Araştırma Makalesi
BibTex RIS Kaynak Göster

Sık Dikim Elma Bahçelerinde Ürün Yükünün Ağaç Beslenmesine Etkisi Üzerine Ön Çalışma

Yıl 2023, , 19 - 29, 29.06.2023
https://doi.org/10.18615/anadolu.1209066

Öz

Elma endüstrisinde ürün yükü yönetimine olan ilgi giderek artmaktadır. Nitekim ürün yükü yönetimi özellikle periyodisiteyi hafifletmek ve meyve kalitesini arttırmak açısından oldukça önemlidir. Bununla birlikte ağaç beslenmesi de ürün yükü yönetiminden etkilenmektedir. Bu ön çalışmada (i) ürün yükü ve yaprak besin elementleri arasındaki ilişkiyi ortaya çıkartmak, (ii) dormant dönemde alınan budama artıklarının (odun doku) besin elementi içeriklerini belirlemek ve böylelikle ürün yükünün odun dokusunda depolanan besin elementleri üzerine olan etkisini saptamak ve (iii) yaprak ile odun doku örneklerinin besin elementi içerikleri arasında bir ilişkinin olup olmadığını saptamak amaçlanmıştır. Deneme 2021 yılında Göller Yöresinde (Bayındır Köyü/Yeşilova/Burdur) bulunan Royal Gala/M.9 ağaçlarından oluşan sık dikim bir elma bahçesinde yürütülmüştür. Farklı ürün yüklerini temsil eden toplamda 18 ağaç belirlenerek etiketlenmiş, yaprak analizi, verim ve odun doku analiz örnekleri/verileri aynı ağaçlardan toplanmıştır. Çalışmada ürün yükü arttıkça yaprak-potasyum içeriğinin önemli derecede azaldığı, buna karşın yaprak-kalsiyum ve yaprak-manganez içeriklerinin arttığı belirlenmiştir. Yaprak ve odun dokularında bulunan kalsiyumun pozitif bir korelasyon (0,5418) gösterdiği saptanmıştır.

Destekleyen Kurum

Burdur Mehmet Akif Ersoy Üniversitesi Bilimsel Araştırma Projeleri Komisyonu

Proje Numarası

0781-YL-21

Teşekkür

Çalışmanın bahçelerinde yürütülmesine izin veren Bulargi Gurme (Burdur) firmasına teşekkür ederiz. Arazi ve labaratuvar çalışmalarındaki desteklerinden dolayı sayın Dr. Ayşe Nilgün ATAY’a ve Sayın Dr. Aslıhan CESUR TURGUT’a teşekkürlerimizi sunarız.

Kaynakça

  • Anthony, B., S. Serra, and S. Musacchi. 2019. Optimizing crop load for new apple cultivar: “WA38”. Agronomy 9: 107.
  • Atay, E. 2016. Which nutrients in the leaf decrease linearly as fruit load increases in apples? A preliminary study. p. 656-659. In: 1st International Academic Research Congress, Antalya, Turkey, 3-5 November. Antalya, Türkiye.
  • Atay, E., X. Crété, D. Loubet, and P. E. Lauri. 2021. Effects of different crop loads on physiological, yield and fruit quality of 'JoyaTM' apple trees: High crop load decreases maximum daily trunk diameter and does not affect stem water potential. Int. J. Fruit Sci. 21(1): 955-969.
  • Barkera, A. V., and M. L. Stratton. 2020. Nutrient density of fruit crops as a function of soil fertility. pp. 13-32. In: A. K. Srivastava, and C. Hu (Ed.). Fruit Crops: Diagnosis and Management of Nutrient Constraints. Elsevier, Amsterdam, Netherlands.
  • Bates, T. R., R. M. Dunst, and P. Joy. 2002. Seasonal dry matter, starch, and nutrient distribution in “Concord” grapevines roots. HortScience 37(2): 313-316.
  • Blanco, A, A. Pequerul, J. Val, E. Monge, and J. Gomez Aparisi. 1995. Crop-load effects on vegetative growth, mineral nutrient concentration and leaf water potential in ‘Catherine’ peach. J. Hortic. Sci. 70(4): 623-629.
  • Bound, S. A. 2019. Precision crop load management of apple (Malus × domestica Borkh.) without chemicals. Horticulturae 5: 3.
  • Brown, P. H., H. Hu. 1998. Boron mobility and consequent management in different crops. Better Crops 82 (2): 28-31.
  • Ding, N, Q. Chen, Z. Zhu, L. Peng, S. Ge, and Y. Jiang. 2017. Effects of crop load on distribution and utilization of 13C and 15N and fruit quality for dwarf apple trees. Sci. Rep. 7: 14172.
  • Drazeta, L., A. Lang, A. J. Hall, R. K. Volz, and P. E. Jameson. 2004. Causes and effects of changes in xylem functionality in apple fruit. Ann. Bot. 93: 275-282.
  • Etesami, H., and B. R. Jeong, 2020. Importance of silicon in fruit nutrition: Agronomic and physiological implications. pp. 255-278. In: A. K. Srivastava, and C. Hu (Ed.). Fruit Crops: Diagnosis and Management of Nutrient Constraints. Elsevier, Amsterdam, Netherlands.
  • Gündeşli, M. A, N. B. Kafkas, M. Güney, and S. Kafkas. 2021. Seasonal changes in the mineral nutrient concentrations of different plant organs of pistachio trees in alternate bearing “on” and “off” years. Erwerbs-Obstbau 63: 279-292.
  • Hansen, P. 1971. The effects of cropping on uptake, contents, and distribution of nutrients in apple leaves. Tidsskr. planteavl 75: 615-625.
  • Ibacache, A., N. Verdugo-Vasquez, and A. Zurita-Silva. 2020. Rootstock: Scion combinations and nutrient uptake in grapevines. pp. 297-316. In: A. K. Srivastava, and C. Hu (Ed.). Fruit Crops: Diagnosis and Management of Nutrient Constraints. Elsevier, Amsterdam, Netherlands.
  • Meszaros, M., H. Hnátková, P. Conka, and J. Námestek. 2021. Linking mineral nutrition and fruit quality to growth ıntensity and crop load in apple. Agronomy 11: 506.
  • Mousavi, S. M., and B. Motesharezadeh. 2020. Boron deficiency in fruit crops. pp. 191-210. In: A. K. Srivastava, and C. Hu (Ed.). Fruit Crops: Diagnosis and Management of Nutrient Constraints. Elsevier, Amsterdam, Netherlands.
  • Neilsen, G. H., and D. Neilsen. 2003. Nutritional requirements of apple. pp. 267-302. In: Ferree, D. C., and I. J. Warrington (Ed.). Apples: Botany, Production and Uses. CABI Publishing, Cambridge.
  • Nestby, R., and J. B. Retamales. 2020. Diagnosis and management of nutritional constraints in berries. pp. 567-582. In: A. K. Srivastava, and C. Hu (Ed.). Fruit Crops: Diagnosis and Management of Nutrient Constraints. Elsevier, Amsterdam, Netherlands.
  • Anonymous, 2021. R Core Team 2021. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.
  • Robinson, T. L. 2003. Apple-orchard planting systems. pp. 345-407. In: Ferree, D. C., and I. J. Warrington (Ed.). Apples: Botany, Production and Uses. CABI Publishing, Cambridge.
  • Saltan, F. Z., and H. Seçilmiş Canbay. 2015. Eskişehir’de halk arasında kullanılan bazı bitkilerdeki ağır metal ve besin elementlerinin belirlenmesi. SDÜ Fen Bil. Enst. Derg. 19(1): 83-90.
  • Samuoliené, G., A. Viškelienė, R. Sirtautas, and D. Kviklys. 2016. Relationships between apple tree rootstock, crop-load, plant nutritional status and yield. Sci. Hortic. 211: 167-173.
  • Sidhu, R. S., S. A. Bound, and I. Hunt. 2022. Crop Load and thinning methods impact yield, nutrient content, fruit quality, and physiological disorders in ‘Scilate’ apples. Agronomy 12: 1989.
  • Silber, A., Y. Israeli, M. Levi, A. Keinan, G. Chudi, A. Golanb, M. Noy, I. Levkovitch, K. Narkis, A. Naor, and S. Assoulinea. 2013. The roles of fruit sink in the regulation of gas exchange and water uptake: A case study for avocado. Agric. Water Manag. 116: 21-28.
  • Stander, P. J, G. H. Barry, and P. J. R. Cronjé. 2018. The significance of macronutrients in alternate bearing ‘nadorcott’ mandarin trees. Hortscience 53(11): 1600-1609.
  • Simsek, M. 2016. Chemical, mineral, and fatty acid compositions of various types of walnut (Juglans regia L.) in Turkey. Bulg. Chem. Commun. 48(1): 66-70.
  • Uçgun, K., H. Akgül, S. Gezgin, and A. Atasay. 2013. Meyve ağaçlarında beslenme durumlarının erken dönemde tespit edilebilirliği. SDÜ Zir. Fak. Derg. 8(1): 93-98.
  • Uçgun, K., M. Altındal, and M. Cansu. 2018. Usage of shoot analyses to assess early-season nutritional status of apple trees. Erwerbs-Obstbau 60: 113-117.
  • Urban, L, M. Lechaudel, and P. Lu. 2004. Effect of fruit load and girdling on leaf photosynthesis in Mangifera indica L. J. Exp. Bot. 55: 2075-2085.
  • Vilhena, N. Q, A. Quiñones, I. Rodríguez, R. Gil, P. Fernández-Serrano, and A. Salvador. 2022. Leaf and Fruit nutrient concentration in Rojo Brillante persimmon grown under conventional and organic management, and its Correlation with fruit quality parameters. Agronomy 12: 237.
  • Wojcik, P., and J. Filipczak. 2019. Prognosis of the nutritional status of apple trees based on prebloom leaves and flowers, J. Plant Nutr. 42(16): 2003-2009.
  • Wünsche, J. N., and I. B. Ferguson. 2005. Crop load interactions in apple. Hortic. Rev. 31: 231-290.

Preliminary Study on Effect of Crop Load on Tree Nutrition in Intensive Apple Orchards

Yıl 2023, , 19 - 29, 29.06.2023
https://doi.org/10.18615/anadolu.1209066

Öz

There is increasing interest in crop load management in the apple industry. Indeed, crop load management is essential, especially in reducing biennial bearing and increasing fruit quality. However, tree nutrition is affected by crop load management. This preliminary study aimed (i) to reveal the relationship between crop load and leaf nutrients, (ii) to determine the nutrient content of pruning residues (wood) taken during the dormant period and, thus, determine the effect of crop load on the nutrients stored in the wood tissue, and (iii) to determine whether there is a relationship between the nutrient content of leaf and wood samples. The trial was carried out in 2021 in an intensive apple orchard consisting of Royal Gala/M.9 trees in the Lakes Region (Bayindır/Yeşilova/Burdur). A total of 18 trees representing different crop loads were identified and labelled, and leaf analysis, yield and wood analysis samples/data were collected from the same trees. The study determined that leaf-potassium content decreased significantly as the crop load increased, whereas leaf-calcium and leaf-manganese contents increased. Calcium found in leaf and wood tissues showed a positive correlation (0.5418).

Proje Numarası

0781-YL-21

Kaynakça

  • Anthony, B., S. Serra, and S. Musacchi. 2019. Optimizing crop load for new apple cultivar: “WA38”. Agronomy 9: 107.
  • Atay, E. 2016. Which nutrients in the leaf decrease linearly as fruit load increases in apples? A preliminary study. p. 656-659. In: 1st International Academic Research Congress, Antalya, Turkey, 3-5 November. Antalya, Türkiye.
  • Atay, E., X. Crété, D. Loubet, and P. E. Lauri. 2021. Effects of different crop loads on physiological, yield and fruit quality of 'JoyaTM' apple trees: High crop load decreases maximum daily trunk diameter and does not affect stem water potential. Int. J. Fruit Sci. 21(1): 955-969.
  • Barkera, A. V., and M. L. Stratton. 2020. Nutrient density of fruit crops as a function of soil fertility. pp. 13-32. In: A. K. Srivastava, and C. Hu (Ed.). Fruit Crops: Diagnosis and Management of Nutrient Constraints. Elsevier, Amsterdam, Netherlands.
  • Bates, T. R., R. M. Dunst, and P. Joy. 2002. Seasonal dry matter, starch, and nutrient distribution in “Concord” grapevines roots. HortScience 37(2): 313-316.
  • Blanco, A, A. Pequerul, J. Val, E. Monge, and J. Gomez Aparisi. 1995. Crop-load effects on vegetative growth, mineral nutrient concentration and leaf water potential in ‘Catherine’ peach. J. Hortic. Sci. 70(4): 623-629.
  • Bound, S. A. 2019. Precision crop load management of apple (Malus × domestica Borkh.) without chemicals. Horticulturae 5: 3.
  • Brown, P. H., H. Hu. 1998. Boron mobility and consequent management in different crops. Better Crops 82 (2): 28-31.
  • Ding, N, Q. Chen, Z. Zhu, L. Peng, S. Ge, and Y. Jiang. 2017. Effects of crop load on distribution and utilization of 13C and 15N and fruit quality for dwarf apple trees. Sci. Rep. 7: 14172.
  • Drazeta, L., A. Lang, A. J. Hall, R. K. Volz, and P. E. Jameson. 2004. Causes and effects of changes in xylem functionality in apple fruit. Ann. Bot. 93: 275-282.
  • Etesami, H., and B. R. Jeong, 2020. Importance of silicon in fruit nutrition: Agronomic and physiological implications. pp. 255-278. In: A. K. Srivastava, and C. Hu (Ed.). Fruit Crops: Diagnosis and Management of Nutrient Constraints. Elsevier, Amsterdam, Netherlands.
  • Gündeşli, M. A, N. B. Kafkas, M. Güney, and S. Kafkas. 2021. Seasonal changes in the mineral nutrient concentrations of different plant organs of pistachio trees in alternate bearing “on” and “off” years. Erwerbs-Obstbau 63: 279-292.
  • Hansen, P. 1971. The effects of cropping on uptake, contents, and distribution of nutrients in apple leaves. Tidsskr. planteavl 75: 615-625.
  • Ibacache, A., N. Verdugo-Vasquez, and A. Zurita-Silva. 2020. Rootstock: Scion combinations and nutrient uptake in grapevines. pp. 297-316. In: A. K. Srivastava, and C. Hu (Ed.). Fruit Crops: Diagnosis and Management of Nutrient Constraints. Elsevier, Amsterdam, Netherlands.
  • Meszaros, M., H. Hnátková, P. Conka, and J. Námestek. 2021. Linking mineral nutrition and fruit quality to growth ıntensity and crop load in apple. Agronomy 11: 506.
  • Mousavi, S. M., and B. Motesharezadeh. 2020. Boron deficiency in fruit crops. pp. 191-210. In: A. K. Srivastava, and C. Hu (Ed.). Fruit Crops: Diagnosis and Management of Nutrient Constraints. Elsevier, Amsterdam, Netherlands.
  • Neilsen, G. H., and D. Neilsen. 2003. Nutritional requirements of apple. pp. 267-302. In: Ferree, D. C., and I. J. Warrington (Ed.). Apples: Botany, Production and Uses. CABI Publishing, Cambridge.
  • Nestby, R., and J. B. Retamales. 2020. Diagnosis and management of nutritional constraints in berries. pp. 567-582. In: A. K. Srivastava, and C. Hu (Ed.). Fruit Crops: Diagnosis and Management of Nutrient Constraints. Elsevier, Amsterdam, Netherlands.
  • Anonymous, 2021. R Core Team 2021. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.
  • Robinson, T. L. 2003. Apple-orchard planting systems. pp. 345-407. In: Ferree, D. C., and I. J. Warrington (Ed.). Apples: Botany, Production and Uses. CABI Publishing, Cambridge.
  • Saltan, F. Z., and H. Seçilmiş Canbay. 2015. Eskişehir’de halk arasında kullanılan bazı bitkilerdeki ağır metal ve besin elementlerinin belirlenmesi. SDÜ Fen Bil. Enst. Derg. 19(1): 83-90.
  • Samuoliené, G., A. Viškelienė, R. Sirtautas, and D. Kviklys. 2016. Relationships between apple tree rootstock, crop-load, plant nutritional status and yield. Sci. Hortic. 211: 167-173.
  • Sidhu, R. S., S. A. Bound, and I. Hunt. 2022. Crop Load and thinning methods impact yield, nutrient content, fruit quality, and physiological disorders in ‘Scilate’ apples. Agronomy 12: 1989.
  • Silber, A., Y. Israeli, M. Levi, A. Keinan, G. Chudi, A. Golanb, M. Noy, I. Levkovitch, K. Narkis, A. Naor, and S. Assoulinea. 2013. The roles of fruit sink in the regulation of gas exchange and water uptake: A case study for avocado. Agric. Water Manag. 116: 21-28.
  • Stander, P. J, G. H. Barry, and P. J. R. Cronjé. 2018. The significance of macronutrients in alternate bearing ‘nadorcott’ mandarin trees. Hortscience 53(11): 1600-1609.
  • Simsek, M. 2016. Chemical, mineral, and fatty acid compositions of various types of walnut (Juglans regia L.) in Turkey. Bulg. Chem. Commun. 48(1): 66-70.
  • Uçgun, K., H. Akgül, S. Gezgin, and A. Atasay. 2013. Meyve ağaçlarında beslenme durumlarının erken dönemde tespit edilebilirliği. SDÜ Zir. Fak. Derg. 8(1): 93-98.
  • Uçgun, K., M. Altındal, and M. Cansu. 2018. Usage of shoot analyses to assess early-season nutritional status of apple trees. Erwerbs-Obstbau 60: 113-117.
  • Urban, L, M. Lechaudel, and P. Lu. 2004. Effect of fruit load and girdling on leaf photosynthesis in Mangifera indica L. J. Exp. Bot. 55: 2075-2085.
  • Vilhena, N. Q, A. Quiñones, I. Rodríguez, R. Gil, P. Fernández-Serrano, and A. Salvador. 2022. Leaf and Fruit nutrient concentration in Rojo Brillante persimmon grown under conventional and organic management, and its Correlation with fruit quality parameters. Agronomy 12: 237.
  • Wojcik, P., and J. Filipczak. 2019. Prognosis of the nutritional status of apple trees based on prebloom leaves and flowers, J. Plant Nutr. 42(16): 2003-2009.
  • Wünsche, J. N., and I. B. Ferguson. 2005. Crop load interactions in apple. Hortic. Rev. 31: 231-290.
Toplam 32 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Ziraat, Veterinerlik ve Gıda Bilimleri
Bölüm Makaleler
Yazarlar

Saido Mohamed Yusuf Bu kişi benim 0000-0001-8295-7997

Ersin Atay 0000-0003-0810-3779

Proje Numarası 0781-YL-21
Yayımlanma Tarihi 29 Haziran 2023
Gönderilme Tarihi 24 Kasım 2022
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Yusuf, S. M., & Atay, E. (2023). Sık Dikim Elma Bahçelerinde Ürün Yükünün Ağaç Beslenmesine Etkisi Üzerine Ön Çalışma. ANADOLU Ege Tarımsal Araştırma Enstitüsü Dergisi, 33(1), 19-29. https://doi.org/10.18615/anadolu.1209066
AMA Yusuf SM, Atay E. Sık Dikim Elma Bahçelerinde Ürün Yükünün Ağaç Beslenmesine Etkisi Üzerine Ön Çalışma. ANADOLU. Haziran 2023;33(1):19-29. doi:10.18615/anadolu.1209066
Chicago Yusuf, Saido Mohamed, ve Ersin Atay. “Sık Dikim Elma Bahçelerinde Ürün Yükünün Ağaç Beslenmesine Etkisi Üzerine Ön Çalışma”. ANADOLU Ege Tarımsal Araştırma Enstitüsü Dergisi 33, sy. 1 (Haziran 2023): 19-29. https://doi.org/10.18615/anadolu.1209066.
EndNote Yusuf SM, Atay E (01 Haziran 2023) Sık Dikim Elma Bahçelerinde Ürün Yükünün Ağaç Beslenmesine Etkisi Üzerine Ön Çalışma. ANADOLU Ege Tarımsal Araştırma Enstitüsü Dergisi 33 1 19–29.
IEEE S. M. Yusuf ve E. Atay, “Sık Dikim Elma Bahçelerinde Ürün Yükünün Ağaç Beslenmesine Etkisi Üzerine Ön Çalışma”, ANADOLU, c. 33, sy. 1, ss. 19–29, 2023, doi: 10.18615/anadolu.1209066.
ISNAD Yusuf, Saido Mohamed - Atay, Ersin. “Sık Dikim Elma Bahçelerinde Ürün Yükünün Ağaç Beslenmesine Etkisi Üzerine Ön Çalışma”. ANADOLU Ege Tarımsal Araştırma Enstitüsü Dergisi 33/1 (Haziran 2023), 19-29. https://doi.org/10.18615/anadolu.1209066.
JAMA Yusuf SM, Atay E. Sık Dikim Elma Bahçelerinde Ürün Yükünün Ağaç Beslenmesine Etkisi Üzerine Ön Çalışma. ANADOLU. 2023;33:19–29.
MLA Yusuf, Saido Mohamed ve Ersin Atay. “Sık Dikim Elma Bahçelerinde Ürün Yükünün Ağaç Beslenmesine Etkisi Üzerine Ön Çalışma”. ANADOLU Ege Tarımsal Araştırma Enstitüsü Dergisi, c. 33, sy. 1, 2023, ss. 19-29, doi:10.18615/anadolu.1209066.
Vancouver Yusuf SM, Atay E. Sık Dikim Elma Bahçelerinde Ürün Yükünün Ağaç Beslenmesine Etkisi Üzerine Ön Çalışma. ANADOLU. 2023;33(1):19-2.
29899ANADOLU Journal by Aegean Agricultural Research Institute is licensed under CC BY-NC-ND 4.0  

30009     30010       30011     30012   30013      30014        30015  30016