Araştırma Makalesi
BibTex RIS Kaynak Göster

DA-DA Alçaltan Dönüştürücülerin Uyumsuz Bozucu Yük Altında GDG Tabanlı Geri Adım Kontrolü

Yıl 2023, Cilt: 5 Sayı: 3, 176 - 191, 27.12.2023
https://doi.org/10.46740/alku.1396695

Öz

DC alçaltan dönüştürücüler dalgalanmayan DC yük gerilimi sağlamada kritik bir rol oynar, bununla birlikte hassas yükler altında çalışırken çeşitli parametrik belirsizliklere ve bozucu etkilere maruz kalmaktadır. Bu çalışmada alçaltan tip dönüştürücüler için genişletilmiş durum gözlemleyicisi (GDG) ile birlikte geri-adım kontrol stratejisini içeren tümleşik bir kontrol yapısı önerilmektedir. İlk olarak, sistemin genel kararlılığını sağlayan ve yük bozulmalarının bilindiği varsayılarak iç akım döngüsü referansı üretmek amacıyla bir geri-adımlama kontrol fonksiyonu oluşturulur.Daha sonra, eşleşmeyen yük akımını tahmin etmek ve bozulmayı azaltmak için geri adımlama denetleyicisi ile işbirliği yapmak üzere bir GDG tasarlanmıştır. Kontrol ve gözlemci kazançlarının seçimi, sistem dinamiklerinin doğrusal olmayan ilişkileri altında sağlanmıştır. Önerilen kontrol yapısının kesin kararlılığı, gürbüzlük analizi ile birlikte sağlanmıştır. Son olarak, önerilen kontrol yöntemi için yükün ve belirsizliklerin neden olduğu bozulmalara karşı karşılaştırmalı performansını gösteren simülasyon sonuçları verilmiştir.

Kaynakça

  • [1] Dai, P., Cauet, S., & Coirault, P. (2016). Disturbance rejection of battery/ultracapacitor hybrid energy sources. Control Engineering Practice, 54, 166–175.
  • [2] Wang, J., Li, S., Yang, J., Wu, B., & Li, Q. (2016). Finite-time disturbance observer based non-singular terminal sliding-mode control for pulse width modulation-based DCDC buck converters with mismatched load disturbances. IET Power Electronics, 9(9), 1995–2002.
  • [3] König, O., Gregorčič, G., & Jakubek, S. (2013). Model predictive control of a DC–DC converter for battery emulation. Control Engineering Practice, 21(4), 428–440.
  • [4] Zhong, Q.-C., & Hornik, T. (2013). Control of power inverters in renewable energy and smart grid integration. IEEE-Wiley Press.
  • [5] Labbe, B., Allard, B., Lin-Shi, X., & Chesneau, D. (2013). An integrated sliding-mode buck converter with switching frequency control for battery-powered applications. IEEE Transactions on Power Electronics, 28(9), 4318–4326.
  • [6] Silva-Ortigoza, R., Hernández-Guzmán, V. M., Antonio-Cruz, M., & Munoz-Carrillo, D. (2015). DC/DC Buck power converter as a smooth starter for a DC motor based on a hierarchical control. IEEE Transactions on Power Electronics, 30(2), 1076–1084.
  • [7] Chen, Z., Gao, W., Hu, J., & Ye, X. (2011). Closed-loop analysis and cascade control of a nonminimum phase boost converter. IEEE Transactions on Power Electronics, 26(4), 1237–1252.
  • [8] Walker, G. R., & Sernia, P. C. (2004). Cascaded DC-DC converter connection of photovoltaic modules. IEEE Transactions on Power Electronics, 19(4), 1130–113.
  • [9] J. Alvarez-Ramirez, G. Espinosa-Perez, and D. Noriega-Pineda, “Current- ´ mode control of DC–DC power converters: A backstepping approach,” Int. J. Robust Nonlinear Control, vol. 13, no. 5, pp. 421–442, Apr. 2003.
  • [10] C. Olalla, R. Leyva, A. E. Aroudi, and I. Queinnec, “Robust LQR control for PWM converters: An LMI approach,” IEEE Trans. Ind. Electron., vol. 56, no. 7, pp. 2548–2558, Jul. 2009.
  • [11] Q.-C. Zhong and T. Hornik, “Cascaded current–voltage control to improve the power quality for a grid-connected inverter with a local load,” IEEE Trans. Ind. Electron., vol. 60, no. 4, pp. 1344–1355, Apr. 2013.
  • [12] G. Escobar, A. Valdez, J. Leyva-Ramos, and P. Mart ´ ´ınez, “A controller for a boost converter with harmonic reduction,” IEEE Trans. Control Syst. Technol., vol. 12, no. 5, pp. 717–726, Sep. 2004.
  • [13] G. J. Jeong, I. H. Kim, and Y. I. Son, “Design of an adaptive output feedback controller for a DC/DC boost converter subject to load variation,” Int. J. Innov. Comput. Inf. Control, vol. 7, no. 2, pp. 791–803, Feb. 2011.
  • [14] J. Linares-Flores, A. H. Mendez, C. Garc ´ ´ıa-Rodr´ıguez, and H. SiraRam´ırez, “Robust nonlinear adaptive control of a boost converter via algebraic parameter identification,” IEEE Trans. Ind. Electron., vol. 61, no. 8, pp. 4105–4114, Aug. 2014.
  • [15] E. Vidal-Idiarte, C. E. Carrejo, J. Calvente, and L. Mart´ınez-Salamero, “Two-loop digital sliding mode control of DC–DC power converters based on predictive interpolation,” IEEE Trans. Ind. Electron., vol. 58, no. 6, pp. 2491–2501, Jun. 2011.
  • [16] S. Oucheriah and L. Guo, “PWM-based adaptive sliding-mode control for boost DC–DC converters,” IEEE Trans. Ind. Electron., vol. 60, no. 8, pp. 3291–3294, Aug. 2013.
  • [17] O. Lopez-Santos, L. Martinez-Salamero, G. Garcia, H. Valderrama-Blavi, and T. Sierra-Polanco, “Robust sliding-mode control design for a voltage regulated quadratic boost converter,” IEEE Trans. Power Electron., vol. 30, no. 4, pp. 2313–2327, Apr. 2015.
  • [18] L. Guo, J. Y. Hung, and R. M. Nelms, “Evaluation of DSP-based PID and fuzzy controllers for DC–DC converters,” IEEE Trans. Ind. Electron., vol. 56, no. 6, pp. 2237–2248, Jun. 2009.
  • [19] R.-J. Wai and L.-C. Shih, “Adaptive fuzzy-neural-network design for voltage tracking control of a DC–DC boost converter,” IEEE Trans. Power Electron., vol. 27, no. 4, pp. 2104–2115, Apr. 2012.
  • [20] S. E. Beid and S. Doubabi, “DSP-based implementation of fuzzy output tracking control for a boost converter,” IEEE Trans. Ind. Electron., vol. 61, no. 1, pp. 196–209, Jan. 2014.
  • [21] J. Linares-Flores, J. L. Barahona-Avalos, H. Sira-Ram´ırez, and M. A. Contreras-Ordaz, “Robust passivity-based control of a buck–boostconverter/dc-motor system: An active disturbance rejection approach,” IEEE Trans. Ind. Appl., vol. 48, no. 6, pp. 2362–2371, Nov./Dec. 2012.
  • [22] Y.-X. Wang, D.-H. Yu, and Y.-B. Kim, “Robust time-delay control for the DC–DC boost converter,” IEEE Trans. Ind. Electron., vol. 61, no. 9, pp. 4829–4837, Sep. 2014.
  • [23] M. Sitbon, S. Schacham, and A. Kuperman, “Disturbance observer based voltage regulation of current-mode-boost-converter-interfaced photovoltaic generator,” IEEE Trans. Ind. Electron., vol. 62, no. 9, pp. 5776– 5785, Sep. 2015.
  • [24] Zhang, Q., Min, R., Tong, Q., Zou, X., Liu, Z., & Shen, A. (2014). Sensorless predictive current controlled DC–DC converter with a self-correction differential current observer. IEEE Transactions on Industrial Electronics, 61(12), 6747–6757.
  • [25] Cucuzzella, M., Lazzari, R., Trip, S., Rosti, S., Sandroni, C., & Ferrara, A. (2018). Sliding mode voltage control of boost converters in DC microgrids. Control Engineering Practice, 73, 161–170.
  • [26] S. Jiang, D. Cao, Y. Li, J. Liu, and F. Z. Peng, “Low-THD, fasttransient, and cost-effective synchronous-frame repetitive controller for three-phase UPS inverters,” IEEE Trans. Power Electron., vol. 27, no. 6, pp. 2994–3005, Jun. 2012.
  • [27] Tan, S.-C., Lai, Y., Tse, C. K., & Cheung, M. K. (2006). Adaptive feedforward and feedback control schemes for sliding mode controlled power converters. IEEE Transactions on Power Electronics, 21(1), 182–192.
  • [28] I. Son and I. H. Kim, “Complementary PID controller to passivity based nonlinear control of boost converters with inductor resistance,” IEEE Trans. Control Syst. Technol., vol. 20, no. 3, pp. 826–834, May 2012.
  • [29] Kim, S.-K., & Lee, K.-B. (2015). Robust feedback-linearizing output voltage regulator for DC-DC boost converter. IEEE Transactions on Industrial Electronics, 62(11), 7127–7135.
  • [30] H. K. Khalil, Nonlinear Systems. Englewood Cliffs, NJ, USA: PrenticeHall, 2002.
  • [31] J. Alvarez-Ramirez, G. Espinosa-Perez, and D. Noriega-Pineda, “Current- ´ mode control of DC–DC power converters: A backstepping approach,” Int. J. Robust Nonlinear Control, vol. 13, no. 5, pp. 421–442, Apr. 2003.
  • [32] Huang, A.-C., & Chen, Y.-C. (2004). Adaptive multiple-surface sliding control for nonautonomous systems with mismatched uncertainties. Automatica, 40(11), 19.
  • [33] Choi, H. H. (2007). LMI-based sliding surface design for integral sliding mode control of mismatched uncertain systems. IEEE Transactions on Automatic Control, 52(4), 736– 742.
  • [34] J. Han, “From PID to active disturbance rejection control,” IEEE Trans. Ind. Electron., vol. 56, no. 3, pp. 900–906, Mar. 2009.

ESO-based Backstepping Control of DC-DC Buck Converter Under Mismatched load Disturbance

Yıl 2023, Cilt: 5 Sayı: 3, 176 - 191, 27.12.2023
https://doi.org/10.46740/alku.1396695

Öz

The DC–DC power converter play a critical role to provide stable DC output voltage, however which is subject to various uncertainties and disturbance in supplying the sensitive loads. This paper propose a composite backstepping control strategy with extended state observer (ESO) for buck converter. Firstly, a backstepping control function is constructed to derive an inner current loop reference assuming load disturbance is known, which renders global stability of the system. An ESO is designed to estimate the mismatched load current and feedforward it to the backstepping controller to obtain disturbance rejection. Quantitative selection of control and observer gains are provided under highly nonlinear relationship of system dynamics. Rigorous stability of proposed scheme are poved with analysis of robustness. Finally, simulation results illustrate the effectiveness of the proposed control scheme in the presence of load disturbance and uncertainties

Kaynakça

  • [1] Dai, P., Cauet, S., & Coirault, P. (2016). Disturbance rejection of battery/ultracapacitor hybrid energy sources. Control Engineering Practice, 54, 166–175.
  • [2] Wang, J., Li, S., Yang, J., Wu, B., & Li, Q. (2016). Finite-time disturbance observer based non-singular terminal sliding-mode control for pulse width modulation-based DCDC buck converters with mismatched load disturbances. IET Power Electronics, 9(9), 1995–2002.
  • [3] König, O., Gregorčič, G., & Jakubek, S. (2013). Model predictive control of a DC–DC converter for battery emulation. Control Engineering Practice, 21(4), 428–440.
  • [4] Zhong, Q.-C., & Hornik, T. (2013). Control of power inverters in renewable energy and smart grid integration. IEEE-Wiley Press.
  • [5] Labbe, B., Allard, B., Lin-Shi, X., & Chesneau, D. (2013). An integrated sliding-mode buck converter with switching frequency control for battery-powered applications. IEEE Transactions on Power Electronics, 28(9), 4318–4326.
  • [6] Silva-Ortigoza, R., Hernández-Guzmán, V. M., Antonio-Cruz, M., & Munoz-Carrillo, D. (2015). DC/DC Buck power converter as a smooth starter for a DC motor based on a hierarchical control. IEEE Transactions on Power Electronics, 30(2), 1076–1084.
  • [7] Chen, Z., Gao, W., Hu, J., & Ye, X. (2011). Closed-loop analysis and cascade control of a nonminimum phase boost converter. IEEE Transactions on Power Electronics, 26(4), 1237–1252.
  • [8] Walker, G. R., & Sernia, P. C. (2004). Cascaded DC-DC converter connection of photovoltaic modules. IEEE Transactions on Power Electronics, 19(4), 1130–113.
  • [9] J. Alvarez-Ramirez, G. Espinosa-Perez, and D. Noriega-Pineda, “Current- ´ mode control of DC–DC power converters: A backstepping approach,” Int. J. Robust Nonlinear Control, vol. 13, no. 5, pp. 421–442, Apr. 2003.
  • [10] C. Olalla, R. Leyva, A. E. Aroudi, and I. Queinnec, “Robust LQR control for PWM converters: An LMI approach,” IEEE Trans. Ind. Electron., vol. 56, no. 7, pp. 2548–2558, Jul. 2009.
  • [11] Q.-C. Zhong and T. Hornik, “Cascaded current–voltage control to improve the power quality for a grid-connected inverter with a local load,” IEEE Trans. Ind. Electron., vol. 60, no. 4, pp. 1344–1355, Apr. 2013.
  • [12] G. Escobar, A. Valdez, J. Leyva-Ramos, and P. Mart ´ ´ınez, “A controller for a boost converter with harmonic reduction,” IEEE Trans. Control Syst. Technol., vol. 12, no. 5, pp. 717–726, Sep. 2004.
  • [13] G. J. Jeong, I. H. Kim, and Y. I. Son, “Design of an adaptive output feedback controller for a DC/DC boost converter subject to load variation,” Int. J. Innov. Comput. Inf. Control, vol. 7, no. 2, pp. 791–803, Feb. 2011.
  • [14] J. Linares-Flores, A. H. Mendez, C. Garc ´ ´ıa-Rodr´ıguez, and H. SiraRam´ırez, “Robust nonlinear adaptive control of a boost converter via algebraic parameter identification,” IEEE Trans. Ind. Electron., vol. 61, no. 8, pp. 4105–4114, Aug. 2014.
  • [15] E. Vidal-Idiarte, C. E. Carrejo, J. Calvente, and L. Mart´ınez-Salamero, “Two-loop digital sliding mode control of DC–DC power converters based on predictive interpolation,” IEEE Trans. Ind. Electron., vol. 58, no. 6, pp. 2491–2501, Jun. 2011.
  • [16] S. Oucheriah and L. Guo, “PWM-based adaptive sliding-mode control for boost DC–DC converters,” IEEE Trans. Ind. Electron., vol. 60, no. 8, pp. 3291–3294, Aug. 2013.
  • [17] O. Lopez-Santos, L. Martinez-Salamero, G. Garcia, H. Valderrama-Blavi, and T. Sierra-Polanco, “Robust sliding-mode control design for a voltage regulated quadratic boost converter,” IEEE Trans. Power Electron., vol. 30, no. 4, pp. 2313–2327, Apr. 2015.
  • [18] L. Guo, J. Y. Hung, and R. M. Nelms, “Evaluation of DSP-based PID and fuzzy controllers for DC–DC converters,” IEEE Trans. Ind. Electron., vol. 56, no. 6, pp. 2237–2248, Jun. 2009.
  • [19] R.-J. Wai and L.-C. Shih, “Adaptive fuzzy-neural-network design for voltage tracking control of a DC–DC boost converter,” IEEE Trans. Power Electron., vol. 27, no. 4, pp. 2104–2115, Apr. 2012.
  • [20] S. E. Beid and S. Doubabi, “DSP-based implementation of fuzzy output tracking control for a boost converter,” IEEE Trans. Ind. Electron., vol. 61, no. 1, pp. 196–209, Jan. 2014.
  • [21] J. Linares-Flores, J. L. Barahona-Avalos, H. Sira-Ram´ırez, and M. A. Contreras-Ordaz, “Robust passivity-based control of a buck–boostconverter/dc-motor system: An active disturbance rejection approach,” IEEE Trans. Ind. Appl., vol. 48, no. 6, pp. 2362–2371, Nov./Dec. 2012.
  • [22] Y.-X. Wang, D.-H. Yu, and Y.-B. Kim, “Robust time-delay control for the DC–DC boost converter,” IEEE Trans. Ind. Electron., vol. 61, no. 9, pp. 4829–4837, Sep. 2014.
  • [23] M. Sitbon, S. Schacham, and A. Kuperman, “Disturbance observer based voltage regulation of current-mode-boost-converter-interfaced photovoltaic generator,” IEEE Trans. Ind. Electron., vol. 62, no. 9, pp. 5776– 5785, Sep. 2015.
  • [24] Zhang, Q., Min, R., Tong, Q., Zou, X., Liu, Z., & Shen, A. (2014). Sensorless predictive current controlled DC–DC converter with a self-correction differential current observer. IEEE Transactions on Industrial Electronics, 61(12), 6747–6757.
  • [25] Cucuzzella, M., Lazzari, R., Trip, S., Rosti, S., Sandroni, C., & Ferrara, A. (2018). Sliding mode voltage control of boost converters in DC microgrids. Control Engineering Practice, 73, 161–170.
  • [26] S. Jiang, D. Cao, Y. Li, J. Liu, and F. Z. Peng, “Low-THD, fasttransient, and cost-effective synchronous-frame repetitive controller for three-phase UPS inverters,” IEEE Trans. Power Electron., vol. 27, no. 6, pp. 2994–3005, Jun. 2012.
  • [27] Tan, S.-C., Lai, Y., Tse, C. K., & Cheung, M. K. (2006). Adaptive feedforward and feedback control schemes for sliding mode controlled power converters. IEEE Transactions on Power Electronics, 21(1), 182–192.
  • [28] I. Son and I. H. Kim, “Complementary PID controller to passivity based nonlinear control of boost converters with inductor resistance,” IEEE Trans. Control Syst. Technol., vol. 20, no. 3, pp. 826–834, May 2012.
  • [29] Kim, S.-K., & Lee, K.-B. (2015). Robust feedback-linearizing output voltage regulator for DC-DC boost converter. IEEE Transactions on Industrial Electronics, 62(11), 7127–7135.
  • [30] H. K. Khalil, Nonlinear Systems. Englewood Cliffs, NJ, USA: PrenticeHall, 2002.
  • [31] J. Alvarez-Ramirez, G. Espinosa-Perez, and D. Noriega-Pineda, “Current- ´ mode control of DC–DC power converters: A backstepping approach,” Int. J. Robust Nonlinear Control, vol. 13, no. 5, pp. 421–442, Apr. 2003.
  • [32] Huang, A.-C., & Chen, Y.-C. (2004). Adaptive multiple-surface sliding control for nonautonomous systems with mismatched uncertainties. Automatica, 40(11), 19.
  • [33] Choi, H. H. (2007). LMI-based sliding surface design for integral sliding mode control of mismatched uncertain systems. IEEE Transactions on Automatic Control, 52(4), 736– 742.
  • [34] J. Han, “From PID to active disturbance rejection control,” IEEE Trans. Ind. Electron., vol. 56, no. 3, pp. 900–906, Mar. 2009.
Toplam 34 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Güç Elektroniği, Kontrol Teorisi ve Uygulamaları
Bölüm Makaleler
Yazarlar

Ümit Akın Uslu 0000-0003-0336-2659

Emrah Irmak 0000-0002-7981-2305

Erken Görünüm Tarihi 25 Aralık 2023
Yayımlanma Tarihi 27 Aralık 2023
Gönderilme Tarihi 27 Kasım 2023
Kabul Tarihi 6 Aralık 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 5 Sayı: 3

Kaynak Göster

APA Uslu, Ü. A., & Irmak, E. (2023). ESO-based Backstepping Control of DC-DC Buck Converter Under Mismatched load Disturbance. ALKÜ Fen Bilimleri Dergisi, 5(3), 176-191. https://doi.org/10.46740/alku.1396695
AMA Uslu ÜA, Irmak E. ESO-based Backstepping Control of DC-DC Buck Converter Under Mismatched load Disturbance. ALKÜ Fen Bilimleri Dergisi. Aralık 2023;5(3):176-191. doi:10.46740/alku.1396695
Chicago Uslu, Ümit Akın, ve Emrah Irmak. “ESO-Based Backstepping Control of DC-DC Buck Converter Under Mismatched Load Disturbance”. ALKÜ Fen Bilimleri Dergisi 5, sy. 3 (Aralık 2023): 176-91. https://doi.org/10.46740/alku.1396695.
EndNote Uslu ÜA, Irmak E (01 Aralık 2023) ESO-based Backstepping Control of DC-DC Buck Converter Under Mismatched load Disturbance. ALKÜ Fen Bilimleri Dergisi 5 3 176–191.
IEEE Ü. A. Uslu ve E. Irmak, “ESO-based Backstepping Control of DC-DC Buck Converter Under Mismatched load Disturbance”, ALKÜ Fen Bilimleri Dergisi, c. 5, sy. 3, ss. 176–191, 2023, doi: 10.46740/alku.1396695.
ISNAD Uslu, Ümit Akın - Irmak, Emrah. “ESO-Based Backstepping Control of DC-DC Buck Converter Under Mismatched Load Disturbance”. ALKÜ Fen Bilimleri Dergisi 5/3 (Aralık 2023), 176-191. https://doi.org/10.46740/alku.1396695.
JAMA Uslu ÜA, Irmak E. ESO-based Backstepping Control of DC-DC Buck Converter Under Mismatched load Disturbance. ALKÜ Fen Bilimleri Dergisi. 2023;5:176–191.
MLA Uslu, Ümit Akın ve Emrah Irmak. “ESO-Based Backstepping Control of DC-DC Buck Converter Under Mismatched Load Disturbance”. ALKÜ Fen Bilimleri Dergisi, c. 5, sy. 3, 2023, ss. 176-91, doi:10.46740/alku.1396695.
Vancouver Uslu ÜA, Irmak E. ESO-based Backstepping Control of DC-DC Buck Converter Under Mismatched load Disturbance. ALKÜ Fen Bilimleri Dergisi. 2023;5(3):176-91.