Araştırma Makalesi
BibTex RIS Kaynak Göster

Recovery of Hydrogen from Sodium Borhydride Hydrolysis with Co-Ni-B Catalyst and Kinetic Properties

Yıl 2025, Cilt: 7 Sayı: 3, 217 - 229, 31.12.2025
https://doi.org/10.46740/alku.1530391

Öz

In the literature, the use of catalytically active and low- cost catalysts is preferred for the hydrolysis of boron hydrides and on demand hydrogen production in the presence of a catalyst. In this study, the effects of Co-Ni-B catalyst synthesized in ethanol medium on sodium borohydride hydrolysis kinetics, optimum Co/N mole rations, NaOH, NaBH4 concentrations in the solution, amount of catalyst and different temperatures were investigated. The initial hydrogen production rate, which showing the activity of the produced Co-Ni-B catalyst against sodium borohydride hydrolysis, was found to be 6491.6 mL/g.dk. at 30°C hydrolysis sodium values of borohydride obtained at different temperatures in the presence of Co-Ni-B catalyst n. When the degree rate mechanism was used, the reaction rate order was 0.9 and activation energy value calculated as 22.850 kJ/mol The characterization of the Co-Ni-B catalyst, which is produced in the presence of ethyl alcohol and is very active in sodium borohydride hydrolysis was performed with SEM, EDS device.

Proje Numarası

(2022 SİÜ EĞT. 021)

Kaynakça

  • [1] Ö. Metin, Ş. Şahin, and S. Özkar, “Water-soluble poly (4-styrenesulfonic acid-co-maleic acid) stabilized ruthenium (0) and palladium (0) nanoclusters as highly active catalysts in hydrogen generation from the hydrolysis of ammonia–borane,” Int. J. Hydrogen Energy, vol. 34, no. 15, pp. 6304–6313, 2009.
  • [2] M. S. İzgi̇, Ö. Şahi̇n, E. Onat, and S. Horoz, “Effect of co-B catalyst synthesized in methanol on the hydrolysis of sodium borohydride,” J. Inst. Sci. Technol., vol. 7, no. 4, pp. 151–160, 2017.
  • [3] F. A. Celik et al., “Hydrogen production mechanism and catalytic productivity of Ni-X@g-C3N4 (X = precious and non-precious promoter metals) catalysts from KBH4 hydrolysis under stress loading and atmospheric pressure: Experimental analysis and molecular dynamics approach,” Diam. Relat. Mater., vol. 149, no. 111582, 2024.
  • [4] J.-X. Kang, T.-W. Chen, D.-F. Zhang, and L. Guo, “PtNiAu trimetallic nanoalloys enabled by a digestive-assisted process as highly efficient catalyst for hydrogen generation,” Nano Energy, vol. 23, pp. 145–152, 2016.
  • [5] U. Bhattarai, T. Maraseni, and A. Apan, “Assay of renewable energy transition: A systematic literature review,” Sci. Total Environ., vol. 833, p. 155159, 2022.
  • [6] Y. Bu et al., “Catalytic hydrogen evolution of NaBH4 hydrolysis by cobalt nanoparticles supported on bagasse-derived porous carbon,” Nanomaterials (Basel), vol. 11, no. 12, p. 3259, 2021.
  • [7] N. Patel, R. Fernandes, and A. Miotello, “Promoting effect of transition metal-doped Co–B alloy catalysts for hydrogen production by hydrolysis of alkaline NaBH4 solution,” J. Catal., vol. 271, no. 2, pp. 315–324, 2010.
  • [8] S. S. Muir and X. Yao, “Progress in sodium borohydride as a hydrogen storage material: Development of hydrolysis catalysts and reaction systems,” Int. J. Hydrogen Energy, vol. 36, no. 10, pp. 5983–5997, 2011.
  • [9] L. Wang, Z. Li, Y. Zhang, T. Zhang, and G. Xie, “Hydrogen generation from alkaline NaBH4 solution using electroless-deposited Co–Ni–W–P/γ-Al2O3 as catalysts,” J. Alloys Compd., vol. 702, pp. 649–658, 2017.
  • [10] F. Wang, Y. Zhang, Y. Luo, Y. Wang, and H. Zhu, “Preparation of dandelion-like Co–Mo–P/CNTs-Ni foam catalyst and its performance in hydrogen production by alcoholysis of sodium borohydride,” Int. J. Hydrogen Energy, vol. 45, no. 55, pp. 30443–30454, 2020.
  • [11] E. Onat, M. S. İzgi, Ö. Şahin, and C. Saka, “Nickel/nickel oxide nanocomposite particles dispersed on carbon quantum dot from caffeine for hydrogen release by sodium borohydride hydrolysis: Performance and mechanism,” Diam. Relat. Mater., vol. 141, p. 110704, 2024.
  • [12] H. J. Kim et al., “Hydrogen generation from aqueous acid-catalyzed hydrolysis of sodium borohydride,” Int. J. Hydrogen Energy, vol. 35, no. 22, pp. 12239–12245, 2010.
  • [13] A. Kantürk Figen, “Dehydrogenation characteristics of ammonia borane via boron-based catalysts (Co–B, Ni–B, Cu–B) under different hydrolysis conditions,” Int. J. Hydrogen Energy, vol. 38, no. 22, pp. 9186–9197, 2013.
  • [14] Ö. Şahi̇n, D. Kilinç, and C. Saka, “Hydrogen production by catalytic hydrolysis of sodium borohydride with a bimetallic solid-state Co-Fe complex catalyst,” Sep. Sci. Technol., 2015.
  • [15] Y. Wei et al., “Hydrogen generation from alkaline NaBH4 solution using a dandelion-like Co–Mo–B catalyst supported on carbon cloth,” Int. J. Hydrogen Energy, vol. 42, no. 15, pp. 9945–9951, 2017.
  • [16] E. Onat, S. Ekinci, Ö. Şahin, and M. S. İzgi, “Effective and environmentally friendly Co nanocatalyst on sodium borohydride hydrolysis in different solvents,” Int. J. Hydrogen Energy, vol. 142, pp. 864–874, 2025.
  • [17] E. Onat, F. A. Celik, E. Karabulut, and M. S. İzgi, “High availability and outstanding catalytic activity in sodium borohydride hydrolytic dehydrogenation of CQD/GO@Co catalyst by green synthesis: Experimental and computational perspective,” Int. J. Hydrogen Energy, vol. 83, pp. 903–915, 2024.
  • [18] N. Patel and A. Miotello, “Progress in Co–B related catalyst for hydrogen production by hydrolysis of boron-hydrides: A review and the perspectives to substitute noble metals,” Int. J. Hydrogen Energy, vol. 40, no. 3, pp. 1429–1464, 2015.
  • [19] E. Onat, “Synthesis of a cobalt catalyst supported by graphene oxide modified perlite and its application on the hydrolysis of sodium borohydride,” Synth. Met., vol. 306, p. 117621, 2024.
  • [20] M. S. İzgi, E. Onat, H. Ç. Kazici, and Ö. Şahin, “Hydrogen production through the cooperation of a catalyst synthesized in ethanol medium and the effect of the plasma,” Energy Sources Recovery Util. Environ. Eff., vol. 45, no. 3, pp. 8271–8284, 2023.
  • [21] E. Onat, M. S. İzgi, Ö. Şahin, and S. Ekinci, “Enhanced hydrogen production from sucrose-derived carbon quantum dots-supported Ru catalysts: A comparative study of KBH4 and NaBH4 hydrolysis,” Renew. Energy, vol. 254, p. 123692, 2025.
  • [22] G. Bozkurt, A. Özer, and A. B. Yurtcan, “Hydrogen generation from sodium borohydride with Ni and Co based catalysts supported on Co3O4,” Int. J. Hydrogen Energy, vol. 43, no. 49, pp. 22205–22214, 2018.
  • [23] Y. Wei et al., “Fast hydrogen generation from NaBH4 hydrolysis catalyzed by nanostructured Co–Ni–B catalysts,” Int. J. Hydrogen Energy, vol. 42, no. 9, pp. 6072–6079, 2017.
  • [24] M. H. Loghmani and A. F. Shojaei, “Hydrogen generation from hydrolysis of sodium borohydride by cubic Co–La–Zr–B nanoparticles as novel catalyst,” Int. J. Hydrogen Energy, vol. 38, no. 25, pp. 10470–10478, 2013.
  • [25] Y. Zhao et al., “Hydrogen generation by hydrolysis of alkaline NaBH4 solution on Co–Mo–Pd–B amorphous catalyst with efficient catalytic properties,” J. Power Sources, vol. 207, pp. 120–126, 2012.
  • [26] L. Wang, Z. Li, P. Zhang, G. Wang, and G. Xie, “Hydrogen generation from alkaline NaBH4 solution using Co–Ni–Mo–P/γ-Al2O3 catalysts,” Int. J. Hydrogen Energy, vol. 41, no. 3, pp. 1468–1476, 2016.
  • [27] S. Ekinci and E. Onat, “A novel and highly active Co‐Cr@Perlite/GO catalyst for sustainable hydrogen production via potassium borohydride hydrolysis,” Appl. Organomet. Chem., vol. 39, no. 8, 2025.
  • [28] Y. P. Wang et al., “Ultrafine amorphous Co–Fe–B catalysts for the hydrolysis of NaBH4 solution to generate hydrogen for PEMFC,” Fuel Cells (Weinh.), vol. 10, no. 1, pp. 132–138, 2010.
  • [29] M. S. İzgi, O. Baytar, Ö. Şahin, and H. Ç. Kazıcı, “CeO2 supported multimetallic nano materials as an efficient catalyst for hydrogen generation from the hydrolysis of NaBH4,” Int. J. Hydrogen Energy, vol. 45, no. 60, pp. 34857–34866, 2020.
  • [30] Y. Wang et al., “Cobalt–copper–boron nanoparticles as catalysts for the efficient hydrolysis of alkaline sodium borohydride solution,” Int. J. Hydrogen Energy, vol. 45, no. 16, pp. 9845–9853, 2020.
  • [31] E. Onat, S. Horoz, Ö. Şahin, and M. S. İzgi, “Revolutionary carbon quantum dot supported-Co catalyst for record-breaking hydrogen production rate,” J. Aust. Ceram. Soc., vol. 61, no. 1, pp. 117–126, 2025.
  • [32] Ö. Şahin, M. S. İzgi, S. Tayboğa, and H. Ç. Kazıcı, “Effect of plasma pretreatment of Co–Cu–B catalyst on hydrogen generation from sodium borohydride methanolysis,” React. Kinet. Mech. Catal., vol. 133, no. 2, pp. 851–861, 2021.
  • [33] J. Guo, Y. Hou, B. Li, and Y. Liu, “Novel Ni–Co–B hollow nanospheres promote hydrogen generation from the hydrolysis of sodium borohydride,” Int. J. Hydrogen Energy, vol. 43, no. 32, pp. 15245–15254, 2018.
  • [34] Y. Liang, P. Wang, and H.-B. Dai, “Hydrogen bubbles dynamic template preparation of a porous Fe–Co–B/Ni foam catalyst for hydrogen generation from hydrolysis of alkaline sodium borohydride solution,” J. Alloys Compd., vol. 491, no. 1–2, pp. 359–365, 2010.
  • [35] Y. Wang et al., “Hydrogen generation from alkaline NaBH4 solution using nanostructured Co–Ni–P catalysts,” Int. J. Hydrogen Energy, vol. 42, no. 26, pp. 16529–16537, 2017.
  • [36] X.-L. Ding, X. Yuan, C. Jia, and Z.-F. Ma, “Hydrogen generation from catalytic hydrolysis of sodium borohydride solution using Cobalt–Copper–Boride (Co–Cu–B) catalysts,” Int. J. Hydrogen Energy, vol. 35, no. 20, pp. 11077–11084, 2010.
  • [37] A. A. Vernekar, S. T. Bugde, and S. Tilve, “Sustainable hydrogen production by catalytic hydrolysis of alkaline sodium borohydride solution using recyclable Co–Co2B and Ni–Ni3B nanocomposites,” Int. J. Hydrogen Energy, vol. 37, no. 1, pp. 327–334, 2012.
  • [38] İ. Kıpçak and E. Kalpazan, “Efficient and stable co-B catalyst supported on natural zeolite for hydrogen generation from hydrolysis of alkaline NaBH4 solution,” Catal. Lett., vol. 154, no. 9, pp. 5006–5021, 2024.
  • [39] Ö. Şahin, S. Ekinci, M. S. İzgi, and E. Onat, “Effect of different solvents on hydrogen production from hydrolysis of potassium borohydride with a new and active Ni-based catalyst synthesized by green synthesis,” Int. J. Hydrogen Energy, vol. 143, pp. 1098–1107, 2025.
  • [40] E. Onat and S. Ekinci, “Study of the sodium borohydride hydrolysis reaction’s performance via a kaolin-supported Co-Cr bimetallic catalyst,” Afyon Kocatepe Univ. J. Sci. Eng., vol. 24, no. 5, pp. 1061–1070, 2024.
  • [41] S. Ekinci and E. Onat, “Activated carbon assisted cobalt catalyst for hydrogen production: synthesis and characterization,” Balıkesir Üniv. Fen Bilim. Enst. Derg., vol. 26, no. 2, pp. 455–471, 2024.

Co-Ni-B Katalizörü ile Sodyum Borhidrür Hidrolizinden Hidrojenin Elde Edilmesi ve Kinetik Özellikler

Yıl 2025, Cilt: 7 Sayı: 3, 217 - 229, 31.12.2025
https://doi.org/10.46740/alku.1530391

Öz

Literatürde bor hidrürlerin hidrolizi ile katalizör varlığında isteğe bağlı hidrojen üretimi için katalitik olarak aktif ve düşük maliyetli katalizörlerin kullanımı tercih edilmektedir. Bu çalışmada, etanol ortamında sentezlenen Co-Ni-B katalizörü, sodyum bor hidrür hidroliz kinetiğine etkileri, optimum Ni/Co mol oranları, çözeltideki NaOH ve NaBH4 konsantrasyonları, katalizör miktarı ve farklı sıcaklıklara bağlı olarak incelenmiştir. Üretilen Co-Ni-B katalizörünün sodyum bor hidrür hidrolizine karşı aktivitesini gösteren başlangıç hidrojen üretim hızı 30 oC sıcaklıkta, 6491.6 mL/gdk. olarak bulunmuştur. Co-Ni-B katalizörü varlığında farklı sıcaklıklarda elde edilen sodyum bor hidrür hidroliz değerleri n. derece hız mekanizması kullanıldığında reaksiyon hız mertebesinin 0.9 ve aktivasyon enerji değeri 22.850 kJ/mol olarak hesaplanmıştır. Etil alkol varlığında üretilen ve sodyum bor hidrür hidrolizinde oldukça aktif olan Co-Ni-B katalizörünün karakterizasyonu SEM, EDS cihazları ile yapılmıştır.

Etik Beyan

Herhangi bir kurumda izin alma gereği duyulmamıştır.

Destekleyen Kurum

BAP Koordinasyon Birimi

Proje Numarası

(2022 SİÜ EĞT. 021)

Teşekkür

Bu çalışma, Siirt Üniversitesi Bilimsel Araştırma Projeleri (BAP) Koordinasyon Birimi tarafından desteklenmiştir

Kaynakça

  • [1] Ö. Metin, Ş. Şahin, and S. Özkar, “Water-soluble poly (4-styrenesulfonic acid-co-maleic acid) stabilized ruthenium (0) and palladium (0) nanoclusters as highly active catalysts in hydrogen generation from the hydrolysis of ammonia–borane,” Int. J. Hydrogen Energy, vol. 34, no. 15, pp. 6304–6313, 2009.
  • [2] M. S. İzgi̇, Ö. Şahi̇n, E. Onat, and S. Horoz, “Effect of co-B catalyst synthesized in methanol on the hydrolysis of sodium borohydride,” J. Inst. Sci. Technol., vol. 7, no. 4, pp. 151–160, 2017.
  • [3] F. A. Celik et al., “Hydrogen production mechanism and catalytic productivity of Ni-X@g-C3N4 (X = precious and non-precious promoter metals) catalysts from KBH4 hydrolysis under stress loading and atmospheric pressure: Experimental analysis and molecular dynamics approach,” Diam. Relat. Mater., vol. 149, no. 111582, 2024.
  • [4] J.-X. Kang, T.-W. Chen, D.-F. Zhang, and L. Guo, “PtNiAu trimetallic nanoalloys enabled by a digestive-assisted process as highly efficient catalyst for hydrogen generation,” Nano Energy, vol. 23, pp. 145–152, 2016.
  • [5] U. Bhattarai, T. Maraseni, and A. Apan, “Assay of renewable energy transition: A systematic literature review,” Sci. Total Environ., vol. 833, p. 155159, 2022.
  • [6] Y. Bu et al., “Catalytic hydrogen evolution of NaBH4 hydrolysis by cobalt nanoparticles supported on bagasse-derived porous carbon,” Nanomaterials (Basel), vol. 11, no. 12, p. 3259, 2021.
  • [7] N. Patel, R. Fernandes, and A. Miotello, “Promoting effect of transition metal-doped Co–B alloy catalysts for hydrogen production by hydrolysis of alkaline NaBH4 solution,” J. Catal., vol. 271, no. 2, pp. 315–324, 2010.
  • [8] S. S. Muir and X. Yao, “Progress in sodium borohydride as a hydrogen storage material: Development of hydrolysis catalysts and reaction systems,” Int. J. Hydrogen Energy, vol. 36, no. 10, pp. 5983–5997, 2011.
  • [9] L. Wang, Z. Li, Y. Zhang, T. Zhang, and G. Xie, “Hydrogen generation from alkaline NaBH4 solution using electroless-deposited Co–Ni–W–P/γ-Al2O3 as catalysts,” J. Alloys Compd., vol. 702, pp. 649–658, 2017.
  • [10] F. Wang, Y. Zhang, Y. Luo, Y. Wang, and H. Zhu, “Preparation of dandelion-like Co–Mo–P/CNTs-Ni foam catalyst and its performance in hydrogen production by alcoholysis of sodium borohydride,” Int. J. Hydrogen Energy, vol. 45, no. 55, pp. 30443–30454, 2020.
  • [11] E. Onat, M. S. İzgi, Ö. Şahin, and C. Saka, “Nickel/nickel oxide nanocomposite particles dispersed on carbon quantum dot from caffeine for hydrogen release by sodium borohydride hydrolysis: Performance and mechanism,” Diam. Relat. Mater., vol. 141, p. 110704, 2024.
  • [12] H. J. Kim et al., “Hydrogen generation from aqueous acid-catalyzed hydrolysis of sodium borohydride,” Int. J. Hydrogen Energy, vol. 35, no. 22, pp. 12239–12245, 2010.
  • [13] A. Kantürk Figen, “Dehydrogenation characteristics of ammonia borane via boron-based catalysts (Co–B, Ni–B, Cu–B) under different hydrolysis conditions,” Int. J. Hydrogen Energy, vol. 38, no. 22, pp. 9186–9197, 2013.
  • [14] Ö. Şahi̇n, D. Kilinç, and C. Saka, “Hydrogen production by catalytic hydrolysis of sodium borohydride with a bimetallic solid-state Co-Fe complex catalyst,” Sep. Sci. Technol., 2015.
  • [15] Y. Wei et al., “Hydrogen generation from alkaline NaBH4 solution using a dandelion-like Co–Mo–B catalyst supported on carbon cloth,” Int. J. Hydrogen Energy, vol. 42, no. 15, pp. 9945–9951, 2017.
  • [16] E. Onat, S. Ekinci, Ö. Şahin, and M. S. İzgi, “Effective and environmentally friendly Co nanocatalyst on sodium borohydride hydrolysis in different solvents,” Int. J. Hydrogen Energy, vol. 142, pp. 864–874, 2025.
  • [17] E. Onat, F. A. Celik, E. Karabulut, and M. S. İzgi, “High availability and outstanding catalytic activity in sodium borohydride hydrolytic dehydrogenation of CQD/GO@Co catalyst by green synthesis: Experimental and computational perspective,” Int. J. Hydrogen Energy, vol. 83, pp. 903–915, 2024.
  • [18] N. Patel and A. Miotello, “Progress in Co–B related catalyst for hydrogen production by hydrolysis of boron-hydrides: A review and the perspectives to substitute noble metals,” Int. J. Hydrogen Energy, vol. 40, no. 3, pp. 1429–1464, 2015.
  • [19] E. Onat, “Synthesis of a cobalt catalyst supported by graphene oxide modified perlite and its application on the hydrolysis of sodium borohydride,” Synth. Met., vol. 306, p. 117621, 2024.
  • [20] M. S. İzgi, E. Onat, H. Ç. Kazici, and Ö. Şahin, “Hydrogen production through the cooperation of a catalyst synthesized in ethanol medium and the effect of the plasma,” Energy Sources Recovery Util. Environ. Eff., vol. 45, no. 3, pp. 8271–8284, 2023.
  • [21] E. Onat, M. S. İzgi, Ö. Şahin, and S. Ekinci, “Enhanced hydrogen production from sucrose-derived carbon quantum dots-supported Ru catalysts: A comparative study of KBH4 and NaBH4 hydrolysis,” Renew. Energy, vol. 254, p. 123692, 2025.
  • [22] G. Bozkurt, A. Özer, and A. B. Yurtcan, “Hydrogen generation from sodium borohydride with Ni and Co based catalysts supported on Co3O4,” Int. J. Hydrogen Energy, vol. 43, no. 49, pp. 22205–22214, 2018.
  • [23] Y. Wei et al., “Fast hydrogen generation from NaBH4 hydrolysis catalyzed by nanostructured Co–Ni–B catalysts,” Int. J. Hydrogen Energy, vol. 42, no. 9, pp. 6072–6079, 2017.
  • [24] M. H. Loghmani and A. F. Shojaei, “Hydrogen generation from hydrolysis of sodium borohydride by cubic Co–La–Zr–B nanoparticles as novel catalyst,” Int. J. Hydrogen Energy, vol. 38, no. 25, pp. 10470–10478, 2013.
  • [25] Y. Zhao et al., “Hydrogen generation by hydrolysis of alkaline NaBH4 solution on Co–Mo–Pd–B amorphous catalyst with efficient catalytic properties,” J. Power Sources, vol. 207, pp. 120–126, 2012.
  • [26] L. Wang, Z. Li, P. Zhang, G. Wang, and G. Xie, “Hydrogen generation from alkaline NaBH4 solution using Co–Ni–Mo–P/γ-Al2O3 catalysts,” Int. J. Hydrogen Energy, vol. 41, no. 3, pp. 1468–1476, 2016.
  • [27] S. Ekinci and E. Onat, “A novel and highly active Co‐Cr@Perlite/GO catalyst for sustainable hydrogen production via potassium borohydride hydrolysis,” Appl. Organomet. Chem., vol. 39, no. 8, 2025.
  • [28] Y. P. Wang et al., “Ultrafine amorphous Co–Fe–B catalysts for the hydrolysis of NaBH4 solution to generate hydrogen for PEMFC,” Fuel Cells (Weinh.), vol. 10, no. 1, pp. 132–138, 2010.
  • [29] M. S. İzgi, O. Baytar, Ö. Şahin, and H. Ç. Kazıcı, “CeO2 supported multimetallic nano materials as an efficient catalyst for hydrogen generation from the hydrolysis of NaBH4,” Int. J. Hydrogen Energy, vol. 45, no. 60, pp. 34857–34866, 2020.
  • [30] Y. Wang et al., “Cobalt–copper–boron nanoparticles as catalysts for the efficient hydrolysis of alkaline sodium borohydride solution,” Int. J. Hydrogen Energy, vol. 45, no. 16, pp. 9845–9853, 2020.
  • [31] E. Onat, S. Horoz, Ö. Şahin, and M. S. İzgi, “Revolutionary carbon quantum dot supported-Co catalyst for record-breaking hydrogen production rate,” J. Aust. Ceram. Soc., vol. 61, no. 1, pp. 117–126, 2025.
  • [32] Ö. Şahin, M. S. İzgi, S. Tayboğa, and H. Ç. Kazıcı, “Effect of plasma pretreatment of Co–Cu–B catalyst on hydrogen generation from sodium borohydride methanolysis,” React. Kinet. Mech. Catal., vol. 133, no. 2, pp. 851–861, 2021.
  • [33] J. Guo, Y. Hou, B. Li, and Y. Liu, “Novel Ni–Co–B hollow nanospheres promote hydrogen generation from the hydrolysis of sodium borohydride,” Int. J. Hydrogen Energy, vol. 43, no. 32, pp. 15245–15254, 2018.
  • [34] Y. Liang, P. Wang, and H.-B. Dai, “Hydrogen bubbles dynamic template preparation of a porous Fe–Co–B/Ni foam catalyst for hydrogen generation from hydrolysis of alkaline sodium borohydride solution,” J. Alloys Compd., vol. 491, no. 1–2, pp. 359–365, 2010.
  • [35] Y. Wang et al., “Hydrogen generation from alkaline NaBH4 solution using nanostructured Co–Ni–P catalysts,” Int. J. Hydrogen Energy, vol. 42, no. 26, pp. 16529–16537, 2017.
  • [36] X.-L. Ding, X. Yuan, C. Jia, and Z.-F. Ma, “Hydrogen generation from catalytic hydrolysis of sodium borohydride solution using Cobalt–Copper–Boride (Co–Cu–B) catalysts,” Int. J. Hydrogen Energy, vol. 35, no. 20, pp. 11077–11084, 2010.
  • [37] A. A. Vernekar, S. T. Bugde, and S. Tilve, “Sustainable hydrogen production by catalytic hydrolysis of alkaline sodium borohydride solution using recyclable Co–Co2B and Ni–Ni3B nanocomposites,” Int. J. Hydrogen Energy, vol. 37, no. 1, pp. 327–334, 2012.
  • [38] İ. Kıpçak and E. Kalpazan, “Efficient and stable co-B catalyst supported on natural zeolite for hydrogen generation from hydrolysis of alkaline NaBH4 solution,” Catal. Lett., vol. 154, no. 9, pp. 5006–5021, 2024.
  • [39] Ö. Şahin, S. Ekinci, M. S. İzgi, and E. Onat, “Effect of different solvents on hydrogen production from hydrolysis of potassium borohydride with a new and active Ni-based catalyst synthesized by green synthesis,” Int. J. Hydrogen Energy, vol. 143, pp. 1098–1107, 2025.
  • [40] E. Onat and S. Ekinci, “Study of the sodium borohydride hydrolysis reaction’s performance via a kaolin-supported Co-Cr bimetallic catalyst,” Afyon Kocatepe Univ. J. Sci. Eng., vol. 24, no. 5, pp. 1061–1070, 2024.
  • [41] S. Ekinci and E. Onat, “Activated carbon assisted cobalt catalyst for hydrogen production: synthesis and characterization,” Balıkesir Üniv. Fen Bilim. Enst. Derg., vol. 26, no. 2, pp. 455–471, 2024.
Toplam 41 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Kataliz ve Reaksiyon Mekanizmaları
Bölüm Araştırma Makalesi
Yazarlar

Mehmet Salih Keskin 0000-0001-9862-1590

Proje Numarası (2022 SİÜ EĞT. 021)
Gönderilme Tarihi 8 Ağustos 2024
Kabul Tarihi 1 Eylül 2025
Yayımlanma Tarihi 31 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 7 Sayı: 3

Kaynak Göster

APA Keskin, M. S. (2025). Co-Ni-B Katalizörü ile Sodyum Borhidrür Hidrolizinden Hidrojenin Elde Edilmesi ve Kinetik Özellikler. ALKÜ Fen Bilimleri Dergisi, 7(3), 217-229. https://doi.org/10.46740/alku.1530391
AMA Keskin MS. Co-Ni-B Katalizörü ile Sodyum Borhidrür Hidrolizinden Hidrojenin Elde Edilmesi ve Kinetik Özellikler. ALKÜ Fen Bilimleri Dergisi. Aralık 2025;7(3):217-229. doi:10.46740/alku.1530391
Chicago Keskin, Mehmet Salih. “Co-Ni-B Katalizörü ile Sodyum Borhidrür Hidrolizinden Hidrojenin Elde Edilmesi ve Kinetik Özellikler”. ALKÜ Fen Bilimleri Dergisi 7, sy. 3 (Aralık 2025): 217-29. https://doi.org/10.46740/alku.1530391.
EndNote Keskin MS (01 Aralık 2025) Co-Ni-B Katalizörü ile Sodyum Borhidrür Hidrolizinden Hidrojenin Elde Edilmesi ve Kinetik Özellikler. ALKÜ Fen Bilimleri Dergisi 7 3 217–229.
IEEE M. S. Keskin, “Co-Ni-B Katalizörü ile Sodyum Borhidrür Hidrolizinden Hidrojenin Elde Edilmesi ve Kinetik Özellikler”, ALKÜ Fen Bilimleri Dergisi, c. 7, sy. 3, ss. 217–229, 2025, doi: 10.46740/alku.1530391.
ISNAD Keskin, Mehmet Salih. “Co-Ni-B Katalizörü ile Sodyum Borhidrür Hidrolizinden Hidrojenin Elde Edilmesi ve Kinetik Özellikler”. ALKÜ Fen Bilimleri Dergisi 7/3 (Aralık2025), 217-229. https://doi.org/10.46740/alku.1530391.
JAMA Keskin MS. Co-Ni-B Katalizörü ile Sodyum Borhidrür Hidrolizinden Hidrojenin Elde Edilmesi ve Kinetik Özellikler. ALKÜ Fen Bilimleri Dergisi. 2025;7:217–229.
MLA Keskin, Mehmet Salih. “Co-Ni-B Katalizörü ile Sodyum Borhidrür Hidrolizinden Hidrojenin Elde Edilmesi ve Kinetik Özellikler”. ALKÜ Fen Bilimleri Dergisi, c. 7, sy. 3, 2025, ss. 217-29, doi:10.46740/alku.1530391.
Vancouver Keskin MS. Co-Ni-B Katalizörü ile Sodyum Borhidrür Hidrolizinden Hidrojenin Elde Edilmesi ve Kinetik Özellikler. ALKÜ Fen Bilimleri Dergisi. 2025;7(3):217-29.