Derleme
BibTex RIS Kaynak Göster
Yıl 2019, Cilt: 3 Sayı: 1, 70 - 78, 31.01.2019

Öz

Kaynakça

  • 1. Arslan S., Erbaş M. (2014). Selüloz ve Selüloz Türevi Diyet Liflerin Özellikleri ve Fırın Ürünlerinde Kullanım İmkanları, Gıda, 39(4): 243-250.
  • 2. Devries JW., Prosky L., Li B., Cho S. (1999). A historical perspective of defining dietary fiber. Cereal Foods World, 44: 367-369.
  • 3. Dülger D., Şahan Y. (2011). Diyet Lifin Özellikleri ve Sağlık Üzerindeki Etkileri, Journal of Agricultural Faculty of Uludag University, 25(2): 147-157.
  • 4. McKevith B. (2004): Nutritional aspects of cereals, British Nutrition Foundation Nutrition Bulletin, 29: 111–142.
  • 5. Yaralı E. (2017). Tahıl Teknolojisi-I, http://www.akademik.adu.edu.tr/myo/cine/webfolders/File/ders%20notlari/Tahil%20Teknolojisi%20I.pdf (21.08.2017).
  • 6. Vasconcelos M.C.B.M. D. ve ark. (2013). Study of composition, stabilization and processing of wheat germ and maize industrial by-products, Industrial Crops and Products, 42: 292–298.
  • 7. Ma S. ve ark. (2014). Improvement of the quality of steamed bread by supplementation of wheat germ from milling process, Journal of Cereal Science, 60: 589-594.
  • 8. Kumar G.S., Krishna A.G.G. (2015). Studies on the nutraceuticals composition of wheat derived oils wheat bran oil and wheat germ oil, J Food Sci Technol, 52(2):1145–1151.
  • 9. Gómez M., González J., Oliete B. (2012). Effect of Extruded Wheat Germ on Dough Rheology and Bread Quality, Food Bioprocess Technol, 5:2409–2418.
  • 10. Güven M., Kara H.H. (2016). Some Chemical and Physical Properties, Fatty Acid Composition and Bioactive Compounds of Wheat Germ Oils Extracted From Different Wheat Cultivars, Journal of Agricultural Sciences, 22: 433-443.
  • 11. Eisenmenger M., Dunford N.T. (2008). Bioactive Components of Commercial and Supercritical Carbon Dioxide Processed Wheat Germ Oil, J Am Oil Chem Soc, 85: 55–61.
  • 12. Dunford N.T., Zhang M. (2003). Pressurized solvent extraction of wheat germ oil, Food Research International, 36: 905–909.
  • 13. Naz A., Butt M.S. (2011). Oxidative stability of wheat germ and rice bran oils in frying, Internet Journal of Food Safety, 13:232-236.
  • 14. Megahed M.G. (2011). Study on stability of wheat germ oil and lipase activity of wheat germ during periodical storage, Agric. Biol. J. N. Am., 2(1): 163-168.
  • 15. Mahmoud A.A., Mohdaly A.A.A., Elneairy N.A.A. (2015). Wheat Germ: An Overview on Nutritional Value, Antioxidant Potential and Antibacterial Characteristics, Food and Nutrition Sciences, 6: 265-277.
  • 16. Bilgiçli N., Levent H. (2013). Improvement of nutritional properties of cake with wheat germ and resistant starch, Journal of Food and Nutrition Research, 52(4): 210–218.
  • 17. İşleroğlu H., Yıldırım Z., Yıldırım M. (2005). Fonksiyonel Bir Gıda Olarak Keten Tohumu, GOÜ. Ziraat Fakültesi Dergisi, 22 (2): 23-30.
  • 18. Epaminondas P. S. (2011). Influence of toasting on the nutritious and thermal properties of flaxseed, J Therm Anal Calorim, 106:551–555.
  • 19. Shakir K.A.F., Madhusudhan B. (2007). Hypocholesterolemic and Hepatoprotective Effects Of Flaxseed Chutney : Evidence From Animal Studies, Indian Journal of Clinical Biochemistry, 22(1): 117-121.
  • 20. Silva F.G.D., Hernandez-Ledesma B., Amigo L., Netto F.M., Miralles B. (2017). Identification of peptides released from flaxseed (Linum usitatissimum) protein by Alcalase® hydrolysis: Antioxidant activity, LWT - Food Science and Technology, 76: 140-146.
  • 21. Seczyk L., Swieca M., Dziki D., Anders A., Gawlik-Dziki U. (2017). Antioxidant, nutritional and functional characteristics of wheat bread enriched with ground flaxseed hulls, Food Chemistry, 214: 32–38.
  • 22. Chen Z.Y., Ratnayake W.M.N., Cunnane S.C. (1994). Oxidative Stability of Flaxseed Lipids During Baking, JAOCS, 71(6): 629-632.
  • 23. Zheng Y., Wiesenborn D.P., Tostenson K., Kangas N. (2003). Screw Pressing of Whole and Dehulled Flaxseed for Organic Oil, JAOCS, 80(10): 1039-1045.
  • 24. Özkal S.G. (2009). Response Surface Analysis and Modeling of Flaxseed Oil Yield in Supercritical Carbon Dioxide, J Am Oil Chem Soc, 86: 1129–1135.
  • 25. Setayesh M., Sadeghifar A.M., Nakhaee N., Kamalinejad M., Rezaeizadeh H. (2016). A Topical Gel From Flax Seed Oil Compared With Hand Splint in Carpal Tunnel Syndrome: A Randomized Clinical Trial, Journal of Evidence-Based Complementary & Alternative Medicine, 1-6.
  • 26. Elboutachfaiti R. ve ark. (2017). Fractionation and structural characterization of six purified rhamnogalacturonans type I from flaxseed mucilage, Food Hydrocolloids, 62: 273-279.
  • 27. Bustamante M., Oomah B.D., Rubilar M., Shene C. (2017). Effective Lactobacillus plantarum and Bifidobacterium infantis encapsulation with chia seed (Salvia hispanica L.) and flaxseed (Linum usitatissimum L.) mucilage and soluble protein by spray drying, Food Chemistry, 216: 97–105.
  • 28. Tirgar M., Silcock P., Carne A., Birch E.J. (2017). Effect of extraction method on functional properties of flaxseed protein concentrates, Food Chemistry, 215: 417–424.
  • 29. Khattab R.Y., Zeitoun M.A. (2013). Quality evaluation of flaxseed oil obtained by different extraction techniques, LWT - Food Science and Technology, 53: 338-345.
  • 30. Ixtaina V.Y., Nolasco S.M., Tomas M.C. (2008). Physical properties of chia (Salvia hispanica L.) seeds, Industrial Crops And Products, 28: 286–293.
  • 31. Timilsena Y.P., Adhikari R., Kasapis S., Adhikari B. (2016). Molecular and functional characteristics of purified gum fromAustralian chia seeds, Carbohydrate Polymers, 136: 128–136.
  • 32. Goh K.K.T. ve ark. (2016). The physico-chemical properties of chia seed polysaccharide and itsmicrogel dispersion rheology, Carbohydrate Polymers, 149: 297–307.
  • 33. Timilsena Y.P., Wang B., Adhikari R., Adhikari B. (2016). Preparation and characterization of chia seed protein isolate - chia seed gum complex coacervates, Food Hydrocolloids, 52: 554-563.
  • 34. Ayerza R. (1995). Oil Content and Fatty Acid Composition of Chia (Salvia hispanica L.) from Five Northwestern Locations in Argentina, JAOCS, 72(9): 1079-1081.
  • 35. Capitani M.I., Spotorno V., Nolasco S.M., Tomás M.C. (2012). Physicochemical and functional characterization of by-products from chia (Salvia hispanica L.) seeds of Argentina, LWT - Food Science and Technology, 45: 94-102.
  • 36. Timilsena Y.P., Adhikari R., Barrow C.J., Adhikari B. (2016). Physicochemical and functional properties of protein isolate produced from Australian chia seeds, Food Chemistry, 212: 648–656.
  • 37. Wojcieszek J., Popowski D., Ruzik L. (2016). Ionic liquids as a key medium for efficient extraction of copper complexes from chia seeds (Salvia hispanica L.), Talanta, 152: 482-488.
  • 38. Bodoira R.M., Penci M.C., Ribotta P.D., Martínez M. L. (2017). Chia (Salvia hispanica L.) oil stability: Study of the effect of natural antioxidants, LWT - Food Science and Technology, 75: 107-113.
  • 39. Marineli R.S. ve ark. (2014). Chemical characterization and antioxidant potential of Chilean chia seeds and oil (Salvia hispanica L.), LWT - Food Science and Technology, 59: 1304-1310.
  • 40. Bhatia A.L. (2005). Growing colourful and nutritious amaranth, Natural Product Radiance, 4(1): 40-45.
  • 41. Subramanian M.B.B.S.D., Pharm S.G.M. (2016). Pharmacokinetic study of amaranth extract in healthy humans: A randomized trial, Nutrition, 32: 748–753.
  • 42. Chauhan A., Saxena D.C., Singh S. (2015). Total dietary fibre and antioxidant activity of gluten free cookies made from raw and germinated amaranth (Amaranthus spp.) flour, LWT - Food Science and Technology, 63: 939-945.
  • 43. Bolontrade A.J., Scilingo A.A., Anón M.A. (2016). Amaranth proteins foaming properties: Film rheology and foamstability – Part 2, Colloids and Surfaces B: Biointerfaces ,141: 643–650.
  • 44. Moronta L., Smaldini P.L., Fossati C.A., Añon M.A., Docena G.H. (2016). The anti-inflammatory SSEDIKE peptide from Amaranth seeds modulates IgE-mediated food allergy, Journal of Functional Foods, 25: 579–587.
  • 45. Varlı S.N., Şanlıer N. (2016). Nutritional and health benefits of quinoa (Chenopodium quinoa Willd.), Journal of Cereal Science, 69: 371-376.
  • 46. Li G., Zhu F. (2017). Molecular structure of quinoa starch, Carbohydrate Polymers, 158: 124-132.
  • 47. Turkut G.M., Çakmak H., Kumcuoğlu S., Tavman Ş. (2016). Effect of quinoa flour on gluten-free bread batter rheology and bread quality, Journal of Cereal Science, 69: 174-181.
  • 48. Ruiz G.A., Xiao W., Boekel M.V., Minor M., Stieger M. (2016). Effect of extraction pH on heat-induced aggregation, gelation and microstructure of protein isolate from quinoa (Chenopodium quinoa Willd), Food Chemistry, 209: 203-210.
  • 49. Lorusso A., Verni M., Montemurro M., Coda R., Gobbetti M., Rizzello C.G. (2017). Use of fermented quinoa flour for pasta making and evaluation of the technological and nutritional features, LWT - Food Science and Technology, 78: 215-221.
  • 50. Ross A.B, Svelander C., Karlsson G., Savolainen O.I. (2017). Identification and quantification of even and odd chained 5-n alkylresorcinols, branched chain-alkylresorcinols and methylalkylresorcinols in Quinoa (Chenopodium quinoa), Food Chemistry, 220: 344-351.

DİYET LİF İÇERİĞİ YÜKSEK BAZI GIDALAR VE BESLENME ÜZERİNDEKİ ETKİLERİ

Yıl 2019, Cilt: 3 Sayı: 1, 70 - 78, 31.01.2019

Öz

Diyet
lifi, sindirim enzimlerine dirençli bir grup gıda bileşeni olarak tanımlanmakta
olup başlıca kaynakları tahıl, meyve ve sebzelerdir. Diyet lifi, başta kolon
kanseri olmak üzere kardiyovasküler hastalıklar, diyabet, kabızlık gibi birçok
hastalığın önlenmesinde olumlu etkilere sahiptir. Diyet lifi, teknolojik ve
fonksiyonel özellikleri nedeniyle gıda teknolojisinde önem arz eder. Ayrıca
düşük enerjili gıda üretimlerinde formülasyonun oldukça önemli bir bileşenidir.
Günümüzde sağlıklı beslenen tüketicilerin sayısının artması, diyet lif içeriği
yüksek gıdaların tüketimine olan ilgiyi de giderek arttırmaktadır.

Kaynakça

  • 1. Arslan S., Erbaş M. (2014). Selüloz ve Selüloz Türevi Diyet Liflerin Özellikleri ve Fırın Ürünlerinde Kullanım İmkanları, Gıda, 39(4): 243-250.
  • 2. Devries JW., Prosky L., Li B., Cho S. (1999). A historical perspective of defining dietary fiber. Cereal Foods World, 44: 367-369.
  • 3. Dülger D., Şahan Y. (2011). Diyet Lifin Özellikleri ve Sağlık Üzerindeki Etkileri, Journal of Agricultural Faculty of Uludag University, 25(2): 147-157.
  • 4. McKevith B. (2004): Nutritional aspects of cereals, British Nutrition Foundation Nutrition Bulletin, 29: 111–142.
  • 5. Yaralı E. (2017). Tahıl Teknolojisi-I, http://www.akademik.adu.edu.tr/myo/cine/webfolders/File/ders%20notlari/Tahil%20Teknolojisi%20I.pdf (21.08.2017).
  • 6. Vasconcelos M.C.B.M. D. ve ark. (2013). Study of composition, stabilization and processing of wheat germ and maize industrial by-products, Industrial Crops and Products, 42: 292–298.
  • 7. Ma S. ve ark. (2014). Improvement of the quality of steamed bread by supplementation of wheat germ from milling process, Journal of Cereal Science, 60: 589-594.
  • 8. Kumar G.S., Krishna A.G.G. (2015). Studies on the nutraceuticals composition of wheat derived oils wheat bran oil and wheat germ oil, J Food Sci Technol, 52(2):1145–1151.
  • 9. Gómez M., González J., Oliete B. (2012). Effect of Extruded Wheat Germ on Dough Rheology and Bread Quality, Food Bioprocess Technol, 5:2409–2418.
  • 10. Güven M., Kara H.H. (2016). Some Chemical and Physical Properties, Fatty Acid Composition and Bioactive Compounds of Wheat Germ Oils Extracted From Different Wheat Cultivars, Journal of Agricultural Sciences, 22: 433-443.
  • 11. Eisenmenger M., Dunford N.T. (2008). Bioactive Components of Commercial and Supercritical Carbon Dioxide Processed Wheat Germ Oil, J Am Oil Chem Soc, 85: 55–61.
  • 12. Dunford N.T., Zhang M. (2003). Pressurized solvent extraction of wheat germ oil, Food Research International, 36: 905–909.
  • 13. Naz A., Butt M.S. (2011). Oxidative stability of wheat germ and rice bran oils in frying, Internet Journal of Food Safety, 13:232-236.
  • 14. Megahed M.G. (2011). Study on stability of wheat germ oil and lipase activity of wheat germ during periodical storage, Agric. Biol. J. N. Am., 2(1): 163-168.
  • 15. Mahmoud A.A., Mohdaly A.A.A., Elneairy N.A.A. (2015). Wheat Germ: An Overview on Nutritional Value, Antioxidant Potential and Antibacterial Characteristics, Food and Nutrition Sciences, 6: 265-277.
  • 16. Bilgiçli N., Levent H. (2013). Improvement of nutritional properties of cake with wheat germ and resistant starch, Journal of Food and Nutrition Research, 52(4): 210–218.
  • 17. İşleroğlu H., Yıldırım Z., Yıldırım M. (2005). Fonksiyonel Bir Gıda Olarak Keten Tohumu, GOÜ. Ziraat Fakültesi Dergisi, 22 (2): 23-30.
  • 18. Epaminondas P. S. (2011). Influence of toasting on the nutritious and thermal properties of flaxseed, J Therm Anal Calorim, 106:551–555.
  • 19. Shakir K.A.F., Madhusudhan B. (2007). Hypocholesterolemic and Hepatoprotective Effects Of Flaxseed Chutney : Evidence From Animal Studies, Indian Journal of Clinical Biochemistry, 22(1): 117-121.
  • 20. Silva F.G.D., Hernandez-Ledesma B., Amigo L., Netto F.M., Miralles B. (2017). Identification of peptides released from flaxseed (Linum usitatissimum) protein by Alcalase® hydrolysis: Antioxidant activity, LWT - Food Science and Technology, 76: 140-146.
  • 21. Seczyk L., Swieca M., Dziki D., Anders A., Gawlik-Dziki U. (2017). Antioxidant, nutritional and functional characteristics of wheat bread enriched with ground flaxseed hulls, Food Chemistry, 214: 32–38.
  • 22. Chen Z.Y., Ratnayake W.M.N., Cunnane S.C. (1994). Oxidative Stability of Flaxseed Lipids During Baking, JAOCS, 71(6): 629-632.
  • 23. Zheng Y., Wiesenborn D.P., Tostenson K., Kangas N. (2003). Screw Pressing of Whole and Dehulled Flaxseed for Organic Oil, JAOCS, 80(10): 1039-1045.
  • 24. Özkal S.G. (2009). Response Surface Analysis and Modeling of Flaxseed Oil Yield in Supercritical Carbon Dioxide, J Am Oil Chem Soc, 86: 1129–1135.
  • 25. Setayesh M., Sadeghifar A.M., Nakhaee N., Kamalinejad M., Rezaeizadeh H. (2016). A Topical Gel From Flax Seed Oil Compared With Hand Splint in Carpal Tunnel Syndrome: A Randomized Clinical Trial, Journal of Evidence-Based Complementary & Alternative Medicine, 1-6.
  • 26. Elboutachfaiti R. ve ark. (2017). Fractionation and structural characterization of six purified rhamnogalacturonans type I from flaxseed mucilage, Food Hydrocolloids, 62: 273-279.
  • 27. Bustamante M., Oomah B.D., Rubilar M., Shene C. (2017). Effective Lactobacillus plantarum and Bifidobacterium infantis encapsulation with chia seed (Salvia hispanica L.) and flaxseed (Linum usitatissimum L.) mucilage and soluble protein by spray drying, Food Chemistry, 216: 97–105.
  • 28. Tirgar M., Silcock P., Carne A., Birch E.J. (2017). Effect of extraction method on functional properties of flaxseed protein concentrates, Food Chemistry, 215: 417–424.
  • 29. Khattab R.Y., Zeitoun M.A. (2013). Quality evaluation of flaxseed oil obtained by different extraction techniques, LWT - Food Science and Technology, 53: 338-345.
  • 30. Ixtaina V.Y., Nolasco S.M., Tomas M.C. (2008). Physical properties of chia (Salvia hispanica L.) seeds, Industrial Crops And Products, 28: 286–293.
  • 31. Timilsena Y.P., Adhikari R., Kasapis S., Adhikari B. (2016). Molecular and functional characteristics of purified gum fromAustralian chia seeds, Carbohydrate Polymers, 136: 128–136.
  • 32. Goh K.K.T. ve ark. (2016). The physico-chemical properties of chia seed polysaccharide and itsmicrogel dispersion rheology, Carbohydrate Polymers, 149: 297–307.
  • 33. Timilsena Y.P., Wang B., Adhikari R., Adhikari B. (2016). Preparation and characterization of chia seed protein isolate - chia seed gum complex coacervates, Food Hydrocolloids, 52: 554-563.
  • 34. Ayerza R. (1995). Oil Content and Fatty Acid Composition of Chia (Salvia hispanica L.) from Five Northwestern Locations in Argentina, JAOCS, 72(9): 1079-1081.
  • 35. Capitani M.I., Spotorno V., Nolasco S.M., Tomás M.C. (2012). Physicochemical and functional characterization of by-products from chia (Salvia hispanica L.) seeds of Argentina, LWT - Food Science and Technology, 45: 94-102.
  • 36. Timilsena Y.P., Adhikari R., Barrow C.J., Adhikari B. (2016). Physicochemical and functional properties of protein isolate produced from Australian chia seeds, Food Chemistry, 212: 648–656.
  • 37. Wojcieszek J., Popowski D., Ruzik L. (2016). Ionic liquids as a key medium for efficient extraction of copper complexes from chia seeds (Salvia hispanica L.), Talanta, 152: 482-488.
  • 38. Bodoira R.M., Penci M.C., Ribotta P.D., Martínez M. L. (2017). Chia (Salvia hispanica L.) oil stability: Study of the effect of natural antioxidants, LWT - Food Science and Technology, 75: 107-113.
  • 39. Marineli R.S. ve ark. (2014). Chemical characterization and antioxidant potential of Chilean chia seeds and oil (Salvia hispanica L.), LWT - Food Science and Technology, 59: 1304-1310.
  • 40. Bhatia A.L. (2005). Growing colourful and nutritious amaranth, Natural Product Radiance, 4(1): 40-45.
  • 41. Subramanian M.B.B.S.D., Pharm S.G.M. (2016). Pharmacokinetic study of amaranth extract in healthy humans: A randomized trial, Nutrition, 32: 748–753.
  • 42. Chauhan A., Saxena D.C., Singh S. (2015). Total dietary fibre and antioxidant activity of gluten free cookies made from raw and germinated amaranth (Amaranthus spp.) flour, LWT - Food Science and Technology, 63: 939-945.
  • 43. Bolontrade A.J., Scilingo A.A., Anón M.A. (2016). Amaranth proteins foaming properties: Film rheology and foamstability – Part 2, Colloids and Surfaces B: Biointerfaces ,141: 643–650.
  • 44. Moronta L., Smaldini P.L., Fossati C.A., Añon M.A., Docena G.H. (2016). The anti-inflammatory SSEDIKE peptide from Amaranth seeds modulates IgE-mediated food allergy, Journal of Functional Foods, 25: 579–587.
  • 45. Varlı S.N., Şanlıer N. (2016). Nutritional and health benefits of quinoa (Chenopodium quinoa Willd.), Journal of Cereal Science, 69: 371-376.
  • 46. Li G., Zhu F. (2017). Molecular structure of quinoa starch, Carbohydrate Polymers, 158: 124-132.
  • 47. Turkut G.M., Çakmak H., Kumcuoğlu S., Tavman Ş. (2016). Effect of quinoa flour on gluten-free bread batter rheology and bread quality, Journal of Cereal Science, 69: 174-181.
  • 48. Ruiz G.A., Xiao W., Boekel M.V., Minor M., Stieger M. (2016). Effect of extraction pH on heat-induced aggregation, gelation and microstructure of protein isolate from quinoa (Chenopodium quinoa Willd), Food Chemistry, 209: 203-210.
  • 49. Lorusso A., Verni M., Montemurro M., Coda R., Gobbetti M., Rizzello C.G. (2017). Use of fermented quinoa flour for pasta making and evaluation of the technological and nutritional features, LWT - Food Science and Technology, 78: 215-221.
  • 50. Ross A.B, Svelander C., Karlsson G., Savolainen O.I. (2017). Identification and quantification of even and odd chained 5-n alkylresorcinols, branched chain-alkylresorcinols and methylalkylresorcinols in Quinoa (Chenopodium quinoa), Food Chemistry, 220: 344-351.
Toplam 50 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Erdi Ergene

Enver Bariş Bingöl Bu kişi benim

Yayımlanma Tarihi 31 Ocak 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 3 Sayı: 1

Kaynak Göster

APA Ergene, E., & Bingöl, E. B. (2019). DİYET LİF İÇERİĞİ YÜKSEK BAZI GIDALAR VE BESLENME ÜZERİNDEKİ ETKİLERİ. Adnan Menderes Üniversitesi Sağlık Bilimleri Fakültesi Dergisi, 3(1), 70-78.