Mukoadhezyonun Temel Prensipleri Üzerine Bir Derleme: Mukoadhezif Biyopolimer Olarak Kitosan'ın Önemi
Yıl 2024,
Cilt: 6 Sayı: 3, 174 - 194, 02.01.2025
Emine Büşra Eker Fidan
,
Kevser Bal
,
Saadet Kevser Pabuccuoğlu
Öz
Mukoadhezif polimerler, vücuttaki göz, burun, vajinal ve bukkal boşluklar ile gastrointestinal sistem gibi mukusla kaplı bölgelerde mukus/epitel yüzeyine yapışma özelliğine sahiptir. Bu nedenle, dozaj formunun mukozadaki kalış süresini arttırma ve ilaç uygulamasını önemli ölçüde iyileştirme özellikleri gösterirler. Kitosan ve modifiye edilmiş türevlerini içeren mukoadhezif ilaç taşıma sistemleri, hem lokal hem de sistemik ilaç taşıma için birçok avantaja sahiptir. Bu derlemenin amacı, fonksiyonel bir mukoadhezif ilaç taşıma sistemi olarak kitosan'ın önemini ortaya koymaktır.
Kaynakça
- [1] G. P. Andrews, T. P. Laverty, and D. S. Jones, “Mucoadhesive polymeric platforms for controlled drug delivery,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 71, no. 3, pp. 505–518, Mar. 2009, doi: https://doi.org/10.1016/j.ejpb.2008.09.028.
- [2] J. Bassi da Silva, S. B. de S. Ferreira, O. de Freitas, and M. L. Bruschi, “A critical review about methodologies for the analysis of mucoadhesive properties of drug delivery systems,” Drug Development and Industrial Pharmacy, vol. 43, no. 7, pp. 1053–1070, Mar. 2017, doi: https://doi.org/10.1080/03639045.2017.1294600.
- [3] M. T. Cook and V. V. Khutoryanskiy, “Mucoadhesion and mucosa-mimetic materials—A mini-review,” International Journal of Pharmaceutics, vol. 495, no. 2, pp. 991–998, Nov. 2015, doi: https://doi.org/10.1016/j.ijpharm.2015.09.064.
- [4] L. Serra, J. Doménech, and N. A. Peppas, “Engineering design and molecular dynamics of mucoadhesive drug delivery systems as targeting agents,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 71, no. 3, pp. 519–528, Mar. 2009, doi: https://doi.org/10.1016/j.ejpb.2008.09.022.
- [5] S. K. Linden, P. Sutton, N. G. Karlsson, V. Korolik, and M. A. McGuckin, “Mucins in the mucosal barrier to infection,” Mucosal Immunology, vol. 1, no. 3, pp. 183–197, May 2008, doi: https://doi.org/10.1038/mi.2008.5.
- [6] R. A. Cone, “Barrier properties of mucus,” Advanced Drug Delivery Reviews, vol. 61, no. 2, pp. 75–85, Feb. 2009, doi: https://doi.org/10.1016/j.addr.2008.09.008.
- [7] A. P. Corfield, “Mucins: a biologically relevant glycan barrier in mucosal protection,” Biochimica Et Biophysica Acta, vol. 1850, no. 1, pp. 236–252, Jan. 2015, doi: https://doi.org/10.1016/j.bbagen.2014.05.003.
- [8] N. A. Bustos, K. Ribbeck, and C. E. Wagner, “The role of mucosal barriers in disease progression and transmission,” Advanced Drug Delivery Reviews, vol. 200, pp. 115008–115008, Sep. 2023, doi: https://doi.org/10.1016/j.addr.2023.115008.
- [9] C. E. Wagner, K. M. Wheeler, and K. Ribbeck, “Mucins and Their Role in Shaping the Functions of Mucus Barriers,” Annual Review of Cell and Developmental Biology, vol. 34, no. 1, pp. 189–215, Oct. 2018, doi: https://doi.org/10.1146/annurev-cellbio-100617-062818.
- [10] J. Leal, H. D. C. Smyth, and D. Ghosh, “Physicochemical properties of mucus and their impact on transmucosal drug delivery,” International Journal of Pharmaceutics, vol. 532, no. 1, pp. 555–572, Oct. 2017, doi: https://doi.org/10.1016/j.ijpharm.2017.09.018.
- [11] R. Bansil and B. S. Turner, “Mucin structure, aggregation, physiological functions and biomedical applications,” Current Opinion in Colloid & Interface Science, vol. 11, no. 2–3, pp. 164–170, Jun. 2006, doi: https://doi.org/10.1016/j.cocis.2005.11.001.
- [12] L. N. Thwala, M. J. Santander-Ortega, M. Victoria Lozano, and N. S. Csaba, “Functionalized Polymeric Nanostructures for Mucosal Drug Delivery,” Elsevier eBooks, pp. 449–487, Jan. 2018, doi: https://doi.org/10.1016/b978-0-323-50878-0.00015-x.
- [13] A. Ahuja, R. K. Khar, and J. Ali, “Mucoadhesive Drug Delivery Systems,” Drug Development and Industrial Pharmacy, vol. 23, no. 5, pp. 489–515, Jan. 1997, doi: https://doi.org/10.3109/03639049709148498.
- [14] A. Ludwig, “The use of mucoadhesive polymers in ocular drug delivery,” Advanced Drug Delivery Reviews, vol. 57, no. 11, pp. 1595–1639, Nov. 2005, doi: https://doi.org/10.1016/j.addr.2005.07.005.
- [15] M. J. Alonso and A. Sánchez, “The potential of chitosan in ocular drug delivery,” Journal of Pharmacy and Pharmacology, vol. 55, no. 11, pp. 1451–1463, Nov. 2003, doi: https://doi.org/10.1211/0022357022476.
- [16] V. F. Patel, F. Liu, and M. B. Brown, “Modeling the oral cavity: In vitro and in vivo evaluations of buccal drug delivery systems,” Journal of Controlled Release, vol. 161, no. 3, pp. 746–756, Aug. 2012, doi: https://doi.org/10.1016/j.jconrel.2012.05.026.
- [17] D. M. Shinkar, A. S. Dhake, and C. M. Setty, “Drug Delivery from the Oral Cavity: A Focus on Mucoadhesive Buccal Drug Delivery Systems,” PDA Journal of Pharmaceutical Science and Technology, vol. 66, no. 5, pp. 466–500, Sep. 2012, doi: https://doi.org/10.5731/pdajpst.2012.00877.
- [18] D. Dodou, P. Breedveld, and P. A. Wieringa, “Mucoadhesives in the gastrointestinal tract: revisiting the literature for novel applications,” European Journal of Pharmaceutics and Biopharmaceutics: Official Journal of Arbeitsgemeinschaft Fur Pharmazeutische Verfahrenstechnik e.V, vol. 60, no. 1, pp. 1–16, May 2005, doi: https://doi.org/10.1016/j.ejpb.2005.01.007.
- [19] S. L. Tao and T. A. Desai, “Gastrointestinal patch systems for oral drug delivery,” Drug Discovery Today, vol. 10, no. 13, pp. 909–915, Jul. 2005, doi: https://doi.org/10.1016/s1359-6446(05)03489-6.
- [20] J. Byrneet al., “Devices for drug delivery in the gastrointestinal tract: A review of systems physically interacting with the mucosa for enhanced delivery,” Advanced Drug Delivery Reviews, vol. 177, p. 113926, Oct. 2021, doi: https://doi.org/10.1016/j.addr.2021.113926.
- [21] H. Gupta and A. Sharma, “Ion activated bioadhesive in situ gel of clindamycin for vaginal application,” International Journal of Drug Delivery, vol. 1, no. 1, pp. 32–40, Jul. 2009, doi: https://doi.org/10.5138/ijdd.2009.0975.0215.01004.
- [22] M. K. Gök et al., “Development of starch based mucoadhesive vaginal drug delivery systems for application in veterinary medicine,” Carbohydrate Polymers, vol. 136, pp. 63–70, Jan. 2016, doi: https://doi.org/10.1016/j.carbpol.2015.08.079.
- [23] M. K. Gök et al., “The effects of the thiolation with thioglycolic acid and l -cysteine on the mucoadhesion properties of the starch-graft-poly(acrylic acid),” Carbohydrate Polymers, vol. 163, pp. 129–136, May 2017, doi: https://doi.org/10.1016/j.carbpol.2017.01.065.
- [24] M. C. Veronesi et al., "Imaging of intranasal drug delivery to the brain," American journal of nuclear medicine and molecular imaging, vol. 10, pp. 1–31, Feb. 2020, PMID: 32211216.
- [25] F. Erdő, L. A. Bors, D. Farkas, Á. Bajza, and S. Gizurarson, “Evaluation of intranasal delivery route of drug administration for brain targeting,” Brain Research Bulletin, vol. 143, pp. 155–170, Oct. 2018, doi: https://doi.org/10.1016/j.brainresbull.2018.10.009.
- [26] E. Marttin, N. G. M. Schipper, J. Coos. Verhoef, and F. W. H. M. Merkus, “Nasal mucociliary clearance as a factor in nasal drug delivery,” Advanced Drug Delivery Reviews, vol. 29, no. 1–2, pp. 13–38, Jan. 1998, doi: https://doi.org/10.1016/s0169-409x(97)00059-8.
- [27] Ö. Yıldız, “Nazal yolla ilaçların verilmesi,” Ankara Universitesi Eczacilik Fakultesi Dergisi, vol. 36, no. 4, pp. 267–283, 2007, doi: https://doi.org/10.1501/eczfak_0000000541.
- [28] M. S. Ali and J. P. Pearson, “Upper Airway Mucin Gene Expression: A Review,” The Laryngoscope, vol. 117, no. 5, pp. 932–938, May 2007, doi: https://doi.org/10.1097/mlg.0b013e3180383651.
- [29] S. Md et al., “Optimised nanoformulation of bromocriptine for direct nose-to-brain delivery: biodistribution, pharmacokinetic and dopamine estimation by ultra-HPLC/mass spectrometry method,” Expert Opinion on Drug Delivery, vol. 11, no. 6, pp. 827–842, Mar. 2014, doi: https://doi.org/10.1517/17425247.2014.894504.
- [30] C. Dufes, J.-C. Olivier, F. Gaillard, A. Gaillard, W. Couet, and J.-M. Muller, “Brain delivery of vasoactive intestinal peptide (VIP) following nasal administration to rats,” International Journal of Pharmaceutics, vol. 255, no. 1, pp. 87–97, Apr. 2003, doi: https://doi.org/10.1016/S0378-5173(03)00039-5.
- [31] B. Slütter and W. Jiskoot, “Dual role of CpG as immune modulator and physical crosslinker in ovalbumin loaded N-trimethyl chitosan (TMC) nanoparticles for nasal vaccination,” Journal of Controlled Release, vol. 148, no. 1, pp. 117–121, Nov. 2010, doi: https://doi.org/10.1016/j.jconrel.2010.06.009.
- [32] D. Gadhave, N. Rasal, R. Sonawane, M. Sekar, and C. Kokare, “Nose-to-brain delivery of teriflunomide-loaded lipid-based carbopol-gellan gum nanogel for glioma: Pharmacological and in vitro cytotoxicity studies,” International Journal of Biological Macromolecules, vol. 167, pp. 906–920, Jan. 2021, doi: https://doi.org/10.1016/j.ijbiomac.2020.11.047.
- [33] K. Mfoafo, R. Mittal, A. Eshraghi, Y. Omidi, and H. Omidian, “Thiolated polymers: An overview of mucoadhesive properties and their potential in drug delivery via mucosal tissues,” Journal of Drug Delivery Science and Technology, vol. 85, p. 104596, Aug. 2023, doi: https://doi.org/10.1016/j.jddst.2023.104596.
- [34] A. Sosnik, J. das Neves, and B. Sarmento, “Mucoadhesive polymers in the design of nano-drug delivery systems for administration by non-parenteral routes: A review,” Progress in Polymer Science, vol. 39, no. 12, pp. 2030–2075, Dec. 2014, doi: https://doi.org/10.1016/j.progpolymsci.2014.07.010.
- [35] S. Mansuri, P. Kesharwani, K. Jain, R. K. Tekade, and N. K. Jain, “Mucoadhesion: A promising approach in drug delivery system,” Reactive and Functional Polymers, vol. 100, pp. 151–172, Mar. 2016, doi: https://doi.org/10.1016/j.reactfunctpolym.2016.01.011.
- [36] S. P. Bandi, S. Bhatnagar, and V. V. K. Venuganti, “Advanced materials for drug delivery across mucosal barriers,” Acta Biomaterialia, vol. 119, pp. 13–29, Jan. 2021, doi: https://doi.org/10.1016/j.actbio.2020.10.031.
- [37] B. Chatterjee, N. Amalina, P. Sengupta, and U. K. Mandal, “Mucoadhesive Polymers and Their Mode of Action: A Recent Update,” Journal of Applied Pharmaceutical Science, 2017, doi: https://doi.org/10.7324/japs.2017.70533.
- [38] J. Smart, “The basics and underlying mechanisms of mucoadhesion,” Advanced Drug Delivery Reviews, vol. 57, no. 11, pp. 1556–1568, Nov. 2005, doi: https://doi.org/10.1016/j.addr.2005.07.001.
- [39] N. Mishra et al., “Bioadhesive and phase change polymers for drug delivery,” pp. 151–186, Jan. 2023, doi: https://doi.org/10.1016/b978-0-323-91248-8.00003-9.
- [40] R. Shaikh, T. R. Raj Singh, M. J. Garland, A. D. Woolfson, and R. F. Donnelly, “Mucoadhesive drug delivery systems,” Journal of Pharmacy and Bioallied Sciences, vol. 3, no. 1, pp. 89–100, 2011, doi: https://doi.org/10.4103/0975-7406.76478.
- [41] I. Singh, P. Pawar, E. A. Sanusi, and O. A. Odeku, "Mucoadhesive polymers for drug delivery systems," Adhesion in Pharmaceutical, Biomedical and Dental Fields, pp. 89-113, 2017. doi: https://doi.org/10.1002/9781119323716.
- [42] V. V. Khutoryanskiy, “Advances in Mucoadhesion and Mucoadhesive Polymers,” Macromolecular Bioscience, vol. 11, no. 6, pp. 748–764, Dec. 2010, doi: https://doi.org/10.1002/mabi.201000388.
- [43] S. Alawdi and A. B. Solanki, “Mucoadhesive Drug Delivery Systems: A Review of Recent Developments,” Journal of Scientific Research in Medical and Biological Sciences, vol. 2, no. 1, pp. 50–64, Feb. 2021, doi: https://doi.org/10.47631/jsrmbs.v2i1.213.
- [44] S. A. Mortazavi and J. D. Smart, “An investigation into the role of water movement and mucus gel dehydration in mucoadhesion,” Journal of Controlled Release, vol. 25, no. 3, pp. 197–203, Jun. 1993, doi: https://doi.org/10.1016/0168-3659(93)90078-j.
- [45] L. Kumar, S. Verma, B. Vaidya, and Vivek Kumar Gupta, “Bioadhesive Polymers for Targeted Drug Delivery,” Elsevier eBooks, pp. 322–362, Jan. 2017, doi: https://doi.org/10.1016/b978-0-12-809717-5.00012-9.
- [46] Y. Huang, W. Leobandung, A. Foss, and N. A. Peppas, “Molecular aspects of muco- and bioadhesion”:, Journal of Controlled Release, vol. 65, no. 1–2, pp. 63–71, Mar. 2000, doi: https://doi.org/10.1016/s0168-3659(99)00233-3.
- [47] V. K. Yadav, A. B. Gupta, R. Kumar, J. S. Yadav, and B. Kumar, "Mucoadhesive polymers: means of improving the mucoadhesive properties of drug delivery system," J. Chem. Pharm. Res, 2010 vol. 2, no. 5, pp.418-432, ISSN No: 0975-7384.
- [48] M. J. Tobyn, J. R. Johnson, and P. W. Dettmar, “Factors affecting in vitro gastric mucoadhesion IV. Influence of tablet excipients, surfactants and salts on the observed mucoadhesion of polymers,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 43, no. 1, pp. 65–71, Jan. 1997, doi: https://doi.org/10.1016/s0939-6411(96)00009-4.
- [49] M. Ugwoke, R. Agu, N. Verbeke, and R. Kınget, “Nasal mucoadhesive drug delivery: Background, applications, trends and future perspectives,” Advanced Drug Delivery Reviews, vol. 57, no. 11, pp. 1640–1665, Nov. 2005, doi: https://doi.org/10.1016/j.addr.2005.07.009.
- [50] C.-M. Lehr, J. A. Bouwstra, E. H. Schacht, and H. E. Junginger, “In vitro evaluation of mucoadhesive properties of chitosan and some other natural polymers,” International Journal of Pharmaceutics, vol. 78, no. 1–3, pp. 43–48, Jan. 1992, doi: https://doi.org/10.1016/0378-5173(92)90353-4.
- [51] N. A. Peppas and Y. Huang, “Nanoscale technology of mucoadhesive interactions,” Advanced Drug Delivery Reviews, vol. 56, no. 11, pp. 1675–1687, Sep. 2004, doi: https://doi.org/10.1016/j.addr.2004.03.001.
- [52] M. Surendranath, R. M. R, and R. Parameswaran, “Recent advances in functionally modified polymers for mucoadhesive drug delivery,” Journal of Materials Chemistry B, vol. 10, no. 31, pp. 5913–5924, Aug. 2022, doi: https://doi.org/10.1039/D2TB00856D.
- [53] M. Yaqoob, A. Jalil, and A. Bernkop-Schnürch, “Mucoadhesive Polymers: Gateway to Innovative Drug Delivery,” Elsevier eBooks, pp. 351–383, Jan. 2021, doi: https://doi.org/10.1016/b978-0-12-821185-4.00020-8.
- [54] H. Zhang, J. Zhang, and J. B. Streisand, “Oral Mucosal Drug Delivery,” Clinical Pharmacokinetics, vol. 41, no. 9, pp. 661–680, 2002, doi: https://doi.org/10.2165/00003088-200241090-00003.
- [55] A. Bernkop-Schnürch, “Mucoadhesive systems in oral drug delivery,” Drug Discovery Today: Technologies, vol. 2, no. 1, pp. 83–87, Mar. 2005, doi: https://doi.org/10.1016/j.ddtec.2005.05.001.
- [56] V. M. Leitner, G. F. Walker, and A. Bernkop-Schnürch, “Thiolated polymers: evidence for the formation of disulphide bonds with mucus glycoproteins,” European Journal of Pharmaceutics and Biopharmaceutics: Official Journal of Arbeitsgemeinschaft Fur Pharmazeutische Verfahrenstechnik e.V, vol. 56, no. 2, pp. 207–214, Sep. 2003, doi: https://doi.org/10.1016/s0939-6411(03)00061-4.
- [57] P. Subramanian, “Mucoadhesive Delivery System: A Smart Way to Improve Bioavailability of Nutraceuticals,” Foods, vol. 10, no. 6, p. 1362, Jun. 2021, doi: https://doi.org/10.3390/foods10061362.
- [58] M. L. Bruschi, S. Barbosa, and Silva, “Mucoadhesive and mucus-penetrating polymers for drug delivery,” Elsevier eBooks, pp. 77–141, Jan. 2020, doi: https://doi.org/10.1016/b978-0-12-818038-9.00011-9.
- [59] Ö. Kaplan et al., “Thiolated α-cyclodextrin: The likely smallest drug carrier providing enhanced cellular uptake and endosomal escape,” Carbohydrate Polymers, vol. 316, p. 121070, Sep. 2023, doi: https://doi.org/10.1016/j.carbpol.2023.121070.
- [60] M. N. V. R. Kumar, R. A. A. Muzzarelli, C. Muzzarelli, H. Sashiwa, and A. J. Domb, “Chitosan Chemistry and Pharmaceutical Perspectives,” Chemical Reviews, vol. 104, no. 12, pp. 6017–6084, Dec. 2004, doi: https://doi.org/10.1021/cr030441b.
- [61] Z. Shariatinia, “Pharmaceutical applications of chitosan,” Advances in Colloid and Interface Science, vol. 263, pp. 131–194, Jan. 2019, doi: https://doi.org/10.1016/j.cis.2018.11.008.
- [62] W. M. Kedir, G. F. Abdi, M. M. Goro, and L. D. Tolesa, “Pharmaceutical and drug delivery applications of chitosan biopolymer and its modified nanocomposite: A review,” Heliyon, vol. 8, no. 8, p. e10196, Aug. 2022, doi: https://doi.org/10.1016/j.heliyon.2022.e10196.
- [63] R. C. F. Cheung, T. B. Ng, J. H. Wong, and W. Y. Chan, “Chitosan: An Update on Potential Biomedical and Pharmaceutical Applications,” Marine Drugs, vol. 13, no. 8, pp. 5156–5186, Aug. 2015, doi: https://doi.org/10.3390/md13085156.
- [64] A. Anitha et al., “Chitin and chitosan in selected biomedical applications,” Progress in Polymer Science, vol. 39, no. 9, pp. 1644–1667, Sep. 2014, doi: https://doi.org/10.1016/j.progpolymsci.2014.02.008.
- [65] A. Harugade, A. P. Sherje, and A. Pethe, “Chitosan: A review on properties, biological activities and recent progress in biomedical applications,” Reactive and Functional Polymers, vol. 191, p. 105634, Jun. 2023, doi: https://doi.org/10.1016/j.reactfunctpolym.2023.105634.
- [66] I. A. Sogias, A. C. Williams, and V. V. Khutoryanskiy, “Why is Chitosan Mucoadhesive?,” Biomacromolecules, vol. 9, no. 7, pp. 1837–1842, Jun. 2008, doi: https://doi.org/10.1021/bm800276d.
- [67] T. M. Ways, W. Lau, and V. Khutoryanskiy, “Chitosan and Its Derivatives for Application in Mucoadhesive Drug Delivery Systems,” Polymers, vol. 10, no. 3, p. 267, Mar. 2018, doi: https://doi.org/10.3390/polym10030267.
- [68] J. Smith, E. Wood, and M. Dornish, “Effect of Chitosan on Epithelial Cell Tight Junctions,” Pharmaceutical Research, vol. 21, no. 1, pp. 43–49, Jan. 2004, doi: https://doi.org/10.1023/b:pham.0000012150.60180.e3.
- [69] V. K. Mourya and N. N. Inamdar, “Chitosan-modifications and applications: Opportunities galore,” Reactive and Functional Polymers, vol. 68, no. 6, pp. 1013–1051, Jun. 2008, doi: https://doi.org/10.1016/j.reactfunctpolym.2008.03.002.
- [70] M. M. Issa, M. Köping-Höggård, and P. Artursson, “Chitosan and the mucosal delivery of biotechnology drugs,” Drug Discovery Today: Technologies, vol. 2, no. 1, pp. 1–6, Mar. 2005, doi: https://doi.org/10.1016/j.ddtec.2005.05.008.
- [71] E. M. Khalaf et al., “Recent progressions in biomedical and pharmaceutical applications of chitosan nanoparticles: A comprehensive review,” International Journal of Biological Macromolecules, vol. 231, pp. 123354–123354, Mar. 2023, doi: https://doi.org/10.1016/j.ijbiomac.2023.123354.
- [72] M. S. Hasnain and A. K. Nayak, “Chitosan as mucoadhesive polymer in drug delivery,” Chitosan in Drug Delivery, pp. 225–246, 2022, doi: https://doi.org/10.1016/b978-0-12-819336-5.00004-2.
- [73] M. Werle, H. Takeuchi, and A. Bernkop-Schnürch, “Modified Chitosans for Oral Drug Delivery,” Journal of Pharmaceutical Sciences, vol. 98, no. 5, pp. 1643–1656, May 2009, doi: https://doi.org/10.1002/jps.21550.
- [74] U. A. Shinde, P. N. Joshi, D. D. Jain, and K. Singh, “Preparation and Evaluation of N-Trimethyl Chitosan Nanoparticles of Flurbiprofen for Ocular Delivery,” Current Eye Research, vol. 44, no. 5, pp. 575–582, Jan. 2019, doi: https://doi.org/10.1080/02713683.2019.1567793.
- [75] R. He and C. Yin, “Trimethyl chitosan based conjugates for oral and intravenous delivery of paclitaxel,” Acta biomaterialia, vol. 53, pp. 355–366, Apr. 2017, doi: https://doi.org/10.1016/j.actbio.2017.02.012.
- [76] A. Jintapattanakit, V. B. Junyaprasert, and T. Kissel, “The role of mucoadhesion of trimethyl chitosan and PEGylated trimethyl chitosan nanocomplexes in insulin uptake,” Journal of Pharmaceutical Sciences, vol. 98, no. 12, pp. 4818–4830, Dec. 2009, doi: https://doi.org/10.1002/jps.21783.
- [77] R. Jayakumar, M. Prabaharan, S. V. Nair, S. Tokura, H. Tamura, and N. Selvamurugan, “Novel carboxymethyl derivatives of chitin and chitosan materials and their biomedical applications,” Progress in Materials Science, vol. 55, no. 7, pp. 675–709, Sep. 2010, doi: https://doi.org/10.1016/j.pmatsci.2010.03.001.
- [78] M. Davidovich-Pinhas and Havazelet Bianco-Peled, “Novel mucoadhesive system based on sulfhydryl-acrylate interactions,” Journal of Materials Science Materials in Medicine, vol. 21, no. 7, pp. 2027–2034, Apr. 2010, doi: https://doi.org/10.1007/s10856-010-4069-6.
- [79] S. Bonengel and A. Bernkop-Schnürch, “Thiomers — From bench to market,” Journal of Controlled Release, vol. 195, pp. 120–129, Dec. 2014, doi: https://doi.org/10.1016/j.jconrel.2014.06.047.
- [80] T. Eshel-Green and H. Bianco-Peled, “Mucoadhesive acrylated block copolymers micelles for the delivery of hydrophobic drugs,” Colloids and Surfaces B: Biointerfaces, vol. 139, pp. 42–51, Mar. 2016, doi: https://doi.org/10.1016/j.colsurfb.2015.11.044.
- [81] A. Štorha, E. A. Mun, and V. V. Khutoryanskiy, “Synthesis of thiolated and acrylated nanoparticles using thiol-ene click chemistry: towards novel mucoadhesive materials for drug delivery,” RSC Advances, vol. 3, no. 30, p. 12275, May 2013, doi: https://doi.org/10.1039/c3ra42093k.
- [82] L. Shi and K. D. Caldwell, “Mucin Coating on Hydrophobic Polymer Materials,” MRS Proceedings, vol. 599, Jan. 1999, doi: https://doi.org/10.1557/proc-599-299.
- [83] T. A. Sonia and C. P. Sharma, “Chitosan and Its Derivatives for Drug Delivery Perspective,” Advances in Polymer Science, pp. 23–53, 2011, doi: https://doi.org/10.1007/12_2011_117.
- [84] C. Le Tien, M. Lacroix, P. Ispas-Szabo, and M.-A. Mateescu, “N-acylated chitosan: hydrophobic matrices for controlled drug release,” Journal of Controlled Release, vol. 93, no. 1, pp. 1–13, Nov. 2003, doi: https://doi.org/10.1016/s0168-3659(03)00327-4.
- [85] D. Sharma and J. Singh, “Synthesis and Characterization of Fatty Acid Grafted Chitosan Polymer and Their Nanomicelles for Nonviral Gene Delivery Applications,” Bioconjugate Chemistry, vol. 28, no. 11, pp. 2772–2783, Oct. 2017, doi: https://doi.org/10.1021/acs.bioconjchem.7b00505.
- [86] H. Li, Z. Zhang, X. Bao, G. Xu, and P. Yao, “Fatty acid and quaternary ammonium modified chitosan nanoparticles for insulin delivery,” Colloids and Surfaces B: Biointerfaces, vol. 170, pp. 136–143, Oct. 2018, doi: https://doi.org/10.1016/j.colsurfb.2018.05.063.
- [87] Y. Xie, X. Gong, Z. Jin, W. Xu, and K. Zhao, “Curcumin encapsulation in self-assembled nanoparticles based on amphiphilic palmitic acid-grafted-quaternized chitosan with enhanced cytotoxic, antimicrobial and antioxidant properties,” International Journal of Biological Macromolecules, vol. 222, pp. 2855–2867, Dec. 2022, doi: https://doi.org/10.1016/j.ijbiomac.2022.10.064.
- [88] M. C. Bonferoni et al., “Palmitoyl Glycol Chitosan Micelles for Corneal Delivery of Cyclosporine,” Journal of Biomedical Nanotechnology, vol. 12, no. 1, pp. 231–240, Jan. 2016, doi: https://doi.org/10.1166/jbn.2016.2140.
- [89] Krzysztof Pyrć et al., “SARS-CoV-2 inhibition using a mucoadhesive, amphiphilic chitosan that may serve as an anti-viral nasal spray,” Scientific Reports, vol. 11, no. 1, Oct. 2021, doi: https://doi.org/10.1038/s41598-021-99404-8.
- [90] A. Almeida et al., “Novel amphiphilic chitosan micelles as carriers for hydrophobic anticancer drugs,” Materials Science and Engineering: C, vol. 112, p. 110920, Jul. 2020, doi: https://doi.org/10.1016/j.msec.2020.110920.
- [91] A. T. Bernal-Mercado, J. Juarez, M. A. Valdez, J. F. Ayala-Zavala, C. L. Del-Toro-Sánchez, and D. Encinas-Basurto, “Hydrophobic Chitosan Nanoparticles Loaded with Carvacrol against Pseudomonas aeruginosa Biofilms,” Molecules, vol. 27, no. 3, p. 699, Jan. 2022, doi: https://doi.org/10.3390/molecules27030699.
- [92] A. Bernkop-Schnürch and S. Steininger, “Synthesis and characterisation of mucoadhesive thiolated polymers,” International Journal of Pharmaceutics, vol. 194, no. 2, pp. 239–247, Jan. 2000, doi: https://doi.org/10.1016/s0378-5173(99)00387-7.
- [93] M. Mukhtar, E. Fényes, C. Bartos, M. Zeeshan, and R. Ambrus, “Chitosan biopolymer, its derivatives and potential applications in nano-therapeutics: A comprehensive review,” European Polymer Journal, vol. 160, p. 110767, Nov. 2021, doi: https://doi.org/10.1016/j.eurpolymj.2021.110767.
- [94] N. G. M. Schipper, K. M. Vårum, P. Stenberg, G. Ocklind, H. Lennernäs, and P. Artursson, “Chitosans as absorption enhancers of poorly absorbable drugs,” European Journal of Pharmaceutical Sciences, vol. 8, no. 4, pp. 335–343, Aug. 1999, doi: https://doi.org/10.1016/s0928-0987(99)00032-9.
- [95] A. Bernkop-Schnürch, M. Hornof, and D. Guggi, “Thiolated chitosans,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 57, no. 1, pp. 9–17, Jan. 2004, doi: https://doi.org/10.1016/s0939-6411(03)00147-4.
- [96] Y. Zhang et al., “The function and mechanism of preactivated thiomers in triggering epithelial tight junctions opening,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 133, pp. 188–199, Dec. 2018, doi: https://doi.org/10.1016/j.ejpb.2018.10.014.
- [97] A. Bernkop-Schnürch, A. H. Krauland, V. M. Leitner, and T. Palmberger, “Thiomers: potential excipients for non-invasive peptide delivery systems,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 58, no. 2, pp. 253–263, Sep. 2004, doi: https://doi.org/10.1016/j.ejpb.2004.03.032.
- [98] K. Kafedjiiski, A. H. Krauland, M. H. Hoffer, and A. Bernkop-Schnürch, “Synthesis and in vitro evaluation of a novel thiolated chitosan,” Biomaterials, vol. 26, no. 7, pp. 819–826, Mar. 2005, doi: https://doi.org/10.1016/j.biomaterials.2004.03.011.
- [99] C. Federer, M. Kurpiers, and A. Bernkop-Schnürch, “Thiolated Chitosans: A Multi-talented Class of Polymers for Various Applications,” Biomacromolecules, vol. 22, no. 1, pp. 24–56, Jun. 2020, doi: https://doi.org/10.1021/acs.biomac.0c00663.
- [100] S. Manna et al., “Chitosan Derivatives as Carriers for Drug Delivery and Biomedical Applications,” ACS Biomaterials Science & Engineering, Apr. 2023, doi: https://doi.org/10.1021/acsbiomaterials.2c01297.
- [101] W. Samprasit, P. Opanasopit, and B. Chamsai, “Mucoadhesive chitosan and thiolated chitosan nanoparticles containing alpha mangostin for possible Colon-targeted delivery,” Pharmaceutical Development and Technology, vol. 26, no. 3, pp. 362–372, Jan. 2021, doi: https://doi.org/10.1080/10837450.2021.1873370.
- [102] S. Maria et al., “Synthesis and characterization of pre-activated thiolated chitosan nanoparticles for oral delivery of octreotide,” Journal of Drug Delivery Science and Technology, vol. 58, pp. 101807–101807, Aug. 2020, doi: https://doi.org/10.1016/j.jddst.2020.101807.
- [103] M. Croce, S. Conti, C. Maake, and G. R. Patzke, “Synthesis and screening of N-acyl thiolated chitosans for antibacterial applications,” Carbohydrate Polymers, vol. 151, pp. 1184–1192, Oct. 2016, doi: https://doi.org/10.1016/j.carbpol.2016.06.014.
- [104] D. Liu et al., “Potential advantages of a novel chitosan-N-acetylcysteine surface modified nanostructured lipid carrier on the performance of ophthalmic delivery of curcumin,” Scientific Reports, vol. 6, no. 1, Jun. 2016, doi: https://doi.org/10.1038/srep28796.
- [105] B. Fan, Y. Xing, Y. Zheng, C. Sun, and G. Liang, “pH-responsive thiolated chitosan nanoparticles for oral low-molecular weight heparin delivery:in vitroandin vivoevaluation,” Drug Delivery, vol. 23, no. 1, pp. 238–247, May 2014, doi: https://doi.org/10.3109/10717544.2014.909908.
- [106] R. Esquivel, J. Juárez, M. Almada, J. Ibarra, and M. A. Valdez, “Synthesis and Characterization of New Thiolated Chitosan Nanoparticles Obtained by Ionic Gelation Method,” International Journal of Polymer Science, vol. 2015, pp. 1–18, 2015, doi: https://doi.org/10.1155/2015/502058.
- [107] T. Schmitz, Vjera Grabovac, T. F. Palmberger, M. H. Hoffer, and A. Bernkop-Schnürch, “Synthesis and characterization of a chitosan-N-acetyl cysteine conjugate,” International Journal of Pharmaceutics vol. 347, no. 1–2, pp. 79–85, Jan. 2008, doi: https://doi.org/10.1016/j.ijpharm.2007.06.040.
- [108] C. E. Kast, C. Valenta, M. Leopold, and A. Bernkop-Schnürch, “Design and in vitro evaluation of a novel bioadhesive vaginal drug delivery system for clotrimazole,” Journal of Controlled Release, vol. 81, no. 3, pp. 347–354, Jun. 2002, doi: https://doi.org/10.1016/s0168-3659(02)00077-9.
- [109] C. E. Kast and A. Bernkop-Schnürch, “Thiolated polymers — thiomers: development and in vitro evaluation of chitosan–thioglycolic acid conjugates,” Biomaterials, vol. 22, no. 17, pp. 2345–2352, Sep. 2001, doi: https://doi.org/10.1016/s0142-9612(00)00421-x.
- [110] S. Sudhakar, S. V. Chandran, N. Selvamurugan, and R. A. Nazeer, “Biodistribution and pharmacokinetics of thiolated chitosan nanoparticles for oral delivery of insulin in vivo,” International Journal of Biological Macromolecules, vol. 150, pp. 281–288, May 2020, doi: https://doi.org/10.1016/j.ijbiomac.2020.02.079.
- [111] F. Naseer, T. Ahmad, K. Kousar, S. Kakar, R. Gul, and S. Anjum, “Formulation of surface-functionalized hyaluronic acid-coated thiolated chitosan nano-formulation for the delivery of vincristine in prostate cancer: A multifunctional targeted drug delivery approach,” Journal of Drug Delivery Science and Technology, vol. 74, p. 103545, Aug. 2022, doi: https://doi.org/10.1016/j.jddst.2022.103545.
- [112] O. Iqbal et al., “Moxifloxacin loaded nanoparticles of disulfide bridged thiolated chitosan-eudragit RS100 for controlled drug delivery,” International Journal of Biological Macromolecules, vol. 182, pp. 2087–2096, Jul. 2021, doi: https://doi.org/10.1016/j.ijbiomac.2021.05.199.
- [113] S. Javed et al., “Tobramycin-loaded nanoparticles of thiolated chitosan for ocular drug delivery: Preparation, mucoadhesion and pharmacokinetic evaluation,” Heliyon, vol. 9, no. 9, pp. e19877–e19877, Sep. 2023, doi: https://doi.org/10.1016/j.heliyon.2023.e19877.
A Review on Basic Principles of Mucoadhesion: The Importance of Chitosan as a Mucoadhesive Biopolymer
Yıl 2024,
Cilt: 6 Sayı: 3, 174 - 194, 02.01.2025
Emine Büşra Eker Fidan
,
Kevser Bal
,
Saadet Kevser Pabuccuoğlu
Öz
Mucoadhesive polymers have the special functions which lead to adhesion to the mucin/ epithelial surface on the mucus-covered areas in the body such as eye, nose, vaginal and buccal cavities, and GI tract. Therefore, they provide to increase the residence time of the dosage form on the mucosa and to significantly improve the drug administration. Mucoadhesive drug delivery systems containing chitosan and its modified derivatives have many advantages for both local and systemic drug delivery. The goal of this review is to put forward the importance of chitosan as a functionalized mucoadhesive drug delivery system.
Kaynakça
- [1] G. P. Andrews, T. P. Laverty, and D. S. Jones, “Mucoadhesive polymeric platforms for controlled drug delivery,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 71, no. 3, pp. 505–518, Mar. 2009, doi: https://doi.org/10.1016/j.ejpb.2008.09.028.
- [2] J. Bassi da Silva, S. B. de S. Ferreira, O. de Freitas, and M. L. Bruschi, “A critical review about methodologies for the analysis of mucoadhesive properties of drug delivery systems,” Drug Development and Industrial Pharmacy, vol. 43, no. 7, pp. 1053–1070, Mar. 2017, doi: https://doi.org/10.1080/03639045.2017.1294600.
- [3] M. T. Cook and V. V. Khutoryanskiy, “Mucoadhesion and mucosa-mimetic materials—A mini-review,” International Journal of Pharmaceutics, vol. 495, no. 2, pp. 991–998, Nov. 2015, doi: https://doi.org/10.1016/j.ijpharm.2015.09.064.
- [4] L. Serra, J. Doménech, and N. A. Peppas, “Engineering design and molecular dynamics of mucoadhesive drug delivery systems as targeting agents,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 71, no. 3, pp. 519–528, Mar. 2009, doi: https://doi.org/10.1016/j.ejpb.2008.09.022.
- [5] S. K. Linden, P. Sutton, N. G. Karlsson, V. Korolik, and M. A. McGuckin, “Mucins in the mucosal barrier to infection,” Mucosal Immunology, vol. 1, no. 3, pp. 183–197, May 2008, doi: https://doi.org/10.1038/mi.2008.5.
- [6] R. A. Cone, “Barrier properties of mucus,” Advanced Drug Delivery Reviews, vol. 61, no. 2, pp. 75–85, Feb. 2009, doi: https://doi.org/10.1016/j.addr.2008.09.008.
- [7] A. P. Corfield, “Mucins: a biologically relevant glycan barrier in mucosal protection,” Biochimica Et Biophysica Acta, vol. 1850, no. 1, pp. 236–252, Jan. 2015, doi: https://doi.org/10.1016/j.bbagen.2014.05.003.
- [8] N. A. Bustos, K. Ribbeck, and C. E. Wagner, “The role of mucosal barriers in disease progression and transmission,” Advanced Drug Delivery Reviews, vol. 200, pp. 115008–115008, Sep. 2023, doi: https://doi.org/10.1016/j.addr.2023.115008.
- [9] C. E. Wagner, K. M. Wheeler, and K. Ribbeck, “Mucins and Their Role in Shaping the Functions of Mucus Barriers,” Annual Review of Cell and Developmental Biology, vol. 34, no. 1, pp. 189–215, Oct. 2018, doi: https://doi.org/10.1146/annurev-cellbio-100617-062818.
- [10] J. Leal, H. D. C. Smyth, and D. Ghosh, “Physicochemical properties of mucus and their impact on transmucosal drug delivery,” International Journal of Pharmaceutics, vol. 532, no. 1, pp. 555–572, Oct. 2017, doi: https://doi.org/10.1016/j.ijpharm.2017.09.018.
- [11] R. Bansil and B. S. Turner, “Mucin structure, aggregation, physiological functions and biomedical applications,” Current Opinion in Colloid & Interface Science, vol. 11, no. 2–3, pp. 164–170, Jun. 2006, doi: https://doi.org/10.1016/j.cocis.2005.11.001.
- [12] L. N. Thwala, M. J. Santander-Ortega, M. Victoria Lozano, and N. S. Csaba, “Functionalized Polymeric Nanostructures for Mucosal Drug Delivery,” Elsevier eBooks, pp. 449–487, Jan. 2018, doi: https://doi.org/10.1016/b978-0-323-50878-0.00015-x.
- [13] A. Ahuja, R. K. Khar, and J. Ali, “Mucoadhesive Drug Delivery Systems,” Drug Development and Industrial Pharmacy, vol. 23, no. 5, pp. 489–515, Jan. 1997, doi: https://doi.org/10.3109/03639049709148498.
- [14] A. Ludwig, “The use of mucoadhesive polymers in ocular drug delivery,” Advanced Drug Delivery Reviews, vol. 57, no. 11, pp. 1595–1639, Nov. 2005, doi: https://doi.org/10.1016/j.addr.2005.07.005.
- [15] M. J. Alonso and A. Sánchez, “The potential of chitosan in ocular drug delivery,” Journal of Pharmacy and Pharmacology, vol. 55, no. 11, pp. 1451–1463, Nov. 2003, doi: https://doi.org/10.1211/0022357022476.
- [16] V. F. Patel, F. Liu, and M. B. Brown, “Modeling the oral cavity: In vitro and in vivo evaluations of buccal drug delivery systems,” Journal of Controlled Release, vol. 161, no. 3, pp. 746–756, Aug. 2012, doi: https://doi.org/10.1016/j.jconrel.2012.05.026.
- [17] D. M. Shinkar, A. S. Dhake, and C. M. Setty, “Drug Delivery from the Oral Cavity: A Focus on Mucoadhesive Buccal Drug Delivery Systems,” PDA Journal of Pharmaceutical Science and Technology, vol. 66, no. 5, pp. 466–500, Sep. 2012, doi: https://doi.org/10.5731/pdajpst.2012.00877.
- [18] D. Dodou, P. Breedveld, and P. A. Wieringa, “Mucoadhesives in the gastrointestinal tract: revisiting the literature for novel applications,” European Journal of Pharmaceutics and Biopharmaceutics: Official Journal of Arbeitsgemeinschaft Fur Pharmazeutische Verfahrenstechnik e.V, vol. 60, no. 1, pp. 1–16, May 2005, doi: https://doi.org/10.1016/j.ejpb.2005.01.007.
- [19] S. L. Tao and T. A. Desai, “Gastrointestinal patch systems for oral drug delivery,” Drug Discovery Today, vol. 10, no. 13, pp. 909–915, Jul. 2005, doi: https://doi.org/10.1016/s1359-6446(05)03489-6.
- [20] J. Byrneet al., “Devices for drug delivery in the gastrointestinal tract: A review of systems physically interacting with the mucosa for enhanced delivery,” Advanced Drug Delivery Reviews, vol. 177, p. 113926, Oct. 2021, doi: https://doi.org/10.1016/j.addr.2021.113926.
- [21] H. Gupta and A. Sharma, “Ion activated bioadhesive in situ gel of clindamycin for vaginal application,” International Journal of Drug Delivery, vol. 1, no. 1, pp. 32–40, Jul. 2009, doi: https://doi.org/10.5138/ijdd.2009.0975.0215.01004.
- [22] M. K. Gök et al., “Development of starch based mucoadhesive vaginal drug delivery systems for application in veterinary medicine,” Carbohydrate Polymers, vol. 136, pp. 63–70, Jan. 2016, doi: https://doi.org/10.1016/j.carbpol.2015.08.079.
- [23] M. K. Gök et al., “The effects of the thiolation with thioglycolic acid and l -cysteine on the mucoadhesion properties of the starch-graft-poly(acrylic acid),” Carbohydrate Polymers, vol. 163, pp. 129–136, May 2017, doi: https://doi.org/10.1016/j.carbpol.2017.01.065.
- [24] M. C. Veronesi et al., "Imaging of intranasal drug delivery to the brain," American journal of nuclear medicine and molecular imaging, vol. 10, pp. 1–31, Feb. 2020, PMID: 32211216.
- [25] F. Erdő, L. A. Bors, D. Farkas, Á. Bajza, and S. Gizurarson, “Evaluation of intranasal delivery route of drug administration for brain targeting,” Brain Research Bulletin, vol. 143, pp. 155–170, Oct. 2018, doi: https://doi.org/10.1016/j.brainresbull.2018.10.009.
- [26] E. Marttin, N. G. M. Schipper, J. Coos. Verhoef, and F. W. H. M. Merkus, “Nasal mucociliary clearance as a factor in nasal drug delivery,” Advanced Drug Delivery Reviews, vol. 29, no. 1–2, pp. 13–38, Jan. 1998, doi: https://doi.org/10.1016/s0169-409x(97)00059-8.
- [27] Ö. Yıldız, “Nazal yolla ilaçların verilmesi,” Ankara Universitesi Eczacilik Fakultesi Dergisi, vol. 36, no. 4, pp. 267–283, 2007, doi: https://doi.org/10.1501/eczfak_0000000541.
- [28] M. S. Ali and J. P. Pearson, “Upper Airway Mucin Gene Expression: A Review,” The Laryngoscope, vol. 117, no. 5, pp. 932–938, May 2007, doi: https://doi.org/10.1097/mlg.0b013e3180383651.
- [29] S. Md et al., “Optimised nanoformulation of bromocriptine for direct nose-to-brain delivery: biodistribution, pharmacokinetic and dopamine estimation by ultra-HPLC/mass spectrometry method,” Expert Opinion on Drug Delivery, vol. 11, no. 6, pp. 827–842, Mar. 2014, doi: https://doi.org/10.1517/17425247.2014.894504.
- [30] C. Dufes, J.-C. Olivier, F. Gaillard, A. Gaillard, W. Couet, and J.-M. Muller, “Brain delivery of vasoactive intestinal peptide (VIP) following nasal administration to rats,” International Journal of Pharmaceutics, vol. 255, no. 1, pp. 87–97, Apr. 2003, doi: https://doi.org/10.1016/S0378-5173(03)00039-5.
- [31] B. Slütter and W. Jiskoot, “Dual role of CpG as immune modulator and physical crosslinker in ovalbumin loaded N-trimethyl chitosan (TMC) nanoparticles for nasal vaccination,” Journal of Controlled Release, vol. 148, no. 1, pp. 117–121, Nov. 2010, doi: https://doi.org/10.1016/j.jconrel.2010.06.009.
- [32] D. Gadhave, N. Rasal, R. Sonawane, M. Sekar, and C. Kokare, “Nose-to-brain delivery of teriflunomide-loaded lipid-based carbopol-gellan gum nanogel for glioma: Pharmacological and in vitro cytotoxicity studies,” International Journal of Biological Macromolecules, vol. 167, pp. 906–920, Jan. 2021, doi: https://doi.org/10.1016/j.ijbiomac.2020.11.047.
- [33] K. Mfoafo, R. Mittal, A. Eshraghi, Y. Omidi, and H. Omidian, “Thiolated polymers: An overview of mucoadhesive properties and their potential in drug delivery via mucosal tissues,” Journal of Drug Delivery Science and Technology, vol. 85, p. 104596, Aug. 2023, doi: https://doi.org/10.1016/j.jddst.2023.104596.
- [34] A. Sosnik, J. das Neves, and B. Sarmento, “Mucoadhesive polymers in the design of nano-drug delivery systems for administration by non-parenteral routes: A review,” Progress in Polymer Science, vol. 39, no. 12, pp. 2030–2075, Dec. 2014, doi: https://doi.org/10.1016/j.progpolymsci.2014.07.010.
- [35] S. Mansuri, P. Kesharwani, K. Jain, R. K. Tekade, and N. K. Jain, “Mucoadhesion: A promising approach in drug delivery system,” Reactive and Functional Polymers, vol. 100, pp. 151–172, Mar. 2016, doi: https://doi.org/10.1016/j.reactfunctpolym.2016.01.011.
- [36] S. P. Bandi, S. Bhatnagar, and V. V. K. Venuganti, “Advanced materials for drug delivery across mucosal barriers,” Acta Biomaterialia, vol. 119, pp. 13–29, Jan. 2021, doi: https://doi.org/10.1016/j.actbio.2020.10.031.
- [37] B. Chatterjee, N. Amalina, P. Sengupta, and U. K. Mandal, “Mucoadhesive Polymers and Their Mode of Action: A Recent Update,” Journal of Applied Pharmaceutical Science, 2017, doi: https://doi.org/10.7324/japs.2017.70533.
- [38] J. Smart, “The basics and underlying mechanisms of mucoadhesion,” Advanced Drug Delivery Reviews, vol. 57, no. 11, pp. 1556–1568, Nov. 2005, doi: https://doi.org/10.1016/j.addr.2005.07.001.
- [39] N. Mishra et al., “Bioadhesive and phase change polymers for drug delivery,” pp. 151–186, Jan. 2023, doi: https://doi.org/10.1016/b978-0-323-91248-8.00003-9.
- [40] R. Shaikh, T. R. Raj Singh, M. J. Garland, A. D. Woolfson, and R. F. Donnelly, “Mucoadhesive drug delivery systems,” Journal of Pharmacy and Bioallied Sciences, vol. 3, no. 1, pp. 89–100, 2011, doi: https://doi.org/10.4103/0975-7406.76478.
- [41] I. Singh, P. Pawar, E. A. Sanusi, and O. A. Odeku, "Mucoadhesive polymers for drug delivery systems," Adhesion in Pharmaceutical, Biomedical and Dental Fields, pp. 89-113, 2017. doi: https://doi.org/10.1002/9781119323716.
- [42] V. V. Khutoryanskiy, “Advances in Mucoadhesion and Mucoadhesive Polymers,” Macromolecular Bioscience, vol. 11, no. 6, pp. 748–764, Dec. 2010, doi: https://doi.org/10.1002/mabi.201000388.
- [43] S. Alawdi and A. B. Solanki, “Mucoadhesive Drug Delivery Systems: A Review of Recent Developments,” Journal of Scientific Research in Medical and Biological Sciences, vol. 2, no. 1, pp. 50–64, Feb. 2021, doi: https://doi.org/10.47631/jsrmbs.v2i1.213.
- [44] S. A. Mortazavi and J. D. Smart, “An investigation into the role of water movement and mucus gel dehydration in mucoadhesion,” Journal of Controlled Release, vol. 25, no. 3, pp. 197–203, Jun. 1993, doi: https://doi.org/10.1016/0168-3659(93)90078-j.
- [45] L. Kumar, S. Verma, B. Vaidya, and Vivek Kumar Gupta, “Bioadhesive Polymers for Targeted Drug Delivery,” Elsevier eBooks, pp. 322–362, Jan. 2017, doi: https://doi.org/10.1016/b978-0-12-809717-5.00012-9.
- [46] Y. Huang, W. Leobandung, A. Foss, and N. A. Peppas, “Molecular aspects of muco- and bioadhesion”:, Journal of Controlled Release, vol. 65, no. 1–2, pp. 63–71, Mar. 2000, doi: https://doi.org/10.1016/s0168-3659(99)00233-3.
- [47] V. K. Yadav, A. B. Gupta, R. Kumar, J. S. Yadav, and B. Kumar, "Mucoadhesive polymers: means of improving the mucoadhesive properties of drug delivery system," J. Chem. Pharm. Res, 2010 vol. 2, no. 5, pp.418-432, ISSN No: 0975-7384.
- [48] M. J. Tobyn, J. R. Johnson, and P. W. Dettmar, “Factors affecting in vitro gastric mucoadhesion IV. Influence of tablet excipients, surfactants and salts on the observed mucoadhesion of polymers,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 43, no. 1, pp. 65–71, Jan. 1997, doi: https://doi.org/10.1016/s0939-6411(96)00009-4.
- [49] M. Ugwoke, R. Agu, N. Verbeke, and R. Kınget, “Nasal mucoadhesive drug delivery: Background, applications, trends and future perspectives,” Advanced Drug Delivery Reviews, vol. 57, no. 11, pp. 1640–1665, Nov. 2005, doi: https://doi.org/10.1016/j.addr.2005.07.009.
- [50] C.-M. Lehr, J. A. Bouwstra, E. H. Schacht, and H. E. Junginger, “In vitro evaluation of mucoadhesive properties of chitosan and some other natural polymers,” International Journal of Pharmaceutics, vol. 78, no. 1–3, pp. 43–48, Jan. 1992, doi: https://doi.org/10.1016/0378-5173(92)90353-4.
- [51] N. A. Peppas and Y. Huang, “Nanoscale technology of mucoadhesive interactions,” Advanced Drug Delivery Reviews, vol. 56, no. 11, pp. 1675–1687, Sep. 2004, doi: https://doi.org/10.1016/j.addr.2004.03.001.
- [52] M. Surendranath, R. M. R, and R. Parameswaran, “Recent advances in functionally modified polymers for mucoadhesive drug delivery,” Journal of Materials Chemistry B, vol. 10, no. 31, pp. 5913–5924, Aug. 2022, doi: https://doi.org/10.1039/D2TB00856D.
- [53] M. Yaqoob, A. Jalil, and A. Bernkop-Schnürch, “Mucoadhesive Polymers: Gateway to Innovative Drug Delivery,” Elsevier eBooks, pp. 351–383, Jan. 2021, doi: https://doi.org/10.1016/b978-0-12-821185-4.00020-8.
- [54] H. Zhang, J. Zhang, and J. B. Streisand, “Oral Mucosal Drug Delivery,” Clinical Pharmacokinetics, vol. 41, no. 9, pp. 661–680, 2002, doi: https://doi.org/10.2165/00003088-200241090-00003.
- [55] A. Bernkop-Schnürch, “Mucoadhesive systems in oral drug delivery,” Drug Discovery Today: Technologies, vol. 2, no. 1, pp. 83–87, Mar. 2005, doi: https://doi.org/10.1016/j.ddtec.2005.05.001.
- [56] V. M. Leitner, G. F. Walker, and A. Bernkop-Schnürch, “Thiolated polymers: evidence for the formation of disulphide bonds with mucus glycoproteins,” European Journal of Pharmaceutics and Biopharmaceutics: Official Journal of Arbeitsgemeinschaft Fur Pharmazeutische Verfahrenstechnik e.V, vol. 56, no. 2, pp. 207–214, Sep. 2003, doi: https://doi.org/10.1016/s0939-6411(03)00061-4.
- [57] P. Subramanian, “Mucoadhesive Delivery System: A Smart Way to Improve Bioavailability of Nutraceuticals,” Foods, vol. 10, no. 6, p. 1362, Jun. 2021, doi: https://doi.org/10.3390/foods10061362.
- [58] M. L. Bruschi, S. Barbosa, and Silva, “Mucoadhesive and mucus-penetrating polymers for drug delivery,” Elsevier eBooks, pp. 77–141, Jan. 2020, doi: https://doi.org/10.1016/b978-0-12-818038-9.00011-9.
- [59] Ö. Kaplan et al., “Thiolated α-cyclodextrin: The likely smallest drug carrier providing enhanced cellular uptake and endosomal escape,” Carbohydrate Polymers, vol. 316, p. 121070, Sep. 2023, doi: https://doi.org/10.1016/j.carbpol.2023.121070.
- [60] M. N. V. R. Kumar, R. A. A. Muzzarelli, C. Muzzarelli, H. Sashiwa, and A. J. Domb, “Chitosan Chemistry and Pharmaceutical Perspectives,” Chemical Reviews, vol. 104, no. 12, pp. 6017–6084, Dec. 2004, doi: https://doi.org/10.1021/cr030441b.
- [61] Z. Shariatinia, “Pharmaceutical applications of chitosan,” Advances in Colloid and Interface Science, vol. 263, pp. 131–194, Jan. 2019, doi: https://doi.org/10.1016/j.cis.2018.11.008.
- [62] W. M. Kedir, G. F. Abdi, M. M. Goro, and L. D. Tolesa, “Pharmaceutical and drug delivery applications of chitosan biopolymer and its modified nanocomposite: A review,” Heliyon, vol. 8, no. 8, p. e10196, Aug. 2022, doi: https://doi.org/10.1016/j.heliyon.2022.e10196.
- [63] R. C. F. Cheung, T. B. Ng, J. H. Wong, and W. Y. Chan, “Chitosan: An Update on Potential Biomedical and Pharmaceutical Applications,” Marine Drugs, vol. 13, no. 8, pp. 5156–5186, Aug. 2015, doi: https://doi.org/10.3390/md13085156.
- [64] A. Anitha et al., “Chitin and chitosan in selected biomedical applications,” Progress in Polymer Science, vol. 39, no. 9, pp. 1644–1667, Sep. 2014, doi: https://doi.org/10.1016/j.progpolymsci.2014.02.008.
- [65] A. Harugade, A. P. Sherje, and A. Pethe, “Chitosan: A review on properties, biological activities and recent progress in biomedical applications,” Reactive and Functional Polymers, vol. 191, p. 105634, Jun. 2023, doi: https://doi.org/10.1016/j.reactfunctpolym.2023.105634.
- [66] I. A. Sogias, A. C. Williams, and V. V. Khutoryanskiy, “Why is Chitosan Mucoadhesive?,” Biomacromolecules, vol. 9, no. 7, pp. 1837–1842, Jun. 2008, doi: https://doi.org/10.1021/bm800276d.
- [67] T. M. Ways, W. Lau, and V. Khutoryanskiy, “Chitosan and Its Derivatives for Application in Mucoadhesive Drug Delivery Systems,” Polymers, vol. 10, no. 3, p. 267, Mar. 2018, doi: https://doi.org/10.3390/polym10030267.
- [68] J. Smith, E. Wood, and M. Dornish, “Effect of Chitosan on Epithelial Cell Tight Junctions,” Pharmaceutical Research, vol. 21, no. 1, pp. 43–49, Jan. 2004, doi: https://doi.org/10.1023/b:pham.0000012150.60180.e3.
- [69] V. K. Mourya and N. N. Inamdar, “Chitosan-modifications and applications: Opportunities galore,” Reactive and Functional Polymers, vol. 68, no. 6, pp. 1013–1051, Jun. 2008, doi: https://doi.org/10.1016/j.reactfunctpolym.2008.03.002.
- [70] M. M. Issa, M. Köping-Höggård, and P. Artursson, “Chitosan and the mucosal delivery of biotechnology drugs,” Drug Discovery Today: Technologies, vol. 2, no. 1, pp. 1–6, Mar. 2005, doi: https://doi.org/10.1016/j.ddtec.2005.05.008.
- [71] E. M. Khalaf et al., “Recent progressions in biomedical and pharmaceutical applications of chitosan nanoparticles: A comprehensive review,” International Journal of Biological Macromolecules, vol. 231, pp. 123354–123354, Mar. 2023, doi: https://doi.org/10.1016/j.ijbiomac.2023.123354.
- [72] M. S. Hasnain and A. K. Nayak, “Chitosan as mucoadhesive polymer in drug delivery,” Chitosan in Drug Delivery, pp. 225–246, 2022, doi: https://doi.org/10.1016/b978-0-12-819336-5.00004-2.
- [73] M. Werle, H. Takeuchi, and A. Bernkop-Schnürch, “Modified Chitosans for Oral Drug Delivery,” Journal of Pharmaceutical Sciences, vol. 98, no. 5, pp. 1643–1656, May 2009, doi: https://doi.org/10.1002/jps.21550.
- [74] U. A. Shinde, P. N. Joshi, D. D. Jain, and K. Singh, “Preparation and Evaluation of N-Trimethyl Chitosan Nanoparticles of Flurbiprofen for Ocular Delivery,” Current Eye Research, vol. 44, no. 5, pp. 575–582, Jan. 2019, doi: https://doi.org/10.1080/02713683.2019.1567793.
- [75] R. He and C. Yin, “Trimethyl chitosan based conjugates for oral and intravenous delivery of paclitaxel,” Acta biomaterialia, vol. 53, pp. 355–366, Apr. 2017, doi: https://doi.org/10.1016/j.actbio.2017.02.012.
- [76] A. Jintapattanakit, V. B. Junyaprasert, and T. Kissel, “The role of mucoadhesion of trimethyl chitosan and PEGylated trimethyl chitosan nanocomplexes in insulin uptake,” Journal of Pharmaceutical Sciences, vol. 98, no. 12, pp. 4818–4830, Dec. 2009, doi: https://doi.org/10.1002/jps.21783.
- [77] R. Jayakumar, M. Prabaharan, S. V. Nair, S. Tokura, H. Tamura, and N. Selvamurugan, “Novel carboxymethyl derivatives of chitin and chitosan materials and their biomedical applications,” Progress in Materials Science, vol. 55, no. 7, pp. 675–709, Sep. 2010, doi: https://doi.org/10.1016/j.pmatsci.2010.03.001.
- [78] M. Davidovich-Pinhas and Havazelet Bianco-Peled, “Novel mucoadhesive system based on sulfhydryl-acrylate interactions,” Journal of Materials Science Materials in Medicine, vol. 21, no. 7, pp. 2027–2034, Apr. 2010, doi: https://doi.org/10.1007/s10856-010-4069-6.
- [79] S. Bonengel and A. Bernkop-Schnürch, “Thiomers — From bench to market,” Journal of Controlled Release, vol. 195, pp. 120–129, Dec. 2014, doi: https://doi.org/10.1016/j.jconrel.2014.06.047.
- [80] T. Eshel-Green and H. Bianco-Peled, “Mucoadhesive acrylated block copolymers micelles for the delivery of hydrophobic drugs,” Colloids and Surfaces B: Biointerfaces, vol. 139, pp. 42–51, Mar. 2016, doi: https://doi.org/10.1016/j.colsurfb.2015.11.044.
- [81] A. Štorha, E. A. Mun, and V. V. Khutoryanskiy, “Synthesis of thiolated and acrylated nanoparticles using thiol-ene click chemistry: towards novel mucoadhesive materials for drug delivery,” RSC Advances, vol. 3, no. 30, p. 12275, May 2013, doi: https://doi.org/10.1039/c3ra42093k.
- [82] L. Shi and K. D. Caldwell, “Mucin Coating on Hydrophobic Polymer Materials,” MRS Proceedings, vol. 599, Jan. 1999, doi: https://doi.org/10.1557/proc-599-299.
- [83] T. A. Sonia and C. P. Sharma, “Chitosan and Its Derivatives for Drug Delivery Perspective,” Advances in Polymer Science, pp. 23–53, 2011, doi: https://doi.org/10.1007/12_2011_117.
- [84] C. Le Tien, M. Lacroix, P. Ispas-Szabo, and M.-A. Mateescu, “N-acylated chitosan: hydrophobic matrices for controlled drug release,” Journal of Controlled Release, vol. 93, no. 1, pp. 1–13, Nov. 2003, doi: https://doi.org/10.1016/s0168-3659(03)00327-4.
- [85] D. Sharma and J. Singh, “Synthesis and Characterization of Fatty Acid Grafted Chitosan Polymer and Their Nanomicelles for Nonviral Gene Delivery Applications,” Bioconjugate Chemistry, vol. 28, no. 11, pp. 2772–2783, Oct. 2017, doi: https://doi.org/10.1021/acs.bioconjchem.7b00505.
- [86] H. Li, Z. Zhang, X. Bao, G. Xu, and P. Yao, “Fatty acid and quaternary ammonium modified chitosan nanoparticles for insulin delivery,” Colloids and Surfaces B: Biointerfaces, vol. 170, pp. 136–143, Oct. 2018, doi: https://doi.org/10.1016/j.colsurfb.2018.05.063.
- [87] Y. Xie, X. Gong, Z. Jin, W. Xu, and K. Zhao, “Curcumin encapsulation in self-assembled nanoparticles based on amphiphilic palmitic acid-grafted-quaternized chitosan with enhanced cytotoxic, antimicrobial and antioxidant properties,” International Journal of Biological Macromolecules, vol. 222, pp. 2855–2867, Dec. 2022, doi: https://doi.org/10.1016/j.ijbiomac.2022.10.064.
- [88] M. C. Bonferoni et al., “Palmitoyl Glycol Chitosan Micelles for Corneal Delivery of Cyclosporine,” Journal of Biomedical Nanotechnology, vol. 12, no. 1, pp. 231–240, Jan. 2016, doi: https://doi.org/10.1166/jbn.2016.2140.
- [89] Krzysztof Pyrć et al., “SARS-CoV-2 inhibition using a mucoadhesive, amphiphilic chitosan that may serve as an anti-viral nasal spray,” Scientific Reports, vol. 11, no. 1, Oct. 2021, doi: https://doi.org/10.1038/s41598-021-99404-8.
- [90] A. Almeida et al., “Novel amphiphilic chitosan micelles as carriers for hydrophobic anticancer drugs,” Materials Science and Engineering: C, vol. 112, p. 110920, Jul. 2020, doi: https://doi.org/10.1016/j.msec.2020.110920.
- [91] A. T. Bernal-Mercado, J. Juarez, M. A. Valdez, J. F. Ayala-Zavala, C. L. Del-Toro-Sánchez, and D. Encinas-Basurto, “Hydrophobic Chitosan Nanoparticles Loaded with Carvacrol against Pseudomonas aeruginosa Biofilms,” Molecules, vol. 27, no. 3, p. 699, Jan. 2022, doi: https://doi.org/10.3390/molecules27030699.
- [92] A. Bernkop-Schnürch and S. Steininger, “Synthesis and characterisation of mucoadhesive thiolated polymers,” International Journal of Pharmaceutics, vol. 194, no. 2, pp. 239–247, Jan. 2000, doi: https://doi.org/10.1016/s0378-5173(99)00387-7.
- [93] M. Mukhtar, E. Fényes, C. Bartos, M. Zeeshan, and R. Ambrus, “Chitosan biopolymer, its derivatives and potential applications in nano-therapeutics: A comprehensive review,” European Polymer Journal, vol. 160, p. 110767, Nov. 2021, doi: https://doi.org/10.1016/j.eurpolymj.2021.110767.
- [94] N. G. M. Schipper, K. M. Vårum, P. Stenberg, G. Ocklind, H. Lennernäs, and P. Artursson, “Chitosans as absorption enhancers of poorly absorbable drugs,” European Journal of Pharmaceutical Sciences, vol. 8, no. 4, pp. 335–343, Aug. 1999, doi: https://doi.org/10.1016/s0928-0987(99)00032-9.
- [95] A. Bernkop-Schnürch, M. Hornof, and D. Guggi, “Thiolated chitosans,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 57, no. 1, pp. 9–17, Jan. 2004, doi: https://doi.org/10.1016/s0939-6411(03)00147-4.
- [96] Y. Zhang et al., “The function and mechanism of preactivated thiomers in triggering epithelial tight junctions opening,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 133, pp. 188–199, Dec. 2018, doi: https://doi.org/10.1016/j.ejpb.2018.10.014.
- [97] A. Bernkop-Schnürch, A. H. Krauland, V. M. Leitner, and T. Palmberger, “Thiomers: potential excipients for non-invasive peptide delivery systems,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 58, no. 2, pp. 253–263, Sep. 2004, doi: https://doi.org/10.1016/j.ejpb.2004.03.032.
- [98] K. Kafedjiiski, A. H. Krauland, M. H. Hoffer, and A. Bernkop-Schnürch, “Synthesis and in vitro evaluation of a novel thiolated chitosan,” Biomaterials, vol. 26, no. 7, pp. 819–826, Mar. 2005, doi: https://doi.org/10.1016/j.biomaterials.2004.03.011.
- [99] C. Federer, M. Kurpiers, and A. Bernkop-Schnürch, “Thiolated Chitosans: A Multi-talented Class of Polymers for Various Applications,” Biomacromolecules, vol. 22, no. 1, pp. 24–56, Jun. 2020, doi: https://doi.org/10.1021/acs.biomac.0c00663.
- [100] S. Manna et al., “Chitosan Derivatives as Carriers for Drug Delivery and Biomedical Applications,” ACS Biomaterials Science & Engineering, Apr. 2023, doi: https://doi.org/10.1021/acsbiomaterials.2c01297.
- [101] W. Samprasit, P. Opanasopit, and B. Chamsai, “Mucoadhesive chitosan and thiolated chitosan nanoparticles containing alpha mangostin for possible Colon-targeted delivery,” Pharmaceutical Development and Technology, vol. 26, no. 3, pp. 362–372, Jan. 2021, doi: https://doi.org/10.1080/10837450.2021.1873370.
- [102] S. Maria et al., “Synthesis and characterization of pre-activated thiolated chitosan nanoparticles for oral delivery of octreotide,” Journal of Drug Delivery Science and Technology, vol. 58, pp. 101807–101807, Aug. 2020, doi: https://doi.org/10.1016/j.jddst.2020.101807.
- [103] M. Croce, S. Conti, C. Maake, and G. R. Patzke, “Synthesis and screening of N-acyl thiolated chitosans for antibacterial applications,” Carbohydrate Polymers, vol. 151, pp. 1184–1192, Oct. 2016, doi: https://doi.org/10.1016/j.carbpol.2016.06.014.
- [104] D. Liu et al., “Potential advantages of a novel chitosan-N-acetylcysteine surface modified nanostructured lipid carrier on the performance of ophthalmic delivery of curcumin,” Scientific Reports, vol. 6, no. 1, Jun. 2016, doi: https://doi.org/10.1038/srep28796.
- [105] B. Fan, Y. Xing, Y. Zheng, C. Sun, and G. Liang, “pH-responsive thiolated chitosan nanoparticles for oral low-molecular weight heparin delivery:in vitroandin vivoevaluation,” Drug Delivery, vol. 23, no. 1, pp. 238–247, May 2014, doi: https://doi.org/10.3109/10717544.2014.909908.
- [106] R. Esquivel, J. Juárez, M. Almada, J. Ibarra, and M. A. Valdez, “Synthesis and Characterization of New Thiolated Chitosan Nanoparticles Obtained by Ionic Gelation Method,” International Journal of Polymer Science, vol. 2015, pp. 1–18, 2015, doi: https://doi.org/10.1155/2015/502058.
- [107] T. Schmitz, Vjera Grabovac, T. F. Palmberger, M. H. Hoffer, and A. Bernkop-Schnürch, “Synthesis and characterization of a chitosan-N-acetyl cysteine conjugate,” International Journal of Pharmaceutics vol. 347, no. 1–2, pp. 79–85, Jan. 2008, doi: https://doi.org/10.1016/j.ijpharm.2007.06.040.
- [108] C. E. Kast, C. Valenta, M. Leopold, and A. Bernkop-Schnürch, “Design and in vitro evaluation of a novel bioadhesive vaginal drug delivery system for clotrimazole,” Journal of Controlled Release, vol. 81, no. 3, pp. 347–354, Jun. 2002, doi: https://doi.org/10.1016/s0168-3659(02)00077-9.
- [109] C. E. Kast and A. Bernkop-Schnürch, “Thiolated polymers — thiomers: development and in vitro evaluation of chitosan–thioglycolic acid conjugates,” Biomaterials, vol. 22, no. 17, pp. 2345–2352, Sep. 2001, doi: https://doi.org/10.1016/s0142-9612(00)00421-x.
- [110] S. Sudhakar, S. V. Chandran, N. Selvamurugan, and R. A. Nazeer, “Biodistribution and pharmacokinetics of thiolated chitosan nanoparticles for oral delivery of insulin in vivo,” International Journal of Biological Macromolecules, vol. 150, pp. 281–288, May 2020, doi: https://doi.org/10.1016/j.ijbiomac.2020.02.079.
- [111] F. Naseer, T. Ahmad, K. Kousar, S. Kakar, R. Gul, and S. Anjum, “Formulation of surface-functionalized hyaluronic acid-coated thiolated chitosan nano-formulation for the delivery of vincristine in prostate cancer: A multifunctional targeted drug delivery approach,” Journal of Drug Delivery Science and Technology, vol. 74, p. 103545, Aug. 2022, doi: https://doi.org/10.1016/j.jddst.2022.103545.
- [112] O. Iqbal et al., “Moxifloxacin loaded nanoparticles of disulfide bridged thiolated chitosan-eudragit RS100 for controlled drug delivery,” International Journal of Biological Macromolecules, vol. 182, pp. 2087–2096, Jul. 2021, doi: https://doi.org/10.1016/j.ijbiomac.2021.05.199.
- [113] S. Javed et al., “Tobramycin-loaded nanoparticles of thiolated chitosan for ocular drug delivery: Preparation, mucoadhesion and pharmacokinetic evaluation,” Heliyon, vol. 9, no. 9, pp. e19877–e19877, Sep. 2023, doi: https://doi.org/10.1016/j.heliyon.2023.e19877.