Araştırma Makalesi
BibTex RIS Kaynak Göster

Photocatalytic Hydrogen Production from Water Catalyzed by Eosin-Y Sensitized Ba2P2O7

Yıl 2025, Cilt: 7 Sayı: 1, 15 - 24, 30.04.2025
https://doi.org/10.46740/alku.1485824

Öz

In this study, the barium pyrophosphate (Ba2P2O7) catalyst was sensitized with Eosin-Y (EY) dye, and its photocatalytic hydrogen production activity was investigated from water. Here, the Ba2P2O7 catalyst showed 2.23 mmol g-1 hydrogen production in the presence of triethanolamine (TEOA) electron donor and under visible light. However, when chloroplatinic acid (H2PtCl6) was added into the medium to increase the hydrogen production activity of the system, Pt, as a co-catalyst, was through photodeposition on the catalyst surface, and 18.47 mmol g-1 hydrogen activity was reached in 8 hours. These results show that efficient electron transfer is achieved between excited EY molecules and Ba2P2O7. The adsorption of EY on the Ba2P2O7 catalyst promotes hydrogen activity by creating more photoexcited electrons in response to visible light. Additionally, Pt co-catalyst supports hydrogen production by increasing the photoexcited charge separation efficiency

Proje Numarası

-

Kaynakça

  • [1] D. J. Wuebbles and A. K. Jain, "Concerns about climate change and the role of fossil fuel use," Fuel Processing Technology, vol. 71, no. 1, pp. 99-119, June 2001, doi: https://doi.org/10.1016/S0378-3820(01)00139-4.
  • [2] S. Kılıç Depren, M. T. Kartal, N. Çoban Çelikdemir, and Ö. Depren, "Energy consumption and environmental degradation nexus: A systematic review and meta-analysis of fossil fuel and renewable energy consumption," Ecological Informatics, vol. 70, p. 101747, Sep 2022, doi: https://doi.org/10.1016/j.ecoinf.2022.101747.
  • [3] Y. Zhang et al., "Photocatalytic Hydrogen Evolution via Water Splitting: A Short Review," Catalysts, vol. 8, no. 12, p. 655, Oct. 2018, doi: https://doi.org/10.3390/catal8120655.
  • [4] A. Fujishima and K. Honda, "Electrochemical photolysis of water at a semiconductor electrode," Nature, vol. 238, no. 5358, pp. 37-38, July 1972.
  • [5] W. Zhao et al., "Recent advances in photocatalytic hydrogen evolution with high-performance catalysts without precious metals," Renewable and Sustainable Energy Reviews, vol. 132, p. 110040, Oct. 2020, doi: https://doi.org/10.1016/j.rser.2020.110040.
  • [6] J. H. Kim, D. Hansora, P. Sharma, J.-W. Jang, and J. S. Lee, "Toward practical solar hydrogen production–an artificial photosynthetic leaf-to-farm challenge," Chemical Society Reviews, vol. 48, no. 7, pp. 1908-1971, Mar. 2019, doi: https://doi.org/10.1039/C8CS00699G
  • [7] Y. Sun et al., "Eosin Y-sensitized partially oxidized Ti3C2 MXene for photocatalytic hydrogen evolution," Catalysis Science & Technology, vol. 9, no. 2, pp. 310-315, Nov. 2019, doi: https://doi.org/10.1039/C8CY02240B.
  • [8] A. T. Montoya and E. G. Gillan, "Enhanced photocatalytic hydrogen evolution from transition-metal surface-modified TiO2," ACS Omega, vol. 3, no. 3, pp. 2947-2955, Mar. 2018, doi: https://doi.org/10.1021/acsomega.7b02021.
  • [9] A. H. Jawhari, N. Hasan, I. A. Radini, K. Narasimharao, and M. A. Malik, "Noble Metals Deposited LaMnO3 Nanocomposites for Photocatalytic H2 Production," Nanomaterials, vol. 12, no. 17, p. 2985, Aug. 2022. doi: https://www.mdpi.com/2079-4991/12/17/2985.
  • [10] D. Wang and X.-Q. Gong, "Function-oriented design of robust metal cocatalyst for photocatalytic hydrogen evolution on metal/titania composites," Nature Communications, vol. 12, no. 1, p. 158, Jan. 2021, doi: https://doi.org/10.1038/s41467-020-20464-x.
  • [11] Q. Zhu, Z. Xu, B. Qiu, M. Xing, and J. Zhang, "Emerging Cocatalysts on g-C3N4 for Photocatalytic Hydrogen Evolution," Small, vol. 17, no. 40, p. 2101070, July 2021, doi: https://doi.org/10.1002/smll.202101070.
  • [12] L. Wang, M. Xu, R. Sheng, L. Liu, and D. Jia, "Microwave assisted co-precipitation synthesis and photoluminescence characterization of spherical Sr2P2O7:Ce3+, Tb3+ phosphors," Journal of Alloys and Compounds, vol. 579, pp. 343-347, Dec. 2013, doi: https://doi.org/10.1016/j.jallcom.2013.06.085.
  • [13] B. Wang, Q. Ren, O. Hai, and X. Wu, "Luminescence properties and energy transfer in Tb3+ and Eu3+ co-doped Ba2P2O7 phosphors," RSC Advances, vol. 7, no. 25, pp. 15222-15227, Mar. 2017, doi: 10.1039/C6RA28122B.
  • [14] Y. Xiao, J. Lee, A. Yu, and Z. Liu, "Electrochemical Performance of Amorphous and Crystalline Sn2P2O7 Anodes in Secondary Lithium Batteries," Journal of the Electrochemical Society, vol. 146, no. 10, p. 3623, 1999, doi: 10.1149/1.1392524.
  • [15] Y. Uebou, S. Okada, M. Egashira, and J.-I. Yamaki, "Cathode properties of pyrophosphates for rechargeable lithium batteries," Solid State Ionics, vol. 148, no. 3-4, pp. 323-328, June 2002, doi: https://doi.org/10.1016/S0167-2738(02)00069-3.
  • [16] T. Zhao, M. Yan, Y. Pu, and D. Zhu, "Preparation and luminescence properties of Ba2P2O7:Dy3+, Ce3+ phosphors," Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 299, p. 122874, Oct. 2023, doi: https://doi.org/10.1016/j.saa.2023.122874.
  • [17] X. Li et al., "Sustainable Production of 2,3-Pentanedione: Catalytic Performance of Ba2P2O7 Doped with Cs for Vapor-Phase Condensation of Lactic Acid," Industrial & Engineering Chemistry Research, vol. 56, no. 49, pp. 14437-14446, Dec. 2017, doi: 10.1021/acs.iecr.7b03595.
  • [18] C. Rosticher, B. Viana, T. Maldiney, C. Richard, and C. Chanéac, "Persistent luminescence of Eu, Mn, Dy doped calcium phosphates for in-vivo optical imaging," Journal of Luminescence, vol. 170, pp. 460-466, Feb. 2016, doi: https://doi.org/10.1016/j.jlumin.2015.07.024.
  • [19] R. Pang, C. Li, S. Zhang, and Q. Su, "Luminescent properties of a new blue long-lasting phosphor Ca2P2O7: Eu2+, Y3+," Materials Chemistry and Physics, vol. 113, no. 1, pp. 215-218, Jan. 2009, doi: https://doi.org/10.1016/j.matchemphys.2008.07.061.
  • [20] B. Wulan, S. Yi, S. Li, Y. Duan, J. Yan and Q. Jiang, "Amorphous nickel pyrophosphate modified graphitic carbon nitride: an efficient photocatalyst for hydrogen generation from water splitting," Applied Catalysis B: Environmental, vol. 231, 43-50, Sep. 2018, doi: https://doi.org/10.1016/j.apcatb.2018.02.045.
  • [21] L. Gao, C. Weng, Y. Wang, X. Lv, J. Ren, Z. Yuan, "Defect-rich cobalt pyrophosphate hybrids decorated Cd0.5Zn0.5S for efficient photocatalytic hydrogen evolution: Defect and interface engineering," Journal of Colloid and Interface Science, vol. 606, 544-555, Jan. 2022, doi: https://doi.org/10.1016/j.jcis.2021.08.041.
  • [22] Ö. Sevgili, F. Özel, A. Ruşen, E. Yiğit, and İ. Orak, "The surface and electrical properties of the Al/Ba2P2O7/p-Si heterojunctions in wide range of temperature and frequency," Surfaces and Interfaces, vol. 28, p. 101637, Feb. 2022, doi: https://doi.org/10.1016/j.surfin.2021.101637.
  • [23] A. A. ElBelghitti, A. Elmarzouki, A. Boukhari and E. M. Holt, "σ-Dibarium Pyrophosphate," Acta Crystallographica Section C, vol. C51, p. 1478-1480, Aug. 1995, doi: https://doi.org/10.1107/S0108270195001739.
  • [24] T. Zhao, M. Yan, Y. Pu, D. Zhu, "Preparation and luminescence properties of Ba2P2O7:Dy3+, Ce3+ phosphors," Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 299, Oct. 2023, doi: https://doi.org/10.1016/j.saa.2023.122874
  • [25] F. Ozel et al., "Production of microstructured BaZrO3 and Ba2P2O7-based polymer shields for protection against ionizing photons," Journal of Physics and Chemistry of Solids, vol. 158, p. 110238, Nov. 2021, doi: https://doi.org/10.1016/j.jpcs.2021.110238.
  • [26] G. Yanalak et al., "Ternary nanocomposites of mesoporous graphitic carbon nitride/black phosphorus/gold nanoparticles (mpg-CN/BP-Au) for photocatalytic hydrogen evolution and electrochemical sensing of paracetamol," Applied Surface Science, vol. 557, p. 149755, Aug. 2021, doi: https://doi.org/10.1016/j.apsusc.2021.149755.
  • [27] I. Sargin, G. Yanalak, G. Arslan, and I. H. Patir, "Green synthesized carbon quantum dots as TiO2 sensitizers for photocatalytic hydrogen evolution," International Journal of Hydrogen Energy, vol. 44, no. 39, pp. 21781-21789,Aug. 2019, doi: https://doi.org/10.1016/j.ijhydene.2019.06.168.
  • [28] S. Altinişik and S. Koyuncu, "A Novel Viologen-Derived Covalent Organic Framework Based Metal Free Catalyst for Nitrophenol Reduction," ChemCatChem, vol. 15, no. 4, Jan. 2023, https://doi.org/10.1002/cctc.202201418.
  • [29] M. K. Gonce et al., "Photocatalytic hydrogen evolution based on Cu2ZnSnS4, Cu2ZnSnSe4 and Cu2ZnSnSe4− x Sx nanofibers," RSC Advances, vol. 5, no. 114, pp. 94025-94028, Oct. 2015, doi: https://doi.org/10.1039/C5RA18877F.
  • [30] J. Wu et al., "Boosting photocatalytic hydrogen evolution via regulating Pt chemical states," Chemical Engineering Journal, vol. 442, p. 136334, Aug. 2022, doi: https://doi.org/10.1016/j.cej.2022.136334.
  • [31] K. Kimura, T. Miwa, and M. Imamura, "The radiolysis and photolysis of methanolic solutions of Eosin. I. The γ-radiolysis of neutral and alkaline solutions," Bulletin of the Chemical Society of Japan, vol. 43, no. 5, pp. 1329-1336, May 1970, doi: https://doi.org/10.1246/bcsj.43.1329.
  • [32] R. Abe, K. Hara, K. Sayama, K. Domen, and H. Arakawa, "Steady hydrogen evolution from water on Eosin Y-fixed TiO2 photocatalyst using a silane-coupling reagent under visible light irradiation," Journal of Photochemistry and Photobiology A: Chemistry, vol. 137, no. 1, pp. 63-69, Oct. 2000, doi: https://doi.org/10.1016/S1010-6030(00)00351-8.
  • [33] C. Kong, S. Min, and G. Lu, "A novel amorphous CoSnxOy decorated graphene nanohybrid photocatalyst for highly efficient photocatalytic hydrogen evolution," Chemical Communications, vol. 50, no. 39, pp. 5037-5039, Mar. 2014, doi: 10.1039/C4CC00547C.
  • [34] C. Kong, S. Min, and G. Lu, "Robust Pt–Sn alloy decorated graphene nanohybrid cocatalyst for photocatalytic hydrogen evolution," Chemical Communications, vol. 50, no. 66, pp. 9281-9283, June 2014, doi: 10.1039/C4CC03711A.
  • [35] G. Zhou et al., "Remarkably enhanced hydrogen evolution of g-C3N4 nanosheet under simulated sunlight via AgPt alloy co-catalyst with low amount of Pt," Journal of Cleaner Production, vol. 434, p. 139950, Jan.2024, doi: https://doi.org/10.1016/j.jclepro.2023.139950.

Eosin-Y ile Hassaslaştırılmış Ba2P2O7 Katalizörlüğünde Sudan Fotokatalitik Hidrojen Üretimi

Yıl 2025, Cilt: 7 Sayı: 1, 15 - 24, 30.04.2025
https://doi.org/10.46740/alku.1485824

Öz

Bu çalışmada, Baryum pirofosfat (Ba2P2O7) katalizörü Eosin-Y (EY) boyar maddesi ile hassaslaştırılarak sudan fotokatalitik hidrojen üretimindeki aktivitesi incelenmiştir. Burada Ba2P2O7 katalizörü, trietanolamin (TEOA) elektron vericisi varlığında ve görünür bölge ışığı altında 2.23 mmol g-1 hidrojen üretimi göstermiştir. Bununla birlikte sistemin hidrojen üretim aktivitesini arttırmak için ortama kloroplatinik asit (H2PtCl6) ilave edildiğinde reaksiyon ortamında katalizör yüzeyinde fotodepozisyon yoluyla Pt yardımcı katalizörü oluşarak 8 saatte 18.47 mmol g-1 hidrojen üretim aktivitesine ulaşılmıştır. Bu sonuçlar, uyarılmış EY molekülleri ile Ba2P2O7 arasında verimli elektron transferinin sağlandığını göstermektedir. EY'nin Ba2P2O7 katalizörü üzerindeki adsorpsiyonu ile görünür bölge ışığı karşısında daha fazla fotouyarılmış elektronlar oluşturarak hidrojen aktivitesini teşvik etmektedir. Ayrıca Pt yardımcı katalizörü, fotouyarılmış yük ayrım verimini arttırarak hidrojen üretimini desteklemektedir.

Etik Beyan

Derginizin “Bilimsel Araştırma Yayın Politikası” olarak belirttiği maddelere göre; Sistemde bilgileri yer almakta olan araştırmamın klinik ve deneysel insan ve hayvanlar üzerindeki çalışmaları içermemesi sebebiyle etik kurul izni gerektirmeyen çalışmalar arasında yer aldığını beyan ederim.

Destekleyen Kurum

-

Proje Numarası

-

Teşekkür

Değerli katkılarından dolayı ve laboratuvar cihazlarının kullanımı konusunda destekleri için Karamanoğlu Mehmetbey Üniversitesi’nden öğretim üyesi Doç. Dr. Adem SARILMAZ ve Prof. Dr. Faruk ÖZEL’e ve Selçuk Üniversitesi’nden öğretim üyesi Prof. Dr. İmren HATAY PATIR’a teşekkürlerimi sunarım.

Kaynakça

  • [1] D. J. Wuebbles and A. K. Jain, "Concerns about climate change and the role of fossil fuel use," Fuel Processing Technology, vol. 71, no. 1, pp. 99-119, June 2001, doi: https://doi.org/10.1016/S0378-3820(01)00139-4.
  • [2] S. Kılıç Depren, M. T. Kartal, N. Çoban Çelikdemir, and Ö. Depren, "Energy consumption and environmental degradation nexus: A systematic review and meta-analysis of fossil fuel and renewable energy consumption," Ecological Informatics, vol. 70, p. 101747, Sep 2022, doi: https://doi.org/10.1016/j.ecoinf.2022.101747.
  • [3] Y. Zhang et al., "Photocatalytic Hydrogen Evolution via Water Splitting: A Short Review," Catalysts, vol. 8, no. 12, p. 655, Oct. 2018, doi: https://doi.org/10.3390/catal8120655.
  • [4] A. Fujishima and K. Honda, "Electrochemical photolysis of water at a semiconductor electrode," Nature, vol. 238, no. 5358, pp. 37-38, July 1972.
  • [5] W. Zhao et al., "Recent advances in photocatalytic hydrogen evolution with high-performance catalysts without precious metals," Renewable and Sustainable Energy Reviews, vol. 132, p. 110040, Oct. 2020, doi: https://doi.org/10.1016/j.rser.2020.110040.
  • [6] J. H. Kim, D. Hansora, P. Sharma, J.-W. Jang, and J. S. Lee, "Toward practical solar hydrogen production–an artificial photosynthetic leaf-to-farm challenge," Chemical Society Reviews, vol. 48, no. 7, pp. 1908-1971, Mar. 2019, doi: https://doi.org/10.1039/C8CS00699G
  • [7] Y. Sun et al., "Eosin Y-sensitized partially oxidized Ti3C2 MXene for photocatalytic hydrogen evolution," Catalysis Science & Technology, vol. 9, no. 2, pp. 310-315, Nov. 2019, doi: https://doi.org/10.1039/C8CY02240B.
  • [8] A. T. Montoya and E. G. Gillan, "Enhanced photocatalytic hydrogen evolution from transition-metal surface-modified TiO2," ACS Omega, vol. 3, no. 3, pp. 2947-2955, Mar. 2018, doi: https://doi.org/10.1021/acsomega.7b02021.
  • [9] A. H. Jawhari, N. Hasan, I. A. Radini, K. Narasimharao, and M. A. Malik, "Noble Metals Deposited LaMnO3 Nanocomposites for Photocatalytic H2 Production," Nanomaterials, vol. 12, no. 17, p. 2985, Aug. 2022. doi: https://www.mdpi.com/2079-4991/12/17/2985.
  • [10] D. Wang and X.-Q. Gong, "Function-oriented design of robust metal cocatalyst for photocatalytic hydrogen evolution on metal/titania composites," Nature Communications, vol. 12, no. 1, p. 158, Jan. 2021, doi: https://doi.org/10.1038/s41467-020-20464-x.
  • [11] Q. Zhu, Z. Xu, B. Qiu, M. Xing, and J. Zhang, "Emerging Cocatalysts on g-C3N4 for Photocatalytic Hydrogen Evolution," Small, vol. 17, no. 40, p. 2101070, July 2021, doi: https://doi.org/10.1002/smll.202101070.
  • [12] L. Wang, M. Xu, R. Sheng, L. Liu, and D. Jia, "Microwave assisted co-precipitation synthesis and photoluminescence characterization of spherical Sr2P2O7:Ce3+, Tb3+ phosphors," Journal of Alloys and Compounds, vol. 579, pp. 343-347, Dec. 2013, doi: https://doi.org/10.1016/j.jallcom.2013.06.085.
  • [13] B. Wang, Q. Ren, O. Hai, and X. Wu, "Luminescence properties and energy transfer in Tb3+ and Eu3+ co-doped Ba2P2O7 phosphors," RSC Advances, vol. 7, no. 25, pp. 15222-15227, Mar. 2017, doi: 10.1039/C6RA28122B.
  • [14] Y. Xiao, J. Lee, A. Yu, and Z. Liu, "Electrochemical Performance of Amorphous and Crystalline Sn2P2O7 Anodes in Secondary Lithium Batteries," Journal of the Electrochemical Society, vol. 146, no. 10, p. 3623, 1999, doi: 10.1149/1.1392524.
  • [15] Y. Uebou, S. Okada, M. Egashira, and J.-I. Yamaki, "Cathode properties of pyrophosphates for rechargeable lithium batteries," Solid State Ionics, vol. 148, no. 3-4, pp. 323-328, June 2002, doi: https://doi.org/10.1016/S0167-2738(02)00069-3.
  • [16] T. Zhao, M. Yan, Y. Pu, and D. Zhu, "Preparation and luminescence properties of Ba2P2O7:Dy3+, Ce3+ phosphors," Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 299, p. 122874, Oct. 2023, doi: https://doi.org/10.1016/j.saa.2023.122874.
  • [17] X. Li et al., "Sustainable Production of 2,3-Pentanedione: Catalytic Performance of Ba2P2O7 Doped with Cs for Vapor-Phase Condensation of Lactic Acid," Industrial & Engineering Chemistry Research, vol. 56, no. 49, pp. 14437-14446, Dec. 2017, doi: 10.1021/acs.iecr.7b03595.
  • [18] C. Rosticher, B. Viana, T. Maldiney, C. Richard, and C. Chanéac, "Persistent luminescence of Eu, Mn, Dy doped calcium phosphates for in-vivo optical imaging," Journal of Luminescence, vol. 170, pp. 460-466, Feb. 2016, doi: https://doi.org/10.1016/j.jlumin.2015.07.024.
  • [19] R. Pang, C. Li, S. Zhang, and Q. Su, "Luminescent properties of a new blue long-lasting phosphor Ca2P2O7: Eu2+, Y3+," Materials Chemistry and Physics, vol. 113, no. 1, pp. 215-218, Jan. 2009, doi: https://doi.org/10.1016/j.matchemphys.2008.07.061.
  • [20] B. Wulan, S. Yi, S. Li, Y. Duan, J. Yan and Q. Jiang, "Amorphous nickel pyrophosphate modified graphitic carbon nitride: an efficient photocatalyst for hydrogen generation from water splitting," Applied Catalysis B: Environmental, vol. 231, 43-50, Sep. 2018, doi: https://doi.org/10.1016/j.apcatb.2018.02.045.
  • [21] L. Gao, C. Weng, Y. Wang, X. Lv, J. Ren, Z. Yuan, "Defect-rich cobalt pyrophosphate hybrids decorated Cd0.5Zn0.5S for efficient photocatalytic hydrogen evolution: Defect and interface engineering," Journal of Colloid and Interface Science, vol. 606, 544-555, Jan. 2022, doi: https://doi.org/10.1016/j.jcis.2021.08.041.
  • [22] Ö. Sevgili, F. Özel, A. Ruşen, E. Yiğit, and İ. Orak, "The surface and electrical properties of the Al/Ba2P2O7/p-Si heterojunctions in wide range of temperature and frequency," Surfaces and Interfaces, vol. 28, p. 101637, Feb. 2022, doi: https://doi.org/10.1016/j.surfin.2021.101637.
  • [23] A. A. ElBelghitti, A. Elmarzouki, A. Boukhari and E. M. Holt, "σ-Dibarium Pyrophosphate," Acta Crystallographica Section C, vol. C51, p. 1478-1480, Aug. 1995, doi: https://doi.org/10.1107/S0108270195001739.
  • [24] T. Zhao, M. Yan, Y. Pu, D. Zhu, "Preparation and luminescence properties of Ba2P2O7:Dy3+, Ce3+ phosphors," Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 299, Oct. 2023, doi: https://doi.org/10.1016/j.saa.2023.122874
  • [25] F. Ozel et al., "Production of microstructured BaZrO3 and Ba2P2O7-based polymer shields for protection against ionizing photons," Journal of Physics and Chemistry of Solids, vol. 158, p. 110238, Nov. 2021, doi: https://doi.org/10.1016/j.jpcs.2021.110238.
  • [26] G. Yanalak et al., "Ternary nanocomposites of mesoporous graphitic carbon nitride/black phosphorus/gold nanoparticles (mpg-CN/BP-Au) for photocatalytic hydrogen evolution and electrochemical sensing of paracetamol," Applied Surface Science, vol. 557, p. 149755, Aug. 2021, doi: https://doi.org/10.1016/j.apsusc.2021.149755.
  • [27] I. Sargin, G. Yanalak, G. Arslan, and I. H. Patir, "Green synthesized carbon quantum dots as TiO2 sensitizers for photocatalytic hydrogen evolution," International Journal of Hydrogen Energy, vol. 44, no. 39, pp. 21781-21789,Aug. 2019, doi: https://doi.org/10.1016/j.ijhydene.2019.06.168.
  • [28] S. Altinişik and S. Koyuncu, "A Novel Viologen-Derived Covalent Organic Framework Based Metal Free Catalyst for Nitrophenol Reduction," ChemCatChem, vol. 15, no. 4, Jan. 2023, https://doi.org/10.1002/cctc.202201418.
  • [29] M. K. Gonce et al., "Photocatalytic hydrogen evolution based on Cu2ZnSnS4, Cu2ZnSnSe4 and Cu2ZnSnSe4− x Sx nanofibers," RSC Advances, vol. 5, no. 114, pp. 94025-94028, Oct. 2015, doi: https://doi.org/10.1039/C5RA18877F.
  • [30] J. Wu et al., "Boosting photocatalytic hydrogen evolution via regulating Pt chemical states," Chemical Engineering Journal, vol. 442, p. 136334, Aug. 2022, doi: https://doi.org/10.1016/j.cej.2022.136334.
  • [31] K. Kimura, T. Miwa, and M. Imamura, "The radiolysis and photolysis of methanolic solutions of Eosin. I. The γ-radiolysis of neutral and alkaline solutions," Bulletin of the Chemical Society of Japan, vol. 43, no. 5, pp. 1329-1336, May 1970, doi: https://doi.org/10.1246/bcsj.43.1329.
  • [32] R. Abe, K. Hara, K. Sayama, K. Domen, and H. Arakawa, "Steady hydrogen evolution from water on Eosin Y-fixed TiO2 photocatalyst using a silane-coupling reagent under visible light irradiation," Journal of Photochemistry and Photobiology A: Chemistry, vol. 137, no. 1, pp. 63-69, Oct. 2000, doi: https://doi.org/10.1016/S1010-6030(00)00351-8.
  • [33] C. Kong, S. Min, and G. Lu, "A novel amorphous CoSnxOy decorated graphene nanohybrid photocatalyst for highly efficient photocatalytic hydrogen evolution," Chemical Communications, vol. 50, no. 39, pp. 5037-5039, Mar. 2014, doi: 10.1039/C4CC00547C.
  • [34] C. Kong, S. Min, and G. Lu, "Robust Pt–Sn alloy decorated graphene nanohybrid cocatalyst for photocatalytic hydrogen evolution," Chemical Communications, vol. 50, no. 66, pp. 9281-9283, June 2014, doi: 10.1039/C4CC03711A.
  • [35] G. Zhou et al., "Remarkably enhanced hydrogen evolution of g-C3N4 nanosheet under simulated sunlight via AgPt alloy co-catalyst with low amount of Pt," Journal of Cleaner Production, vol. 434, p. 139950, Jan.2024, doi: https://doi.org/10.1016/j.jclepro.2023.139950.
Toplam 35 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Kataliz ve Reaksiyon Mekanizmaları, Nanokimya
Bölüm Makaleler
Yazarlar

Gizem Yıldız 0000-0001-9845-8076

Proje Numarası -
Yayımlanma Tarihi 30 Nisan 2025
Gönderilme Tarihi 17 Mayıs 2024
Kabul Tarihi 23 Aralık 2024
Yayımlandığı Sayı Yıl 2025 Cilt: 7 Sayı: 1

Kaynak Göster

APA Yıldız, G. (2025). Eosin-Y ile Hassaslaştırılmış Ba2P2O7 Katalizörlüğünde Sudan Fotokatalitik Hidrojen Üretimi. ALKÜ Fen Bilimleri Dergisi, 7(1), 15-24. https://doi.org/10.46740/alku.1485824
AMA Yıldız G. Eosin-Y ile Hassaslaştırılmış Ba2P2O7 Katalizörlüğünde Sudan Fotokatalitik Hidrojen Üretimi. ALKÜ Fen Bilimleri Dergisi. Nisan 2025;7(1):15-24. doi:10.46740/alku.1485824
Chicago Yıldız, Gizem. “Eosin-Y ile Hassaslaştırılmış Ba2P2O7 Katalizörlüğünde Sudan Fotokatalitik Hidrojen Üretimi”. ALKÜ Fen Bilimleri Dergisi 7, sy. 1 (Nisan 2025): 15-24. https://doi.org/10.46740/alku.1485824.
EndNote Yıldız G (01 Nisan 2025) Eosin-Y ile Hassaslaştırılmış Ba2P2O7 Katalizörlüğünde Sudan Fotokatalitik Hidrojen Üretimi. ALKÜ Fen Bilimleri Dergisi 7 1 15–24.
IEEE G. Yıldız, “Eosin-Y ile Hassaslaştırılmış Ba2P2O7 Katalizörlüğünde Sudan Fotokatalitik Hidrojen Üretimi”, ALKÜ Fen Bilimleri Dergisi, c. 7, sy. 1, ss. 15–24, 2025, doi: 10.46740/alku.1485824.
ISNAD Yıldız, Gizem. “Eosin-Y ile Hassaslaştırılmış Ba2P2O7 Katalizörlüğünde Sudan Fotokatalitik Hidrojen Üretimi”. ALKÜ Fen Bilimleri Dergisi 7/1 (Nisan2025), 15-24. https://doi.org/10.46740/alku.1485824.
JAMA Yıldız G. Eosin-Y ile Hassaslaştırılmış Ba2P2O7 Katalizörlüğünde Sudan Fotokatalitik Hidrojen Üretimi. ALKÜ Fen Bilimleri Dergisi. 2025;7:15–24.
MLA Yıldız, Gizem. “Eosin-Y ile Hassaslaştırılmış Ba2P2O7 Katalizörlüğünde Sudan Fotokatalitik Hidrojen Üretimi”. ALKÜ Fen Bilimleri Dergisi, c. 7, sy. 1, 2025, ss. 15-24, doi:10.46740/alku.1485824.
Vancouver Yıldız G. Eosin-Y ile Hassaslaştırılmış Ba2P2O7 Katalizörlüğünde Sudan Fotokatalitik Hidrojen Üretimi. ALKÜ Fen Bilimleri Dergisi. 2025;7(1):15-24.