Araştırma Makalesi
BibTex RIS Kaynak Göster

Comparative Analysis of Heat Transfer Coefficient Using Experimental Data and Empirical Expressions

Yıl 2024, Cilt: 6 Sayı: 3, 272 - 282, 02.01.2025
https://doi.org/10.46740/alku.1536213

Öz

This study aims to determine the heat transfer coefficient by comparing results obtained from both experimental methods and empirical expressions. A controlled experiment involving the flow of water through a polyethylene hose was conducted, and the heat transfer coefficient was calculated based on inlet and outlet temperatures. These findings were then compared with values derived from empirical correlations, specifically the Sieder-Tate equation, to assess accuracy and reliability. The experimental setup maintained consistent boundary conditions, including water inlet temperature, airflow rate, and hose orientation. The results indicated that the experimentally determined heat transfer coefficient was 48.30 W/(m²·K), while the empirical calculation yielded a value of 53.44 W/(m²·K). The slight discrepancy between these values highlights minor experimental errors and assumptions inherent in empirical models. Overall, the close agreement between the experimental and empirical values validates the use of empirical correlations for predicting heat transfer coefficients in similar configurations. This study provides valuable insights for optimizing heat transfer processes in various industrial and engineering applications, emphasizing the importance of experimental validation. Future work could explore extended parameter ranges, advanced measurement techniques, and numerical simulations to further enhance the accuracy and applicability of the findings.

Kaynakça

  • [1] R. Gugulothu, K. Akkiraju, S. Somanchi, and V. K. Reddy, “ScienceDirect A Review on Enhancement of Heat Transfer in Heat Exchanger with Different Inserts A Review on Enhancement of Heat Transfer in Heat Exchanger with Different Inserts,” 2016. [Online]. Available: www.sciencedirect.com
  • [2] M. ElFaham and C. C. Tang, “A Comparative Analysis of Two-Phase Flow Boiling Heat Transfer Coefficient and Correlations for Hydrocarbons and Ethanol,” Aug. 01, 2023, Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/en16165931.
  • [3] H. Shi, N. Di Miceli Raimondi, M. Cabassud, C. Gourdon, and C. Gourdon Experimen, “Experimental study of heat transfer coefficient in heat exchanger reactors with square millimetric zigzag channels,” Chemical Engineering and Processing, vol. 182, 2022, doi: 10.1016/j.cep.2022.109194ï.
  • [4] Y. Xuan and Q. Li, “Investigation on convective heat transfer and flow features of nanofluids,” J Heat Transfer, vol. 125, no. 1, pp. 151–155, Feb. 2003, doi: 10.1115/1.1532008.
  • [5] Y. Li, M. Li, Y. Li, W. Cai, and L. Yao, “Experimental investigation on the heat transfer performance of falling film evaporation with lubrication oil on horizontal tubes having different structures,” International Journal of Thermal Sciences, vol. 160, Feb. 2021, doi: 10.1016/j.ijthermalsci.2020.106669.
  • [6] S. Kim, S. Kang, and J. Lee, “High-Thermal-Conductivity and High-Fluidity Heat Transfer Emulsion with 89 wt % Suspended Liquid Metal Microdroplets,” ACS Omega, vol. 8, no. 20, pp. 17748–17757, May 2023, doi: 10.1021/acsomega.3c00487.
  • [7] K. Apmann, R. Fulmer, B. Scherer, S. Good, J. Wohld, and S. Vafaei, “Nanofluid Heat Transfer: Enhancement of the Heat Transfer Coefficient inside Microchannels,” Nanomaterials, vol. 12, no. 4, Feb. 2022, doi: 10.3390/nano12040615.
  • [8] Y. Zhai, G. Xia, Z. Li, and H. Wang, “Experimental investigation and empirical correlations of single and laminar convective heat transfer in microchannel heat sinks,” Exp Therm Fluid Sci, vol. 83, pp. 207–214, 2017, doi: 10.1016/j.expthermflusci.2017.01.005.
  • [9] S. S. Pawar and V. K. Sunnapwar, “Experimental studies on heat transfer to Newtonian and non-Newtonian fluids in helical coils with laminar and turbulent flow,” Exp Therm Fluid Sci, vol. 44, pp. 792–804, Jan. 2013, doi: 10.1016/j.expthermflusci.2012.09.024.
  • [10] V. M. Hameed, M. A. Hussein, and H. T. Dhaiban, “Investigating the effect of various fin geometries on the thermal performance of a heat sink under natural convection,” Heat Transfer, vol. 49, no. 8, pp. 5038–5049, Dec. 2020, doi: 10.1002/htj.21866.
  • [11] S. Yu, T. Tang, J. Li, and P. Yu, “Effect of prandtl number on mixed convective heat transfer from a porous cylinder in the steady flow regime,” Entropy, vol. 22, no. 2, Feb. 2020, doi: 10.3390/e22020184.
  • [12] D. Taler, “Experimental determination of correlations for average heat transfer coefficients in heat exchangers on both fluid sides,” Heat and Mass Transfer/Waerme- und Stoffuebertragung, vol. 49, no. 8, pp. 1125–1139, 2013, doi: 10.1007/s00231-013-1148-5.
  • [13] T. A. Moreira, A. R. A. Colmanetti, and C. B. Tibiriçá, “Heat transfer coefficient: a review of measurement techniques,” Jun. 01, 2019, Springer Verlag. doi: 10.1007/s40430-019-1763-2.

Deneysel Veriler ve Ampirik İfadeler Kullanılarak Isı Transfer Katsayısının Karşılaştırmalı Analizi

Yıl 2024, Cilt: 6 Sayı: 3, 272 - 282, 02.01.2025
https://doi.org/10.46740/alku.1536213

Öz

Bu çalışma, hem deneysel yöntemlerden hem de ampirik ifadelerden elde edilen sonuçları karşılaştırarak ısı transfer katsayısını belirlemeyi amaçlamaktadır. Suyun polietilen hortumdan akışını içeren kontrollü bir deney yapılmış ve giriş ve çıkış sıcaklıklarına göre ısı transfer katsayısı hesaplanmıştır. Bu bulgular daha sonra doğruluk ve güvenilirliği değerlendirmek için ampirik korelasyonlardan, özellikle de Sieder-Tate denkleminden elde edilen değerlerle karşılaştırılmıştır. Deney düzeneği, su giriş sıcaklığı, hava akış hızı ve hortum yönelimi dahil olmak üzere tutarlı sınır koşullarını korumuştur. Sonuçlar deneysel olarak belirlenen ısı transfer katsayısının 48,30 W/(m²·K) olduğunu gösterirken ampirik hesaplama 53,44 W/(m²·K) değerini vermiştir. Bu değerler arasındaki az farklılık, ampirik modellerin doğasında bulunan küçük deneysel hataları ve varsayımları vurgulamaktadır. Genel olarak, deneysel ve ampirik değerler arasındaki yakın uyum, benzer konfigürasyonlarda ısı transferi katsayılarını tahmin etmek için ampirik korelasyonların kullanımını doğrulamaktadır. Bu çalışma, deneysel doğrulamanın önemini vurgulayarak çeşitli endüstriyel ve mühendislik uygulamalarında ısı transfer süreçlerini optimize etmeye yönelik değerli bilgiler sunmaktadır. Gelecekteki çalışmalar, bulguların doğruluğunu ve uygulanabilirliğini daha da artırmak için genişletilmiş parametre aralıklarını, gelişmiş ölçüm tekniklerini ve sayısal simülasyonları kullanabilecektir.

Kaynakça

  • [1] R. Gugulothu, K. Akkiraju, S. Somanchi, and V. K. Reddy, “ScienceDirect A Review on Enhancement of Heat Transfer in Heat Exchanger with Different Inserts A Review on Enhancement of Heat Transfer in Heat Exchanger with Different Inserts,” 2016. [Online]. Available: www.sciencedirect.com
  • [2] M. ElFaham and C. C. Tang, “A Comparative Analysis of Two-Phase Flow Boiling Heat Transfer Coefficient and Correlations for Hydrocarbons and Ethanol,” Aug. 01, 2023, Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/en16165931.
  • [3] H. Shi, N. Di Miceli Raimondi, M. Cabassud, C. Gourdon, and C. Gourdon Experimen, “Experimental study of heat transfer coefficient in heat exchanger reactors with square millimetric zigzag channels,” Chemical Engineering and Processing, vol. 182, 2022, doi: 10.1016/j.cep.2022.109194ï.
  • [4] Y. Xuan and Q. Li, “Investigation on convective heat transfer and flow features of nanofluids,” J Heat Transfer, vol. 125, no. 1, pp. 151–155, Feb. 2003, doi: 10.1115/1.1532008.
  • [5] Y. Li, M. Li, Y. Li, W. Cai, and L. Yao, “Experimental investigation on the heat transfer performance of falling film evaporation with lubrication oil on horizontal tubes having different structures,” International Journal of Thermal Sciences, vol. 160, Feb. 2021, doi: 10.1016/j.ijthermalsci.2020.106669.
  • [6] S. Kim, S. Kang, and J. Lee, “High-Thermal-Conductivity and High-Fluidity Heat Transfer Emulsion with 89 wt % Suspended Liquid Metal Microdroplets,” ACS Omega, vol. 8, no. 20, pp. 17748–17757, May 2023, doi: 10.1021/acsomega.3c00487.
  • [7] K. Apmann, R. Fulmer, B. Scherer, S. Good, J. Wohld, and S. Vafaei, “Nanofluid Heat Transfer: Enhancement of the Heat Transfer Coefficient inside Microchannels,” Nanomaterials, vol. 12, no. 4, Feb. 2022, doi: 10.3390/nano12040615.
  • [8] Y. Zhai, G. Xia, Z. Li, and H. Wang, “Experimental investigation and empirical correlations of single and laminar convective heat transfer in microchannel heat sinks,” Exp Therm Fluid Sci, vol. 83, pp. 207–214, 2017, doi: 10.1016/j.expthermflusci.2017.01.005.
  • [9] S. S. Pawar and V. K. Sunnapwar, “Experimental studies on heat transfer to Newtonian and non-Newtonian fluids in helical coils with laminar and turbulent flow,” Exp Therm Fluid Sci, vol. 44, pp. 792–804, Jan. 2013, doi: 10.1016/j.expthermflusci.2012.09.024.
  • [10] V. M. Hameed, M. A. Hussein, and H. T. Dhaiban, “Investigating the effect of various fin geometries on the thermal performance of a heat sink under natural convection,” Heat Transfer, vol. 49, no. 8, pp. 5038–5049, Dec. 2020, doi: 10.1002/htj.21866.
  • [11] S. Yu, T. Tang, J. Li, and P. Yu, “Effect of prandtl number on mixed convective heat transfer from a porous cylinder in the steady flow regime,” Entropy, vol. 22, no. 2, Feb. 2020, doi: 10.3390/e22020184.
  • [12] D. Taler, “Experimental determination of correlations for average heat transfer coefficients in heat exchangers on both fluid sides,” Heat and Mass Transfer/Waerme- und Stoffuebertragung, vol. 49, no. 8, pp. 1125–1139, 2013, doi: 10.1007/s00231-013-1148-5.
  • [13] T. A. Moreira, A. R. A. Colmanetti, and C. B. Tibiriçá, “Heat transfer coefficient: a review of measurement techniques,” Jun. 01, 2019, Springer Verlag. doi: 10.1007/s40430-019-1763-2.
Toplam 13 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Makine Mühendisliği (Diğer)
Bölüm Makaleler
Yazarlar

Birkut Güler 0000-0001-5541-5279

Yayımlanma Tarihi 2 Ocak 2025
Gönderilme Tarihi 20 Ağustos 2024
Kabul Tarihi 22 Ekim 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 6 Sayı: 3

Kaynak Göster

APA Güler, B. (2025). Comparative Analysis of Heat Transfer Coefficient Using Experimental Data and Empirical Expressions. ALKÜ Fen Bilimleri Dergisi, 6(3), 272-282. https://doi.org/10.46740/alku.1536213
AMA Güler B. Comparative Analysis of Heat Transfer Coefficient Using Experimental Data and Empirical Expressions. ALKÜ Fen Bilimleri Dergisi. Ocak 2025;6(3):272-282. doi:10.46740/alku.1536213
Chicago Güler, Birkut. “Comparative Analysis of Heat Transfer Coefficient Using Experimental Data and Empirical Expressions”. ALKÜ Fen Bilimleri Dergisi 6, sy. 3 (Ocak 2025): 272-82. https://doi.org/10.46740/alku.1536213.
EndNote Güler B (01 Ocak 2025) Comparative Analysis of Heat Transfer Coefficient Using Experimental Data and Empirical Expressions. ALKÜ Fen Bilimleri Dergisi 6 3 272–282.
IEEE B. Güler, “Comparative Analysis of Heat Transfer Coefficient Using Experimental Data and Empirical Expressions”, ALKÜ Fen Bilimleri Dergisi, c. 6, sy. 3, ss. 272–282, 2025, doi: 10.46740/alku.1536213.
ISNAD Güler, Birkut. “Comparative Analysis of Heat Transfer Coefficient Using Experimental Data and Empirical Expressions”. ALKÜ Fen Bilimleri Dergisi 6/3 (Ocak 2025), 272-282. https://doi.org/10.46740/alku.1536213.
JAMA Güler B. Comparative Analysis of Heat Transfer Coefficient Using Experimental Data and Empirical Expressions. ALKÜ Fen Bilimleri Dergisi. 2025;6:272–282.
MLA Güler, Birkut. “Comparative Analysis of Heat Transfer Coefficient Using Experimental Data and Empirical Expressions”. ALKÜ Fen Bilimleri Dergisi, c. 6, sy. 3, 2025, ss. 272-8, doi:10.46740/alku.1536213.
Vancouver Güler B. Comparative Analysis of Heat Transfer Coefficient Using Experimental Data and Empirical Expressions. ALKÜ Fen Bilimleri Dergisi. 2025;6(3):272-8.