Derleme
BibTex RIS Kaynak Göster

Bio-Priming Application in Seeds: A Nature-Friendly Approach for Sustainable Stress Management in Agricultural Production

Yıl 2023, Cilt: 33 Sayı: 2, 310 - 320, 29.12.2023
https://doi.org/10.18615/anadolu.1398603

Öz

Seeds serve as the primary means for the survival of numerous plant species. Consequently, their pivotal role in ensuring sustainable agricultural production worldwide cannot be overstated. The integrity of the food security chain significantly relies on the availability of high-quality seeds. Thus, preserving seed quality through eco-friendly methods is paramount. Throughout agricultural production, plants encounter various stressors from the moment seeds meet the soil. These stress factors pose significant hurdles to agricultural productivity and food safety chains. Stress induces physiological changes in plants, hindering growth and lowering agricultural output. Diverse seed priming techniques are employed to enhance seed germination, seedling viability, and resilience against a multitude of stressors. Among these methods, bio-priming stands out as a straightforward approach that utilizes beneficial biological agents to enhance seed physiological functions. Bio-priming techniques not only foster increased soil fertility but also aid in curbing soil and water pollution, thereby contributing to reinstating agro-ecological balance. Given its simplicity, cost-effectiveness, and positive impact on agricultural production and the environment, the practice of seed priming using bio-priming techniques has garnered considerable attention. This review article will explore microbial seed treatment through the bio-priming technique, acknowledged as a crucial element in cultivating a conducive ecosystem toward achieving sustainable agriculture.

Kaynakça

  • Abuamsha, R., M. Salman, and R. Ehlers. 2011. Improvement of seed bio-priming of oilseed rape (Brassica napus ssp. oleifera) with Serratia plymuthica and Pseudomonas chlororaphis, Biocontrol Science and Technology, 21:(2): 199-213, doi: 10.1080/09583157.2010.537311
  • Ahmed, R.S., S.A. Mohamed, M.A. Abd, and A. Khalid. 2014. Potential impacts of seed bacterization or salix extract in faba bean for enhancing protection against bean yellow mosaic disease. Nature and Science 12: 213−215.
  • Aishwath, O.P., G. Lal, K. Kant, Y.K. Sharma, S.F. Ali, and Naimuddin. 2012. Influence of biofertilizers on growth and yield of coriander under typic haplustepts. International Journal of Seed Spices 2, 9−14.
  • Akinsemolu, A. A. 2018. The role of microorganisms in achieving the sustainable development goals. Journal of Cleaner Production, 182: 139-155. doi:10.1016/j.jclepro.2018.02.081
  • Anitha D., T. M. Vijaya, N. V. Reddy, N.V. Pragathi, and K.C. Mouli, 2013. Microbial endophytes and their potential for improved bioremediation and biotransformation: a review. Indo. Am. J. Pharmaceutical Res. 3:6408–6417.
  • Audenaert, K., T. Pattery, P. Cornelis, and M. Höfte. 2002. Induction of systemic resistance to Botrytis cinerea in tomato by Pseudomonas aeruginosa 7NSK2: role of salicylic acid, pyochelin, and pyocyanin. Mol. Plant Microbe Interact. 15: 1147–1156.
  • Callan, N.W., D.E. Marthre, and J. B. Miller. 1990. Bio-priming seed treatment for biological control of Pythium ultimum pre emergence damping-off in sh-2 sweet corn. Plant Disease 74: 368−372.
  • Callan, N.W., D.E. Mathre, J.B. Miller, and C. S. Vavrina. 1997. Biological seed treatments: factors involved in efficacy. Horticultural Science 32: 179−183.
  • Chakraborty U., S. Roy, A. P. Chakraborty, P. Dey, and B. Chakraborty. 2011. Plant growth promotion and amelioration of salinity stress in crop plants by a salt-tolerant bacterium. Rec Res Sci Technol. 3:61–70.
  • Chakraborty, P., and P. Dwivedi. 2021. Seed Priming and Its Role in Mitigating Heat Stress Responses in Crop Plants. J Soil Sci Plant Nutr 21: 1718–1734. Available at https://doi.org/10.1007/s42729-021-00474-4 .
  • Chandra Nayaka, S., S.R. Niranjana, A.C. Uday Shankar, S. Niranjanraj Raj, M.S. Reddy, H.S. Prakash, and C.N. Mortensen. 2010. Seed biopriming with novel strain of Trichoderma harzianum for the control of toxigenic Fusarium verticillioides and fumonisins in maize Archives of Phytopathology and Plant Protection 43: 264–282. doi: 10.1080/03235400701803879
  • Chen, K., and R. Arora. 2013. Priming memory invokes seed stress-tolerance. Environmental Experimental Botany 94: 33–45.
  • Chitra, P., and C. M. Jijeesh. 2021. Biopriming of seeds with plant growth promoting bacteria Pseudomonas fluorescens for better germination and seedling vigour of the East Indian sandalwood. New For. 1–13.
  • Cohen-Shacham, E., G. Walters, C. Janzen, and S. Maginnis. eds. 2016. Naturebased Solutions to Address Global Societal Challenges. Gland, Switzerland: IUCN. pp. 97. ISBN: 978-2-8317-1812-5.
  • Çığ, F., M. Erman, B. İnal, H. Bektaş, M. Sonkurt, M. Mırzapour, and M. Ceritoğlu. 2022. Mitigation of drought stress in wheat by bio-priming by PGPB containing ACC deaminase activity. Atatürk Üniversitesi Ziraat Fakültesi Dergisi, 53 (1): 51-57.
  • Deshmukh, A. J., R. S. Jaiman, R. P. Bambharolia, and V. A. Patil. 2020. Seed biopriming– A review. International Journal of Economic Plants. 7(Feb, 1), 038–043. Retrieved from https://ojs.pphouse.org/index.php /IJEP/article/view/4623
  • Di Girolamo, G., and L. Barbanti. 2012. Treatment conditions and biochemical processes influencing seed priming effectiveness. Italian Journal of Agronomy 7: 8−18.
  • Djebaili, R., M. Pellegrini, M. Smati, M. Del Gallo, and M. Kitouni. 2020. Actinomycete strains isolated from saline soils: plant-growth-promoting traits and inoculation effects on Solanum lycopersicum. Sustainability 12: 4617. https://doi.org/10.3390/su 12114617.
  • Farooq, M., A. Wahid, and K. H. M. Siddique. 2012. Micronutrients application through seed treatments – a review. Journal of Soil Science and Plant Nutrition 12: 125−142.
  • Fiodor A., N. Ajijah, L. Dziewit, and K. Pranaw. 2023. Biopriming of seed with plant growth-promoting bacteria for improved germination and seedling growth. Front. Microbiol. 14:1142966. doi: 10.3389/fmicb.2023.1142966
  • Galhaut, L., A. Lespinay, D. J. Walker, M. P. Bernal, E. Correal, and S. Lutts. 2014. Seed priming of Trifolium repens L. improved germination and early seedling growth on heavy metal-contaminated soil. Water Air Soil Pollution 225: 1−15.
  • Glick, B.R. 2012. Plant growth-promoting bacteria: mechanisms and applications. Hindawi Publishing Corporation, Scientifica, 1−15.
  • Gururani, M. A., C. P. Upadhyaya, R. J. Strasser, Y. J. Woong, and S. W. Park. 2012. Physiological and biochemical responses of transgenic potato plants with altered expression of PSII manganese stabilizing protein. Plant Physiol. Biochem. 58: 82–194. https://doi.org/10.1016/j.plaphy.2012.07.003.
  • Harman, G. E., A. G. Taylor, and T.E. Stasz. 1989. Combining effective strains of Trichoderma harzianum and solid matrix priming to improve biological seed treatments. Plant Disease 73:631–637.
  • Harman, G. E., and A. G. Taylor. 1988. Improved seedling performance by integration of biological control agents at favorable pH levels with solid matrix priming. Phytopathology 78:520-525.
  • Heydecker, W. 1973. Glossary of terms. In Seed Ecology (W. Heydecker, ed.). Butterworths, London, p.553-557
  • Imriz, G., F. Özdemir, I. Topal, B. Ercan, M. N. Tas, E. Yakışır, and O. Okur. 2014. Bitkisel üretimde bitki gelişimini teşvik eden rizobakteriler (PGPR)’ in rolü ve etki mekanizmaları. Elektronik Mikrobiyoloji Dergisi TR. 12: 2 Syf: 1-19.
  • Imriz, G., F. Özdemir, M. S. Karaca, M.N. Tas, I. Topal, and B. Ercan. 2020. Biological control potential of rhizosphere bacteria with ACC-deaminase activity against Fusarium culmorum (W.G. Smith) in wheat, Zemdirbyste-Agriculture", 107:2.
  • Jensen, B., F. V. Povlsen, and I. M. B. Knudsen. and D. Funck. 2002. Combining microbial seed treatment with priming of carrot seeds for control of seed borne Alternaria spp. In: Elad Y, Freeman S, Monte E (Eds). Biocontrol Agents:Mode of Action and Interaction with Other Means of Control. Cited in IOBCWPRS Bulletin 24, Dijon: INRA. 197–201.
  • Jensen, B., I. M. B. Knudsen, M. Madsen. and D. F. Jensen.. 2004. Biopriming of infected carrot seed with antagonist, Clonostachys rosea, selected for control of seedborne Alternaria spp. Phytopathology. 94:551–60.
  • Kanwar, R., and D. K. Mehta. 2017. Studies on solid matrix priming of seeds in bitter gourd (Momordica charantia L.). J Appl Nat Sci 9:395–401.
  • Kaymak, H. C., I. Güvenç, F. Yaralı,.and F. Dönmez. 2009. The effects of bio– priming with PGPR on germination of radish (Raphanus sativus L.) seeds under saline conditions. Turkish J Agr Forest. 33 (2):173–9.
  • Khan, M. N., Y. Li, Z. Khan, L. Chen, J. Liu, J. Hu, H. Wu, and Z. Li. 2021. Nanoceria seed priming improves salt tolerance in rapeseed through modulating ROS homeostasis and α-amylase activities J Nanobiotechnology, pp. 1-19
  • Kumari, P., M. Meena, P. Gupta, M. K. Dubey, G. Nath, and R. S. Upadhyay. 2018. Plant growth promoting rhizobacteria and their biopriming for growth promotion in mung bean (Vigna radiata (L.) R. Wilczek). Biocatalysis and Agricultural Biotechnology, 16: 163-171.
  • Legro, B., and H. Satter. 1995. Biological control of Pythium through seed coating and seed priming with Trichoderma. In: Bradford K, Hartz T (eds). Monterey Proceedings of the 4th National Symposium on Stand Establishment of Horticultural Crops, Monterey, California, 235–7.
  • Mahmood, A., O. C. Turgay, M. Farooq, and R. Hayat. 2016. Seed biopriming with plant growth promoting rhizobacteria: a review, FEMS Microbiology Ecology, Volume 92, Issue 8, fiw112, https://doi.org/10.1093/ femsec/fiw112
  • Mansouri, F., T. Bjorkman, and G. E. Harman. 2010. Seed treatment with Trichoderma harzianum alleviates biotic, abiotic and physiological stress in germinating seed and seedling. Phytopathology 100, 1213–1221.
  • McDonald, M.B. 2000. Seed priming. In: Black, M., Bewley, J.D. (eds). Seed Technology and its Biological Basis. Sheffield, Sheffield Academic Press, 287−325.
  • McQuilken, M. P., D. J. Rhodes, and P. Halmer. 1998. Application of microorganisms to seeds. In: Burges HD (ed). Formulation of Microbial Biopesticides, Beneficial Microorganisms, Nematodes and Seed Treatments. Dordrecht: Kluwer Academic Publishers, 255–85.
  • Miljakovic, D., J. Marinkovic, G. Tamindžic, V. Dordevic, B. Tintor, D. Miloševic, M. Ignjatov, and Z. Nikolic. 2022. Bio-Priming of soybean with Bradyrhizobium japonicum and Bacillus megaterium: Strategy to ımprove seed germination and the ınitial seedling growth. Plants, 11, 1927.
  • Mitra D., M. Pellegrinib, A. N. Olatunbosunc, R. Mondald, M. Del Gallob, S. Chattaraja, D. Chakrobortye, A. Priyadarshinif, B. Khoshrug, B.E.G. Sierrah, S. de los Santos-Villalobosi, A. Senapatif, R. Djebailib, P.K. Das Mohapatraa, and P. Panneerselvamf. 2023. Seed Priming with microbial inoculants for enhanced crop yields.. pp. 99–123. In: V. K. Sharma, A. Kumar, M. R. Z. Passarini, S. Parmar, V. Kumar Singh (Eds.). Microbial Inoculants. Academic Press, Elsevier, USA. https://doi.org/10.1016/B978-0-323-99043-1.00016-5
  • Mitra, D., R. Mondal, B. Khoshru, S. Shadangi, P. K. D. Mohapatra, and P. Panneerselvam. 2021. Rhizobacteria mediated seed bio-priming triggers the resistance and plant growth for sustainable crop production. Curr. Res. Microbial Sci. 2: 100071. doi: 10.1016/j.crmicr.2021.100071
  • Moeinzadeh, A., F. Sharif-Zadeh, M. Ahmadzadeh, and F. Tajabadi. 2010. Biopriming of sunflower (‘Helianthus annuus’ L.) seed with ‘Pseudomonas fluorescens’ for improvement of seed with Pseudomonas fluorescens for improvement of seed invigoration and seedling growth.” Australian Journal of Crop Science 4 (2010): 564-570.
  • Muller, H., and G. Berg. 2008. Impact of formulation procedures on the effect of the biocontrol agent Serratia plymuthica HRO-C48 on Verticillium wilt in oilseed rape. BioControl 53: 305−316.
  • Nene, Y. L. 2002. Modern Agronomic Concepts And Practices Evident In Kautilya's Arthasastra (c. 300 BC). Asian Agri-History 6 (3): 231-242.
  • Noel, T.C., C. Sheng, C.K. Yost, R.P. Pharis, and M.F. Hynes. 1996. Rhizobium leguminosarum as a plant growth promoting rhizobacterium: direct growth promotion of canola and lettuce. Canadian Journal of Microbiology 42, 279–283.
  • Paparella, S., J.S.S. Arau, G. Rossi, M. Wijayasinghe, D. Carbonera, and A. Balestrazzi. 2015. Seed priming: state of the art and new perspectives. Plant Cell Reproduction 34: 1281–1293.
  • Patade, V.Y., D. Khatri, K. Manoj, M. Kumari, and Z. Ahmed. 2012. Cold tolerance in thiourea primed capsicum seedlings is associated with transcript regulation of stress responsive genes. Molecular Biology Reports 39: 10603-10613.
  • Pepper, I.L., and T.J. Gentry. 2015. Earth environments. pp. 59–88. In: Environmental Microbiology. Elsevier., https://doi.org/10.1016/B978-0-12-394626-3.00004-1.
  • Raj, S.N., N.P. Shetty, and H.S. Shetty. 2004. Note: Proline—an inducer of resistance against pearl millet downy mildew disease caused by Sclerospora graminicola. Phytoparasitica. 32:523–7.
  • Rao, M.S., N. Ramachandran, and D.S. Sowmya.2009. Biological control of nematode induced disease complex in certain vegetable crops. Abstracts of International Conference on Horticulture. Bangalore, India, 213.
  • Reddy, P. P. 2013. Bio-priming of seeds. In: P.P. Reddy, (Ed.), Recent Advances in Crop Protection. India, Springer, 83−90.
  • Rejeb, I.B., V. Pastor, and B. Mauch-Mani. 2014. Plant responses to simultaneous biotic and abiotic stress: molecular mechanisms. Plants, 3(4): 458-475.
  • Sheng, X.F., and L.Y. He. 2006. Solubilization of potassium-bearing minerals by a wildtype strain of Bacillus edaphicus and its mutants and increased potassium uptake by wheat. Canadian Journal of Microbiology 52: 66−72.
  • Shoresh, M., G.E. Harman, and F. Mastouri. 2010. Induced systemic resistance and plant responses to fungal biocontrol agents. Annual Review of Phytopathology 48: 21–43.
  • Singh, R.P., A. Runthala, S. Khan, and P.N. Jha. 2017. Quantitative proteomics analysis reveals the tolerance of wheat to salt stress in response to Enterobacter cloacae SBP-8. PLoS One 12 (9), e0183513.
  • Singh, S., U.B. Singh, D. Malviya, S. Paul, P.K. Sahu, M. Trivedi, and A.K. Saxena. 2020. Seed biopriming with microbial inoculant triggers local and systemic defense responses against Rhizoctonia solani causing banded leaf and sheath blight in maize (Zea mays L.). Int. J. Environ. Res. Public Health 17 (4): 1396.
  • Singh, U.P., B.K. Sarma, and D.P. Singh. 2003. Effect of plant growth promoting rhizobacteria and culture filtrate of Sclerotium rolfsii on phenolic and salicylic acid contents in chickpea (Cicer arietinum). Current Microbiology 46: 131−140.
  • Singh, U.S., N.W. Zaidi, D. Joshi, D. Jones, T. Khan, and A. Bajpai. 2004. Trichoderma: a microbe with multifaceted activity. Annual Review of Plant Pathology 3: 33–75.
  • Taylor, A.G., and G.E. Harman. 1990. Concept and technologies of selected seed treatments. Ann Rev Phytopathol. 28:321–39.
  • Taylor, A.G., P.S. Allen, M.A. Bennett, J.K. Bradford, J.S. Burris, and M.K. Mishra. 1998. Seed enhancements. Seed Science Research 8: 245−256.
  • Van Loon, L.C., P.A.H.M. Bakker, and C.M.F. Pieterse. 1998. Systemic resistance induced by rhizosphere bacteria. Annual Review of Phytopathology 36: 453–483.
  • Van Peer, R., G.J. Niemann, and B. Schippers. 1991. Induced resistance and phytoalexin accumulation in biological control of fusarium wilt of carnation by Pseudomonas sp. Strain WCS417r. Phytopathology 91: 728–734.
  • Verma, A., K. Kukreja, D.V. Pathak, S. Suneja, and N. Narula. 2001. In vitro production of plant growth regulators (PGRs) by Azorobacter chroococcum. Indian Journal of Microbiology 41: 305–307.
  • Viaene, T., S. Langendries, S. Beirinckx, M. Maes, and S. Goormachtig. 2016. Streptomyces as a plant’s best friend? FEMS Microbiol. Ecol. 92, fiw119. https://doi.org/10.1093/femsec/ fiw119.
  • Warren, J.E., and M.A. Bennett. 1999. Bio-osmopriming tomato (Lycopersicon esculentum Mill.) seeds for improved stand establishment. Seed Sci Technol; 27:489–99.
  • Warwate, S.I., U.K. Kandoliya, N.V. Bhadja, and B.A. Golakiya. 2017. The effect of plant growth promoting rhizobacteria (PGPR) on biochemical parameters of coriander (Coriandrum sativum L.) seedling. International Journal of Current Microbiology and Applied Sciences 6: 1935−1944.
  • Wei, G., J.W. Kloepper, and S. Tuzun. 1991. Induction of systemic resistance of cucumber to Colletotrichum orbiculare by select strains of plant growth-promoting rhizobacteria. Phytopathology 8: 1508–1512.
  • Yeşilyurt, A.M., N. Pehlivan, N. Durmuş, and A.S. Karaoğlu. 2018. Trichoderma citrinoviride: A potent biopriming agent for the alleviation of salt stress in maize. Hacettepe Journal of Biology and Chemistry, 46 (1): 101-111.
  • Zadoks, J.C. 2013. Crop protection in medieval agriculture. Studies in pre-modern organic agriculture. Leiden: Sidestone. p. 333. ISBN 9789088901874.
  • Zaidi, A., M.S. Khan, M. Ahemad, and M. Oves. 2009. Plant growth promotion by phosphate solubilizing bacteria. Acta Microbiologica et Immunologica Hungarica 56: 263–284.

Tohumlarda Biyo-Priming Uygulaması: Tarımsal Üretimde Sürdürülebilir Stres Yönetimi İçin Doğa Dostu Bir Yaklaşım

Yıl 2023, Cilt: 33 Sayı: 2, 310 - 320, 29.12.2023
https://doi.org/10.18615/anadolu.1398603

Öz

Tohumlar, birçok bitki türünün neslini devam ettirebilmesinin tek yoludur. Bu nedenle tüm dünyada sürdürülebilir bir tarımsal üretim için tohum çok önemli bir rol oynamakla birlikte gıda güvenlik zinciri büyük oranda yüksek kalitede tohuma bağlı olarak gerçekleşmektedir. Bu nedenle, tohumların çevreyle dost doğal yollarla kalitesini korumak çok önemlidir. Tarımsal üretimde tohumların toprakla buluşmasından itibaren bitkilerin çok sayıda stres faktörüne maruz kalması, tarımsal üretim ve gıda güvenlik zincirinin önündeki en önemli engeldir. Stres, bitkilerin fizyolojik fonksiyonlarında değişikliklere neden olmakta, bu da bitki büyümesinde gerilemeye ve düşük tarımsal verime yol açmaktadır. Tohumlarda çimlenmeyi, fide canlılığını ve çeşitli stres faktörlerine karşı dayanıklılığı artırmak için farklı tohum astarlama yöntemleri kullanılmaktadır. Bu yöntemlerden biri olan biyo-priming ile tohum astarlaması, tohumların fizyolojik fonksiyonlarını geliştirmek için faydalı biyolojik ajanların kullanımına dayanan uygulaması kolay bir tekniktir. Bu teknik toprak verimliliğini arttırılmasına, toprak-su kirliliğinin azaltılmasına katkıda bulunmakta ve agro-ekolojik dengenin yeniden sağlanmasına yardımcı olmaktadır. Biyo-priming tekniği ile tohum astarlaması uygulamasının sade, basit ve ekonomik olması, tarımsal üretime ve çevreye olumlu katkılarından dolayı da birden fazla öne çıkan özelliği ile son zamanlarda artan bir ilgi görmektedir. Bu derleme makalede, sürdürülebilir tarıma ulaşmanın yolunda iyi bir ekosistemin oluşturulmasının önemli bir bileşeni olarak düşünülen biyo-priming tekniği ile mikrobiyal tohum astarlanması incelenecektir.

Etik Beyan

Makale projeden üretilmemiştir. Derleme makaledir. Etik Beyan gerektirecek bir durum yoktur.

Kaynakça

  • Abuamsha, R., M. Salman, and R. Ehlers. 2011. Improvement of seed bio-priming of oilseed rape (Brassica napus ssp. oleifera) with Serratia plymuthica and Pseudomonas chlororaphis, Biocontrol Science and Technology, 21:(2): 199-213, doi: 10.1080/09583157.2010.537311
  • Ahmed, R.S., S.A. Mohamed, M.A. Abd, and A. Khalid. 2014. Potential impacts of seed bacterization or salix extract in faba bean for enhancing protection against bean yellow mosaic disease. Nature and Science 12: 213−215.
  • Aishwath, O.P., G. Lal, K. Kant, Y.K. Sharma, S.F. Ali, and Naimuddin. 2012. Influence of biofertilizers on growth and yield of coriander under typic haplustepts. International Journal of Seed Spices 2, 9−14.
  • Akinsemolu, A. A. 2018. The role of microorganisms in achieving the sustainable development goals. Journal of Cleaner Production, 182: 139-155. doi:10.1016/j.jclepro.2018.02.081
  • Anitha D., T. M. Vijaya, N. V. Reddy, N.V. Pragathi, and K.C. Mouli, 2013. Microbial endophytes and their potential for improved bioremediation and biotransformation: a review. Indo. Am. J. Pharmaceutical Res. 3:6408–6417.
  • Audenaert, K., T. Pattery, P. Cornelis, and M. Höfte. 2002. Induction of systemic resistance to Botrytis cinerea in tomato by Pseudomonas aeruginosa 7NSK2: role of salicylic acid, pyochelin, and pyocyanin. Mol. Plant Microbe Interact. 15: 1147–1156.
  • Callan, N.W., D.E. Marthre, and J. B. Miller. 1990. Bio-priming seed treatment for biological control of Pythium ultimum pre emergence damping-off in sh-2 sweet corn. Plant Disease 74: 368−372.
  • Callan, N.W., D.E. Mathre, J.B. Miller, and C. S. Vavrina. 1997. Biological seed treatments: factors involved in efficacy. Horticultural Science 32: 179−183.
  • Chakraborty U., S. Roy, A. P. Chakraborty, P. Dey, and B. Chakraborty. 2011. Plant growth promotion and amelioration of salinity stress in crop plants by a salt-tolerant bacterium. Rec Res Sci Technol. 3:61–70.
  • Chakraborty, P., and P. Dwivedi. 2021. Seed Priming and Its Role in Mitigating Heat Stress Responses in Crop Plants. J Soil Sci Plant Nutr 21: 1718–1734. Available at https://doi.org/10.1007/s42729-021-00474-4 .
  • Chandra Nayaka, S., S.R. Niranjana, A.C. Uday Shankar, S. Niranjanraj Raj, M.S. Reddy, H.S. Prakash, and C.N. Mortensen. 2010. Seed biopriming with novel strain of Trichoderma harzianum for the control of toxigenic Fusarium verticillioides and fumonisins in maize Archives of Phytopathology and Plant Protection 43: 264–282. doi: 10.1080/03235400701803879
  • Chen, K., and R. Arora. 2013. Priming memory invokes seed stress-tolerance. Environmental Experimental Botany 94: 33–45.
  • Chitra, P., and C. M. Jijeesh. 2021. Biopriming of seeds with plant growth promoting bacteria Pseudomonas fluorescens for better germination and seedling vigour of the East Indian sandalwood. New For. 1–13.
  • Cohen-Shacham, E., G. Walters, C. Janzen, and S. Maginnis. eds. 2016. Naturebased Solutions to Address Global Societal Challenges. Gland, Switzerland: IUCN. pp. 97. ISBN: 978-2-8317-1812-5.
  • Çığ, F., M. Erman, B. İnal, H. Bektaş, M. Sonkurt, M. Mırzapour, and M. Ceritoğlu. 2022. Mitigation of drought stress in wheat by bio-priming by PGPB containing ACC deaminase activity. Atatürk Üniversitesi Ziraat Fakültesi Dergisi, 53 (1): 51-57.
  • Deshmukh, A. J., R. S. Jaiman, R. P. Bambharolia, and V. A. Patil. 2020. Seed biopriming– A review. International Journal of Economic Plants. 7(Feb, 1), 038–043. Retrieved from https://ojs.pphouse.org/index.php /IJEP/article/view/4623
  • Di Girolamo, G., and L. Barbanti. 2012. Treatment conditions and biochemical processes influencing seed priming effectiveness. Italian Journal of Agronomy 7: 8−18.
  • Djebaili, R., M. Pellegrini, M. Smati, M. Del Gallo, and M. Kitouni. 2020. Actinomycete strains isolated from saline soils: plant-growth-promoting traits and inoculation effects on Solanum lycopersicum. Sustainability 12: 4617. https://doi.org/10.3390/su 12114617.
  • Farooq, M., A. Wahid, and K. H. M. Siddique. 2012. Micronutrients application through seed treatments – a review. Journal of Soil Science and Plant Nutrition 12: 125−142.
  • Fiodor A., N. Ajijah, L. Dziewit, and K. Pranaw. 2023. Biopriming of seed with plant growth-promoting bacteria for improved germination and seedling growth. Front. Microbiol. 14:1142966. doi: 10.3389/fmicb.2023.1142966
  • Galhaut, L., A. Lespinay, D. J. Walker, M. P. Bernal, E. Correal, and S. Lutts. 2014. Seed priming of Trifolium repens L. improved germination and early seedling growth on heavy metal-contaminated soil. Water Air Soil Pollution 225: 1−15.
  • Glick, B.R. 2012. Plant growth-promoting bacteria: mechanisms and applications. Hindawi Publishing Corporation, Scientifica, 1−15.
  • Gururani, M. A., C. P. Upadhyaya, R. J. Strasser, Y. J. Woong, and S. W. Park. 2012. Physiological and biochemical responses of transgenic potato plants with altered expression of PSII manganese stabilizing protein. Plant Physiol. Biochem. 58: 82–194. https://doi.org/10.1016/j.plaphy.2012.07.003.
  • Harman, G. E., A. G. Taylor, and T.E. Stasz. 1989. Combining effective strains of Trichoderma harzianum and solid matrix priming to improve biological seed treatments. Plant Disease 73:631–637.
  • Harman, G. E., and A. G. Taylor. 1988. Improved seedling performance by integration of biological control agents at favorable pH levels with solid matrix priming. Phytopathology 78:520-525.
  • Heydecker, W. 1973. Glossary of terms. In Seed Ecology (W. Heydecker, ed.). Butterworths, London, p.553-557
  • Imriz, G., F. Özdemir, I. Topal, B. Ercan, M. N. Tas, E. Yakışır, and O. Okur. 2014. Bitkisel üretimde bitki gelişimini teşvik eden rizobakteriler (PGPR)’ in rolü ve etki mekanizmaları. Elektronik Mikrobiyoloji Dergisi TR. 12: 2 Syf: 1-19.
  • Imriz, G., F. Özdemir, M. S. Karaca, M.N. Tas, I. Topal, and B. Ercan. 2020. Biological control potential of rhizosphere bacteria with ACC-deaminase activity against Fusarium culmorum (W.G. Smith) in wheat, Zemdirbyste-Agriculture", 107:2.
  • Jensen, B., F. V. Povlsen, and I. M. B. Knudsen. and D. Funck. 2002. Combining microbial seed treatment with priming of carrot seeds for control of seed borne Alternaria spp. In: Elad Y, Freeman S, Monte E (Eds). Biocontrol Agents:Mode of Action and Interaction with Other Means of Control. Cited in IOBCWPRS Bulletin 24, Dijon: INRA. 197–201.
  • Jensen, B., I. M. B. Knudsen, M. Madsen. and D. F. Jensen.. 2004. Biopriming of infected carrot seed with antagonist, Clonostachys rosea, selected for control of seedborne Alternaria spp. Phytopathology. 94:551–60.
  • Kanwar, R., and D. K. Mehta. 2017. Studies on solid matrix priming of seeds in bitter gourd (Momordica charantia L.). J Appl Nat Sci 9:395–401.
  • Kaymak, H. C., I. Güvenç, F. Yaralı,.and F. Dönmez. 2009. The effects of bio– priming with PGPR on germination of radish (Raphanus sativus L.) seeds under saline conditions. Turkish J Agr Forest. 33 (2):173–9.
  • Khan, M. N., Y. Li, Z. Khan, L. Chen, J. Liu, J. Hu, H. Wu, and Z. Li. 2021. Nanoceria seed priming improves salt tolerance in rapeseed through modulating ROS homeostasis and α-amylase activities J Nanobiotechnology, pp. 1-19
  • Kumari, P., M. Meena, P. Gupta, M. K. Dubey, G. Nath, and R. S. Upadhyay. 2018. Plant growth promoting rhizobacteria and their biopriming for growth promotion in mung bean (Vigna radiata (L.) R. Wilczek). Biocatalysis and Agricultural Biotechnology, 16: 163-171.
  • Legro, B., and H. Satter. 1995. Biological control of Pythium through seed coating and seed priming with Trichoderma. In: Bradford K, Hartz T (eds). Monterey Proceedings of the 4th National Symposium on Stand Establishment of Horticultural Crops, Monterey, California, 235–7.
  • Mahmood, A., O. C. Turgay, M. Farooq, and R. Hayat. 2016. Seed biopriming with plant growth promoting rhizobacteria: a review, FEMS Microbiology Ecology, Volume 92, Issue 8, fiw112, https://doi.org/10.1093/ femsec/fiw112
  • Mansouri, F., T. Bjorkman, and G. E. Harman. 2010. Seed treatment with Trichoderma harzianum alleviates biotic, abiotic and physiological stress in germinating seed and seedling. Phytopathology 100, 1213–1221.
  • McDonald, M.B. 2000. Seed priming. In: Black, M., Bewley, J.D. (eds). Seed Technology and its Biological Basis. Sheffield, Sheffield Academic Press, 287−325.
  • McQuilken, M. P., D. J. Rhodes, and P. Halmer. 1998. Application of microorganisms to seeds. In: Burges HD (ed). Formulation of Microbial Biopesticides, Beneficial Microorganisms, Nematodes and Seed Treatments. Dordrecht: Kluwer Academic Publishers, 255–85.
  • Miljakovic, D., J. Marinkovic, G. Tamindžic, V. Dordevic, B. Tintor, D. Miloševic, M. Ignjatov, and Z. Nikolic. 2022. Bio-Priming of soybean with Bradyrhizobium japonicum and Bacillus megaterium: Strategy to ımprove seed germination and the ınitial seedling growth. Plants, 11, 1927.
  • Mitra D., M. Pellegrinib, A. N. Olatunbosunc, R. Mondald, M. Del Gallob, S. Chattaraja, D. Chakrobortye, A. Priyadarshinif, B. Khoshrug, B.E.G. Sierrah, S. de los Santos-Villalobosi, A. Senapatif, R. Djebailib, P.K. Das Mohapatraa, and P. Panneerselvamf. 2023. Seed Priming with microbial inoculants for enhanced crop yields.. pp. 99–123. In: V. K. Sharma, A. Kumar, M. R. Z. Passarini, S. Parmar, V. Kumar Singh (Eds.). Microbial Inoculants. Academic Press, Elsevier, USA. https://doi.org/10.1016/B978-0-323-99043-1.00016-5
  • Mitra, D., R. Mondal, B. Khoshru, S. Shadangi, P. K. D. Mohapatra, and P. Panneerselvam. 2021. Rhizobacteria mediated seed bio-priming triggers the resistance and plant growth for sustainable crop production. Curr. Res. Microbial Sci. 2: 100071. doi: 10.1016/j.crmicr.2021.100071
  • Moeinzadeh, A., F. Sharif-Zadeh, M. Ahmadzadeh, and F. Tajabadi. 2010. Biopriming of sunflower (‘Helianthus annuus’ L.) seed with ‘Pseudomonas fluorescens’ for improvement of seed with Pseudomonas fluorescens for improvement of seed invigoration and seedling growth.” Australian Journal of Crop Science 4 (2010): 564-570.
  • Muller, H., and G. Berg. 2008. Impact of formulation procedures on the effect of the biocontrol agent Serratia plymuthica HRO-C48 on Verticillium wilt in oilseed rape. BioControl 53: 305−316.
  • Nene, Y. L. 2002. Modern Agronomic Concepts And Practices Evident In Kautilya's Arthasastra (c. 300 BC). Asian Agri-History 6 (3): 231-242.
  • Noel, T.C., C. Sheng, C.K. Yost, R.P. Pharis, and M.F. Hynes. 1996. Rhizobium leguminosarum as a plant growth promoting rhizobacterium: direct growth promotion of canola and lettuce. Canadian Journal of Microbiology 42, 279–283.
  • Paparella, S., J.S.S. Arau, G. Rossi, M. Wijayasinghe, D. Carbonera, and A. Balestrazzi. 2015. Seed priming: state of the art and new perspectives. Plant Cell Reproduction 34: 1281–1293.
  • Patade, V.Y., D. Khatri, K. Manoj, M. Kumari, and Z. Ahmed. 2012. Cold tolerance in thiourea primed capsicum seedlings is associated with transcript regulation of stress responsive genes. Molecular Biology Reports 39: 10603-10613.
  • Pepper, I.L., and T.J. Gentry. 2015. Earth environments. pp. 59–88. In: Environmental Microbiology. Elsevier., https://doi.org/10.1016/B978-0-12-394626-3.00004-1.
  • Raj, S.N., N.P. Shetty, and H.S. Shetty. 2004. Note: Proline—an inducer of resistance against pearl millet downy mildew disease caused by Sclerospora graminicola. Phytoparasitica. 32:523–7.
  • Rao, M.S., N. Ramachandran, and D.S. Sowmya.2009. Biological control of nematode induced disease complex in certain vegetable crops. Abstracts of International Conference on Horticulture. Bangalore, India, 213.
  • Reddy, P. P. 2013. Bio-priming of seeds. In: P.P. Reddy, (Ed.), Recent Advances in Crop Protection. India, Springer, 83−90.
  • Rejeb, I.B., V. Pastor, and B. Mauch-Mani. 2014. Plant responses to simultaneous biotic and abiotic stress: molecular mechanisms. Plants, 3(4): 458-475.
  • Sheng, X.F., and L.Y. He. 2006. Solubilization of potassium-bearing minerals by a wildtype strain of Bacillus edaphicus and its mutants and increased potassium uptake by wheat. Canadian Journal of Microbiology 52: 66−72.
  • Shoresh, M., G.E. Harman, and F. Mastouri. 2010. Induced systemic resistance and plant responses to fungal biocontrol agents. Annual Review of Phytopathology 48: 21–43.
  • Singh, R.P., A. Runthala, S. Khan, and P.N. Jha. 2017. Quantitative proteomics analysis reveals the tolerance of wheat to salt stress in response to Enterobacter cloacae SBP-8. PLoS One 12 (9), e0183513.
  • Singh, S., U.B. Singh, D. Malviya, S. Paul, P.K. Sahu, M. Trivedi, and A.K. Saxena. 2020. Seed biopriming with microbial inoculant triggers local and systemic defense responses against Rhizoctonia solani causing banded leaf and sheath blight in maize (Zea mays L.). Int. J. Environ. Res. Public Health 17 (4): 1396.
  • Singh, U.P., B.K. Sarma, and D.P. Singh. 2003. Effect of plant growth promoting rhizobacteria and culture filtrate of Sclerotium rolfsii on phenolic and salicylic acid contents in chickpea (Cicer arietinum). Current Microbiology 46: 131−140.
  • Singh, U.S., N.W. Zaidi, D. Joshi, D. Jones, T. Khan, and A. Bajpai. 2004. Trichoderma: a microbe with multifaceted activity. Annual Review of Plant Pathology 3: 33–75.
  • Taylor, A.G., and G.E. Harman. 1990. Concept and technologies of selected seed treatments. Ann Rev Phytopathol. 28:321–39.
  • Taylor, A.G., P.S. Allen, M.A. Bennett, J.K. Bradford, J.S. Burris, and M.K. Mishra. 1998. Seed enhancements. Seed Science Research 8: 245−256.
  • Van Loon, L.C., P.A.H.M. Bakker, and C.M.F. Pieterse. 1998. Systemic resistance induced by rhizosphere bacteria. Annual Review of Phytopathology 36: 453–483.
  • Van Peer, R., G.J. Niemann, and B. Schippers. 1991. Induced resistance and phytoalexin accumulation in biological control of fusarium wilt of carnation by Pseudomonas sp. Strain WCS417r. Phytopathology 91: 728–734.
  • Verma, A., K. Kukreja, D.V. Pathak, S. Suneja, and N. Narula. 2001. In vitro production of plant growth regulators (PGRs) by Azorobacter chroococcum. Indian Journal of Microbiology 41: 305–307.
  • Viaene, T., S. Langendries, S. Beirinckx, M. Maes, and S. Goormachtig. 2016. Streptomyces as a plant’s best friend? FEMS Microbiol. Ecol. 92, fiw119. https://doi.org/10.1093/femsec/ fiw119.
  • Warren, J.E., and M.A. Bennett. 1999. Bio-osmopriming tomato (Lycopersicon esculentum Mill.) seeds for improved stand establishment. Seed Sci Technol; 27:489–99.
  • Warwate, S.I., U.K. Kandoliya, N.V. Bhadja, and B.A. Golakiya. 2017. The effect of plant growth promoting rhizobacteria (PGPR) on biochemical parameters of coriander (Coriandrum sativum L.) seedling. International Journal of Current Microbiology and Applied Sciences 6: 1935−1944.
  • Wei, G., J.W. Kloepper, and S. Tuzun. 1991. Induction of systemic resistance of cucumber to Colletotrichum orbiculare by select strains of plant growth-promoting rhizobacteria. Phytopathology 8: 1508–1512.
  • Yeşilyurt, A.M., N. Pehlivan, N. Durmuş, and A.S. Karaoğlu. 2018. Trichoderma citrinoviride: A potent biopriming agent for the alleviation of salt stress in maize. Hacettepe Journal of Biology and Chemistry, 46 (1): 101-111.
  • Zadoks, J.C. 2013. Crop protection in medieval agriculture. Studies in pre-modern organic agriculture. Leiden: Sidestone. p. 333. ISBN 9789088901874.
  • Zaidi, A., M.S. Khan, M. Ahemad, and M. Oves. 2009. Plant growth promotion by phosphate solubilizing bacteria. Acta Microbiologica et Immunologica Hungarica 56: 263–284.
Toplam 71 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Fitopatoloji
Bölüm Makaleler
Yazarlar

Gül İmriz 0000-0003-2909-1834

Ramazan Keleş 0000-0003-2872-7183

Neval İnal 0009-0001-6562-1559

Yayımlanma Tarihi 29 Aralık 2023
Gönderilme Tarihi 30 Kasım 2023
Kabul Tarihi 19 Aralık 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 33 Sayı: 2

Kaynak Göster

APA İmriz, G., Keleş, R., & İnal, N. (2023). Tohumlarda Biyo-Priming Uygulaması: Tarımsal Üretimde Sürdürülebilir Stres Yönetimi İçin Doğa Dostu Bir Yaklaşım. ANADOLU Ege Tarımsal Araştırma Enstitüsü Dergisi, 33(2), 310-320. https://doi.org/10.18615/anadolu.1398603
AMA İmriz G, Keleş R, İnal N. Tohumlarda Biyo-Priming Uygulaması: Tarımsal Üretimde Sürdürülebilir Stres Yönetimi İçin Doğa Dostu Bir Yaklaşım. ANADOLU. Aralık 2023;33(2):310-320. doi:10.18615/anadolu.1398603
Chicago İmriz, Gül, Ramazan Keleş, ve Neval İnal. “Tohumlarda Biyo-Priming Uygulaması: Tarımsal Üretimde Sürdürülebilir Stres Yönetimi İçin Doğa Dostu Bir Yaklaşım”. ANADOLU Ege Tarımsal Araştırma Enstitüsü Dergisi 33, sy. 2 (Aralık 2023): 310-20. https://doi.org/10.18615/anadolu.1398603.
EndNote İmriz G, Keleş R, İnal N (01 Aralık 2023) Tohumlarda Biyo-Priming Uygulaması: Tarımsal Üretimde Sürdürülebilir Stres Yönetimi İçin Doğa Dostu Bir Yaklaşım. ANADOLU Ege Tarımsal Araştırma Enstitüsü Dergisi 33 2 310–320.
IEEE G. İmriz, R. Keleş, ve N. İnal, “Tohumlarda Biyo-Priming Uygulaması: Tarımsal Üretimde Sürdürülebilir Stres Yönetimi İçin Doğa Dostu Bir Yaklaşım”, ANADOLU, c. 33, sy. 2, ss. 310–320, 2023, doi: 10.18615/anadolu.1398603.
ISNAD İmriz, Gül vd. “Tohumlarda Biyo-Priming Uygulaması: Tarımsal Üretimde Sürdürülebilir Stres Yönetimi İçin Doğa Dostu Bir Yaklaşım”. ANADOLU Ege Tarımsal Araştırma Enstitüsü Dergisi 33/2 (Aralık 2023), 310-320. https://doi.org/10.18615/anadolu.1398603.
JAMA İmriz G, Keleş R, İnal N. Tohumlarda Biyo-Priming Uygulaması: Tarımsal Üretimde Sürdürülebilir Stres Yönetimi İçin Doğa Dostu Bir Yaklaşım. ANADOLU. 2023;33:310–320.
MLA İmriz, Gül vd. “Tohumlarda Biyo-Priming Uygulaması: Tarımsal Üretimde Sürdürülebilir Stres Yönetimi İçin Doğa Dostu Bir Yaklaşım”. ANADOLU Ege Tarımsal Araştırma Enstitüsü Dergisi, c. 33, sy. 2, 2023, ss. 310-2, doi:10.18615/anadolu.1398603.
Vancouver İmriz G, Keleş R, İnal N. Tohumlarda Biyo-Priming Uygulaması: Tarımsal Üretimde Sürdürülebilir Stres Yönetimi İçin Doğa Dostu Bir Yaklaşım. ANADOLU. 2023;33(2):310-2.
29899ANADOLU Journal by Aegean Agricultural Research Institute is licensed under CC BY-NC-ND 4.0  

30009     30010       30011     30012   30013      30014        30015  30016