosynthetic processes. J. Photochem. Journal of Photochemistry and Photobiology B: Biology 137: 55-66.
  • Karimi, H., Yusef-Zadeh, H., 2013. The effect of salinity level on the morphological and physiological traits of two grape [Vitis vinifera L.] cultivars. International Journal of Agronomy and Plant Production 4:1108-1117.
  • Kaur, H., Bhatla, S. C., 2016. Melatonin and nitric oxide modulate glutathione content and glutathione reductase activity in sunflower seedling cotyledons accompanying salt stress. Nitric Oxide 59:42-53.
  • Kumar, D., Al Hassan, M., Naranjo, M. A., Agrawal, V., Boscaiu, M., Vicente, O., 2017. Effects of salinity and drought on growth, ionic relations, compatible solutes and activation of antioxidant systems in oleander (Nerium oleander L.) PLoS ONE 12(9): e0185017. https://doi.org/10.1371/ journal.pone.0185017
  • Marco, F., Bitrián, M., Carrasco, P., Rajam, M. V., Alcázar, R., Antonio, F. T., 2015. Genetic engineering strategies for abiotic stress tolerance in plants. Plant Biology & Biotechnology 2: 579-610.
  • Maruta, T., Noshi, M., Tanouchi, A., Tamoi, M., Yabuta, Y., Yoshimura, K., Ishikawa, T., Shigeoka, S., 2012. H2O2-triggered retrograde signaling from chloroplasts to nucleus plays specific role in response to stress. The Journal of Biological Chemistry, 6:287(15): 11717-29.
  • Nikalje, G. C., Variyar, P. S., Joshi, M. V., Nikam, T. D., Suprasanna, P., 2018. Temporal and spatial changes in ion homeostasis, antioxidant defense and accumulation of flavonoids and glycolipid in a halophyte Sesuvium portulacastrum (L.) PLoS ONE 13(4): e0193394.
  • Pardo-Domènech, L. L., Tifrea, A., Grigore, M. N., Boscaiu, M., Vicente, O., 2016. Proline and glycine betaine accumulation in two succulent halophytes under natural and experimental conditions. Plant Biosystems 150: 904-915.
  • Potters, G., Horemans, N., Bellone, S., Caubergs, R. J., Trost, P., Guisez, Y., Asard, H., 2004. Dehydroascorbate influences the plant cell cycle through a glutathione-independent reduction mechanism. Plant Physiology 134(4): 1479-1487.
  • Ross, A. F., 1959. Dinitrophenol method for reducing sugar, potato processing. Potato Processing, 1:492- 493
  • Sales, C. R. G., Ribeiro, R. V., Silveira, J. A. G., Machado, E. C., Martins, M.O., Lagôa,. A. M., 2013. Superoxide dismutase and ascorbate peroxidase improve the recovery of photosynthesis in sugarcane plants subjected to water deficit and low substrate temperature. Plant Physiology and Biochemistry 73: 326-336.
  • Schiop, S. T., Al Hassan, M., Sestras, A. F., Boscaiu, M., Sestras, R. E., Vicente, O., 2015. Identification of salt stress biomarkers in Romanian Carpathian populations of Picea abies (L.) Karst. PLoS ONE 10(8): e0135419.
  • Shinozaki, K., and Yamaguchi-Shinozaki, K., 2007. Gene networks involved in drought stress response and tolerance. Journal of Experimental Botany 58(2): 221-227.
  • Singh, M., Kumar, J., Singh, S., Singh, V. P., Prasad, S. M., 2015. Roles of osmoprotectants in improving salinity and drought tolerance in plants: a review. Reviews in Environmental Science and Bio/Technology 14: 407-426.
  • Smeekens, S., 2000. Sugar-induced signal transduction in plants. Annual review of plant physiology and plant molecular biology 51: 49-81.
  • Taïbi, K., Taïbi, F., Abderrahim, L. A., Ennajah, A., Belkhodja, M., Mulet, J. M., 2016. Effect of salt stress on growth, chlorophyll content, lipid peroxidation and antioxidant defense systems in Phaseolus vulgaris L. S. South African Journal of Botany 105: 306-312.
  • Urbanek, H., Kuzniak-Gebarowska, E., Herka, K., 1991. Elicitation of defense responses in bean leaves by Botrytis cinerea polygalacturanase. Acta Physiologiae Plantarum 13:43-50.
  • Velikova, V., Yordanov, I., Edreva, A., 2000. Oxidative stress and some antioxidant systems in acid rain-treated bean plants, protective role of exogenous polyamines. Plant Science 151: 59-66.
  • Wu, J., Tang, C., Yao, S., Zhang, L., Ke, C., Feng, L., Lin, G., Ye, Y., 2015. Anti-inflammatory inositol derivatives from the whole plant of Inula cappa. Journal of Natural Products 78:2332-2338.
  • Xiang, C., Werner, B. L., Christensen, E. M., Oliver, D. J., 2001. The biological functions of glutathione revisited in arabidopsis transgenic plants with altered glutathione levels. Plant Physiology 126(2): 564-574.
  • Yang, Y., Wei, X., Shi, R., Fan, Q., An, L., 2010. Salinity-induced physiological modification in the callus from halophytes Nitraria tangutorum Bobr. Journal of Plant Growth Regulation 29: 465-476.
  • Zhou, S. Z., Guo, K., Elbaz, A. A., Yang, Z. M., 2009. Salicylic acid alleviates mercury toxicity by preventing oxidative stress in roots of Medicago sativa. Environmental and Experimental Botany 65: 27-34.
Toplam 33 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Araştırma Makaleleri
Yazarlar

Necla Pehlivan 0000-0002-2045-8380

Neslihan Saruhan Güler Bu kişi benim

Yayımlanma Tarihi 30 Haziran 2019
Kabul Tarihi 11 Mart 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 34 Sayı: 1

Kaynak Göster

APA Pehlivan, N., & Saruhan Güler, N. (2019). Salt Stress Triggered Changes in Osmoregulation and Antioxidants in Herbaceous Perennial Inula Plants (Asteraceae). Alinteri Journal of Agriculture Science, 34(1), 39-46. https://doi.org/10.28955/alinterizbd.541949
AMA Pehlivan N, Saruhan Güler N. Salt Stress Triggered Changes in Osmoregulation and Antioxidants in Herbaceous Perennial Inula Plants (Asteraceae). Alinteri Journal of Agriculture Science. Haziran 2019;34(1):39-46. doi:10.28955/alinterizbd.541949
Chicago Pehlivan, Necla, ve Neslihan Saruhan Güler. “Salt Stress Triggered Changes in Osmoregulation and Antioxidants in Herbaceous Perennial Inula Plants (Asteraceae)”. Alinteri Journal of Agriculture Science 34, sy. 1 (Haziran 2019): 39-46. https://doi.org/10.28955/alinterizbd.541949.
EndNote Pehlivan N, Saruhan Güler N (01 Haziran 2019) Salt Stress Triggered Changes in Osmoregulation and Antioxidants in Herbaceous Perennial Inula Plants (Asteraceae). Alinteri Journal of Agriculture Science 34 1 39–46.
IEEE N. Pehlivan ve N. Saruhan Güler, “Salt Stress Triggered Changes in Osmoregulation and Antioxidants in Herbaceous Perennial Inula Plants (Asteraceae)”, Alinteri Journal of Agriculture Science, c. 34, sy. 1, ss. 39–46, 2019, doi: 10.28955/alinterizbd.541949.
ISNAD Pehlivan, Necla - Saruhan Güler, Neslihan. “Salt Stress Triggered Changes in Osmoregulation and Antioxidants in Herbaceous Perennial Inula Plants (Asteraceae)”. Alinteri Journal of Agriculture Science 34/1 (Haziran 2019), 39-46. https://doi.org/10.28955/alinterizbd.541949.
JAMA Pehlivan N, Saruhan Güler N. Salt Stress Triggered Changes in Osmoregulation and Antioxidants in Herbaceous Perennial Inula Plants (Asteraceae). Alinteri Journal of Agriculture Science. 2019;34:39–46.
MLA Pehlivan, Necla ve Neslihan Saruhan Güler. “Salt Stress Triggered Changes in Osmoregulation and Antioxidants in Herbaceous Perennial Inula Plants (Asteraceae)”. Alinteri Journal of Agriculture Science, c. 34, sy. 1, 2019, ss. 39-46, doi:10.28955/alinterizbd.541949.
Vancouver Pehlivan N, Saruhan Güler N. Salt Stress Triggered Changes in Osmoregulation and Antioxidants in Herbaceous Perennial Inula Plants (Asteraceae). Alinteri Journal of Agriculture Science. 2019;34(1):39-46.