Araştırma Makalesi
BibTex RIS Kaynak Göster

Farklı Bor Tuzları ile Muamele Edilen Olea europaea L.'nin In Vitro Kültürlerinde ROS Genlerinin mRNA Transkripsiyon Analizleri

Yıl 2024, Cilt: 34 Sayı: 1, 24 - 32, 30.06.2024
https://doi.org/10.18615/anadolu.1457244

Öz

Biyotik ve abiyotik stresler gibi çeşitli faktörler bitki metabolizması, gelişimi ve büyümesi üzerinde etkilidir. Bitkiler tüm bu stres koşullarına uyum sağlamak, savunmak, kaçınmak ve tolere etmek için birçok karmaşık ve olağanüstü stratejiye sahiptir. Bu çalışmada, in vitro koşullarda çoğaltılması oldukça zor olan zeytinin antioksidan enzimlerinin oksidatif stres koşullarında, bor bileşikleri sonrası göreceli mRNA seviyeleri incelenmiştir. Bu kapsamda, askorbat-glutatyon yolağını etkilediği bilinen bor elementinin üç farklı bileşiği, in vitro koşullarda zeytinin besin ortamına iki farklı konsantrasyonda ayrı ayrı ilave edildi. Çalışma sonucunda katalaz, askorbat peroksidaz ve süperoksit dismutaz gibi antioksidan enzimlerin rölatif mRNA ekspresyon seviyelerinin deney grupları arasında sadece H3BO3 grubunda azaldığı gözlendi. Kontrol grubuna kıyasla NaBO2 ve ZnBO3 gruplarında antioksidan enzimlerin rölatif mRNA ekspresyon seviyelerinde artış gözlenmiştir. Bu durum, uygulanan NaBO2 ve ZnBO3 gruplarında tuzluluk stresinin ve dolayısıyla oksidatif stresin arttığı şeklinde yorumlanmıştır. Ancak H3BO3 grubunda konsantrasyon iki kat artmasına rağmen antioksidan enzimlerin göreceli mRNA ifade seviyelerinde düşüş gözlenmiştir.

Destekleyen Kurum

This study was supported by The Scientific and Technological Research Council of Türkiye 2210-C (TUBITAK 2210-C) Domestic Priority Areas Graduate Scholarship Program

Teşekkür

The authors would like to thank Muğla Metropolitan Municipality Agricultural Services Department for support of plant materials

Kaynakça

  • Agar, H., S. Galatali, D.E. Ozkaya, and E. Kaya. 2022. A Primary Study: Investigation of the in vitro salt stress effects on development in Thymus cilicicus Boiss. & Bal. Glob. J. Bot. Sci. 10: 23-27.
  • Akhtar, K.P., M. Martin, J.H. Mirza, A.S. Shakir, and M. Rafique. 1994. Some studies on post-harvest diseases of tomato fruits and their chemical control. Pak. J. Phytopathol. 6(2): 125-129.
  • Baldoni, L., N. Tosti, C. Ricciolini, A. Belaj, S. Arcioni, G. Pannelli, M.A. Germana, M. Mulas, and A. Porceddu. 2006. Genetic structure of wild and cultivated olives in the central Mediterranean basin. Ann Bot. 98(5): 935-42. https://doi.org/10.1093/aob/mcl178.
  • Belaj, A., Z. Satovic, L. Rallo, and I. Trujillo. 2002. Genetic diversity and relationships in olive (Olea europaea L.) germplasm collec tions as determined by randomly amplified polymorphic DNA. Theor. Appl. Genet. 105: 638–644. https://doi.org/10.1007/s00122-002-0981-6.
  • Besnard, G., C. Breton, P. Baradat, B. Khadari, and A. Bervillé. 2001. Cultivar identification in olive based on RAPD markers. J. Am. Soc. Hortic. Sci. 126: 668–675. https://doi.org/10.21273/JASHS.126.6.668.
  • Besnard, G., J.F. Terral, and A. Cornille. 2018. On the origins and domestication of the olive: a review and perspectives. Ann. Bot. 121(3): 385-403. https://doi.org/10.1093/aob/mcx145.
  • Bresciani, G., I.B.M. da Cruz, and J. González-Gallego. 2015. Manganese superoxide dismutase and oxidative stress modulation. Adv. Clin. Chem. 68: 87-130. https://doi.org/10.1016/bs.acc.2014.11.001.
  • Caverzan, A., G. Passaia, S.B. Rosa, C.W. Ribeiro, F. Lazzarotto, and M. Margis-Pinheiro. 2012. Plant responses to stresses: role of ascorbate peroxidase in the antioxidant protection. Stat. Appl. Genet. Mol. Biol. 35: 1011-1019. https://doi.org/10.1590/S1415-47572012000600016. Clarkson, D.T., and J.B. Hanson. 1980. The mineral nutrition of higher plants. Annu. Rev. Plant Physiol. 31(1): 239-298.
  • Contento, A., M. Ceccarelli, M.T. Gelati, F. Maggini, L. Baldoni, and P.G. Cionini. 2002. Diversity of Olea genotypes and the commerorigin of cultivated olives. Theor. Appl. Genet. 104: 1209–1216. https://doi.org/10.1007/s00122-001-0799-7.
  • Corpas, F.J., A. Fernandez-Ocana, A. Carreras, R. Valderrama, F. Luque, F.J. Esteban, M. Rodríguez-Serrano, M. Chaki, J.R. Pedrajas, L.M. Sandalio, L.A. del Río, and J.B. Barroso. 2006. The expression of different superoxide dismutase forms is cell-type dependent in olive (Olea europaea L.) leaves. Plant Cell Physiol. 47(7): 984-994. https://doi.org/10.1093/pcp/pcj071.
  • Corpas, F.J., J.M. Palma, L.M. Sandalio, R. Valderrama, J.B. Barroso, and A. Luis. 2008. Peroxisomal xanthine oxidoreductase: characterization of the enzyme from pea (Pisum sativum L.) leaves. J. Plant Physiol. 165(13): 1319-1330. https://doi.org/10.1016/j.jplph.2008.04.004.
  • Çiçek, S., H. Ağar, S. Galatalı, and E. Kaya. 2023. Transcriptomic Analysis of AREB1 and AREB2 genes playing ımportant roles in drought stress tolerance in tomato under in vitro drought stress. Environ. Anal. & Ecol. Stud. 10(5):1203-1209. https://doi.org/10.31031/EAES.2023.10.000750.
  • Diaz-Vivancos, P., A. de Simone, G. Kiddle, and C.H. Foyer. 2015. Glutathione–linking cell proliferation to oxidative stress. Free Radical Biol. Med. 89: 1154-1164. https://doi.org/10.1016/j.freeradbiomed.2015.09.023.
  • Espinosa-Leal, C.A., C.A. Puente-Garza, and S. García-Lara. 2018. In vitro plant tissue culture: means for production of biological active compounds. Planta 248(1): 1-18. https://doi.org/10.1007/s00425-018-2910-1.
  • Foyer, C.H., and P.M. Mullineaux. 1998. The presence of dehydroascorbate and dehydroascorbate reductase in plant tissues. FEBS Lett. 425(3): 528-529.
  • Galatali, S, M.A. Balci, O. Akgüller, and E. Kaya. 2021. Production of disease-free olive seedlings with artificial ıntelligence and biotechnological methods. Eur J Biol Biotechnol 2(3): 79-84. https://doi.org/10.24018/ejbio.2021.2.3.172. Galatali, S., N. Abdul Ghafoor, and E. Kaya. 2021. Characterization of olive (Olea europaea L.) genetic resources via pcr-based molecular marker systems. Eur J Biol Biotechnol 2(1): 26-33. https://doi.org/10.24018/ejbio.2021.2.1.146.
  • Gill, S.S., and N. Tuteja. 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 48(12): 909-930. https://doi.org/10.1016/j.plaphy.2010.08.016.
  • Guerriero, G., R. Berni, J.A. Muñoz-Sanchez, F. Apone, E.M. Abdel-Salam, A.A. Qahtan, A.A. Alatar, C. Cantini, G. Cai, J.F. Hausman, K.S. Siddiqui, S.M.T. Hernández-Sotomayor, and M. Faisal. 2018. Production of plant secondary metabolites: examples, tips and suggestions for biotechnologists. Genes (Basel) 9(6): 309. https://doi.org/10.3390/genes9060309.
  • Kaya, E., and E. Yılmaz-Gokdogan. 2016. Using two retrotransposon based marker systems IRAP and REMAP for molecular characterization of Olive Olea europaea L. cultivars. Not. Bot. Horti Agrobot. Cluj-Napoca 44(1): 167-174.
  • Kaya, E., F.V.D. Souza, J.A. dos Santos-Serejo, and S. Galatali. 2020. Influence of dehydration on cryopreservation of Musa spp. germplasm. Acta Botan. Croat. 79(2): 99-104. https://doi.org/10.37427/botcro-2020-024.
  • Kaya, E., R. Vatansever, and E. Filiz. 2018. Assessment of the genetic relationship of Turkish olives (Olea europaea subsp. europaea) cultivars based on cpDNA trnL-F regions. Acta Botan. Croat. 77(1): 88-92. https://doi.org/10.1515/botcro-2017-0019.
  • Kıvrak-Kıran, S., S. Galatalı, S. Yeniocak, D.E. Ozkaya, T. Mercan, S. Guldag, O. Celik, N. Abdul Ghafoor, and E. Kaya. 2021. Investigation of modified WPM medium for the best meristem proliferation of Corylus avellana L. Adv. Hortic. Sci. 35(3): 285-292. https://doi.org/10.36253/ahsc-10536.
  • Kim, T.K. 2015. T test as a parametric statistic. Korean J Anesthesiol 68(6): 540-546. https://doi.org/10.4097/kjae. 2015.68.6.540.
  • Krumova, K., and G. Cosa. 2016. In singlet oxygen: applications in biosciences and nanosciences. pp. 1-21. In: S. Nonell., C. Flors., S. Nonell., and C. Flors (Eds.). The Royal Society of Chemistry. United Kingdom.
  • Lambardi, M., E.A. Ozudogru, and R. Roncasaglia. 2013. In vitro propagation of olive (Olea europaea L.) by nodal segmentation of elongated shoots. Protocols for Micropropagation of Selected Economically-Important Horticultural Plants 33-44.
  • Livak, K.J., and T.D. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods 25(4): 402-408.
  • Mehbub, H., A. Akter, M.A. Akter, M.S.H. Mandal, M.A. Hoque, M. Tuleja, and H. Mehraj. 2022. Tissue Culture in Ornamentals: cultivation factors, propagation techniques, and Its application. Plants (Basel). 11(23): 3208. https://doi.org/10.3390/plants11233208.
  • Mercan, T., S. Galatalı, D.E. Özkaya, O. Celik, and E. Kaya. 2022. Effects of different boron salt treatments on micropropagation and genetic stability in in vitro cultures of Liquidambar orientalis Miller. Journal of Boron 7(4): 521-527. https://doi.org/10.30728/boron.1140926.
  • Murashige, T., and F.A. Skoog. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15: 473-497.
  • Nable, R.O., G.S. Banuelos., and J.G. Paull. 1997. Boron toxicity. Plant Soil. 193: 181-198. https://doi.org/10.1023/A:1004272227886.
  • Nordgren, M., and M. Fransen. 2014. Peroxisomal metabolism and oxidative stress. Biochimie 98: 56-62. https://doi.org/10.1016/j.biochi.2013.07.026.
  • Ozden-Ciftci, Y., E.A. Ozudogru, E. Kaya ve H. Akdemir. 2010. Zeytin (Olea europaea) bitkisinin geçici daldırma biyoreaktör sistemleri (TIS) ile in vitro sürgün çoğaltımının iyileştirilmesi. Zeytin Bilimi 1(1): 1-6.
  • Ozudogru, E.A., E. Kaya, E. Kirdok, and S. Issever-Ozturk. 2011. İn vitro propagation from young and mature explants of thyme (Thymus vulgaris and T. longicaulis) resulting in genetically stable shoots. İn vitro Cell Dev Biol Plant 47: 309–320. https://doi.org/10.1007/s11627-011-9347-6.
  • Rugini, E. (1984). In vitro propagation of some olive (Olea europaea sativa L.) cultivars with different root-ability, and medium development using analytical data from developing shoots and embryos. Sci. Hortic. 24: 123-134 https://doi.org/10.1016/0304-4238(84)90143-2.
  • Sharma, P., A.B. Jha, and R.S. Dubey. 2019. Oxidative stress and antioxidative defense system in plants growing under abiotic stresses. pp. 93-136. In: M. Pessarakli (Ed.). Handbook of Plant and Crop Stress. CRC press. 4th Edition. https://doi.org/10.1201/9781351104609.
  • Sharma, P., R.S. Dubey. 2007. Involvement of oxidative stress and role of antioxidative defense system in growing rice seedlings exposed to toxic concentrations of aluminum. Plant Cell Rep. 26: 2027-2038. https://doi.org/10.1007/s00299-007-0416-6.
  • Shi, X., B. Li, G. Qin, and S. Tian. 2012. Mechanism of antifungal action of borate against Colletotrichum gloeosporioides related to mitochondrial degradation in spores. Postharvest Biol. Technol. 67: 138-143. https://doi.org/10.1016/j.postharvbio.2012.01.003.
  • Shigeoka, S., Y. Nakano, and S. Kitaoka. 1980. Metabolism of hydrogen peroxide in Euglena gracilis Z by L-ascorbic acid peroxidase. Biochem. J. 186(1): 377. Doi: 10.1042/bj1860377.
  • Souza, F.V.D., E. Kaya, L. de Jesus Vieira, A. da Silva Souza, M. de Jesus da Silva Carvalho, E.B. Santos, A.A.C. Alves, and D. Ellis, 2017. Cryopreservation of Hamilin sweet orange [(Citrus sinensis (L.) Osbeck)] embryogenic calli using a modified aluminum cryo-plate technique. Sci. Hortic. 224: 302–305.
  • SWU. 2022. qPCR primer database. Available at https://biodb.swu.edu.cn/qprimerdb/. Southern Wesleyan University, USA.
  • Takeda, T., K. Yoshimura, M. Yoshii, H. Kanahoshi, H. Miyasaka, and S. Shigeoka. 2000. Molecular characterization and physiological role of ascorbate peroxidase from halotolerant Chlamydomonas sp. W80 strain. Arch. Biochem. Biophys. 376(1): 82-90. https://doi.org/10.1006/abbi.1999.1564.
  • Takeda, T., K. Yoshimura, T. Ishikawa, and S. Shigeoka. 1998. Purification and characterization of ascorbate peroxidase in Chlorella vulgaris. Biochimie 80(4): 295-301. https://doi.org/10.1016/S0300-9084(98)80070-9.
  • Tanada, T. 1978. Boron—key element in the actions of phytochrome and gravity? Planta 143: 109-111. https://doi.org/10.1007/BF00389059.
  • Vanderauwera, S., P. Zimmermann, S. Rombauts, S. Vandenabeele, C. Langebartels, W. Gruissem, D. Inzé, and F. Van Breusegem. 2005. Genome-wide analysis of hydrogen peroxide-regulated gene expression in Arabidopsis reveals a high light-induced transcriptional cluster involved in anthocyanin biosynthesis. Plant Physiol. 139(2): 806-821. https://doi.org/10.1104/pp.105.065896.
  • Willekens, H., S. Chamnongpol, M. Davey, M. Schraudner, C. Langebartels, M. Van Montagu, D. Inzé, and W. Van Camp. 1997. Catalase is a sink for H2O2 and is indispensable for stress defence in C3 plants. The EMBO Journal 16(16): 4806-4816. https://doi.org/10.1093/emboj/16.16.4806.

mRNA Transcription Analyses of ROS Genes of Olea europaea L. In Vitro Cultures Treated with Different Boron Salts

Yıl 2024, Cilt: 34 Sayı: 1, 24 - 32, 30.06.2024
https://doi.org/10.18615/anadolu.1457244

Öz

Various factors such as biotic and abiotic stresses have effects on plant metabolism, development, and growth. Plants have many complex and extraordinary strategies to adapt, defend, avoid and tolerate all these stress conditions. In this study, the relative mRNA levels of antioxidant enzymes of olive, which is very difficult to reproduce under in vitro conditions, were assessed under oxidative stress conditions, after treatment with boron compounds. In this context, three different compounds of the element boron, which are known to affect the ascorbate-glutathione pathway, were added separately at two different concentrations to the nutrient medium of olive under in vitro conditions. As a result of the study, it was observed that the relative mRNA expression levels of antioxidant enzymes such as catalase, ascorbate peroxidase, and superoxide dismutase decreased only in the H3BO3 group among the experimental groups. An increase in the relative mRNA expression levels of antioxidant enzymes was observed in the NaBO2 and ZnBO3 groups compared to the control group. This situation was interpreted as due to an increase in salinity stress which thereby increased the oxidative stress of the applied NaBO2 and ZnBO3 groups. However, in the H3BO3 group, although the concentration was increased twofold, a decrease was observed in the relative mRNA expression levels of the antioxidant enzymes examined. This reveals that application concentration, as well as the compound used, is extremely important.

Kaynakça

  • Agar, H., S. Galatali, D.E. Ozkaya, and E. Kaya. 2022. A Primary Study: Investigation of the in vitro salt stress effects on development in Thymus cilicicus Boiss. & Bal. Glob. J. Bot. Sci. 10: 23-27.
  • Akhtar, K.P., M. Martin, J.H. Mirza, A.S. Shakir, and M. Rafique. 1994. Some studies on post-harvest diseases of tomato fruits and their chemical control. Pak. J. Phytopathol. 6(2): 125-129.
  • Baldoni, L., N. Tosti, C. Ricciolini, A. Belaj, S. Arcioni, G. Pannelli, M.A. Germana, M. Mulas, and A. Porceddu. 2006. Genetic structure of wild and cultivated olives in the central Mediterranean basin. Ann Bot. 98(5): 935-42. https://doi.org/10.1093/aob/mcl178.
  • Belaj, A., Z. Satovic, L. Rallo, and I. Trujillo. 2002. Genetic diversity and relationships in olive (Olea europaea L.) germplasm collec tions as determined by randomly amplified polymorphic DNA. Theor. Appl. Genet. 105: 638–644. https://doi.org/10.1007/s00122-002-0981-6.
  • Besnard, G., C. Breton, P. Baradat, B. Khadari, and A. Bervillé. 2001. Cultivar identification in olive based on RAPD markers. J. Am. Soc. Hortic. Sci. 126: 668–675. https://doi.org/10.21273/JASHS.126.6.668.
  • Besnard, G., J.F. Terral, and A. Cornille. 2018. On the origins and domestication of the olive: a review and perspectives. Ann. Bot. 121(3): 385-403. https://doi.org/10.1093/aob/mcx145.
  • Bresciani, G., I.B.M. da Cruz, and J. González-Gallego. 2015. Manganese superoxide dismutase and oxidative stress modulation. Adv. Clin. Chem. 68: 87-130. https://doi.org/10.1016/bs.acc.2014.11.001.
  • Caverzan, A., G. Passaia, S.B. Rosa, C.W. Ribeiro, F. Lazzarotto, and M. Margis-Pinheiro. 2012. Plant responses to stresses: role of ascorbate peroxidase in the antioxidant protection. Stat. Appl. Genet. Mol. Biol. 35: 1011-1019. https://doi.org/10.1590/S1415-47572012000600016. Clarkson, D.T., and J.B. Hanson. 1980. The mineral nutrition of higher plants. Annu. Rev. Plant Physiol. 31(1): 239-298.
  • Contento, A., M. Ceccarelli, M.T. Gelati, F. Maggini, L. Baldoni, and P.G. Cionini. 2002. Diversity of Olea genotypes and the commerorigin of cultivated olives. Theor. Appl. Genet. 104: 1209–1216. https://doi.org/10.1007/s00122-001-0799-7.
  • Corpas, F.J., A. Fernandez-Ocana, A. Carreras, R. Valderrama, F. Luque, F.J. Esteban, M. Rodríguez-Serrano, M. Chaki, J.R. Pedrajas, L.M. Sandalio, L.A. del Río, and J.B. Barroso. 2006. The expression of different superoxide dismutase forms is cell-type dependent in olive (Olea europaea L.) leaves. Plant Cell Physiol. 47(7): 984-994. https://doi.org/10.1093/pcp/pcj071.
  • Corpas, F.J., J.M. Palma, L.M. Sandalio, R. Valderrama, J.B. Barroso, and A. Luis. 2008. Peroxisomal xanthine oxidoreductase: characterization of the enzyme from pea (Pisum sativum L.) leaves. J. Plant Physiol. 165(13): 1319-1330. https://doi.org/10.1016/j.jplph.2008.04.004.
  • Çiçek, S., H. Ağar, S. Galatalı, and E. Kaya. 2023. Transcriptomic Analysis of AREB1 and AREB2 genes playing ımportant roles in drought stress tolerance in tomato under in vitro drought stress. Environ. Anal. & Ecol. Stud. 10(5):1203-1209. https://doi.org/10.31031/EAES.2023.10.000750.
  • Diaz-Vivancos, P., A. de Simone, G. Kiddle, and C.H. Foyer. 2015. Glutathione–linking cell proliferation to oxidative stress. Free Radical Biol. Med. 89: 1154-1164. https://doi.org/10.1016/j.freeradbiomed.2015.09.023.
  • Espinosa-Leal, C.A., C.A. Puente-Garza, and S. García-Lara. 2018. In vitro plant tissue culture: means for production of biological active compounds. Planta 248(1): 1-18. https://doi.org/10.1007/s00425-018-2910-1.
  • Foyer, C.H., and P.M. Mullineaux. 1998. The presence of dehydroascorbate and dehydroascorbate reductase in plant tissues. FEBS Lett. 425(3): 528-529.
  • Galatali, S, M.A. Balci, O. Akgüller, and E. Kaya. 2021. Production of disease-free olive seedlings with artificial ıntelligence and biotechnological methods. Eur J Biol Biotechnol 2(3): 79-84. https://doi.org/10.24018/ejbio.2021.2.3.172. Galatali, S., N. Abdul Ghafoor, and E. Kaya. 2021. Characterization of olive (Olea europaea L.) genetic resources via pcr-based molecular marker systems. Eur J Biol Biotechnol 2(1): 26-33. https://doi.org/10.24018/ejbio.2021.2.1.146.
  • Gill, S.S., and N. Tuteja. 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 48(12): 909-930. https://doi.org/10.1016/j.plaphy.2010.08.016.
  • Guerriero, G., R. Berni, J.A. Muñoz-Sanchez, F. Apone, E.M. Abdel-Salam, A.A. Qahtan, A.A. Alatar, C. Cantini, G. Cai, J.F. Hausman, K.S. Siddiqui, S.M.T. Hernández-Sotomayor, and M. Faisal. 2018. Production of plant secondary metabolites: examples, tips and suggestions for biotechnologists. Genes (Basel) 9(6): 309. https://doi.org/10.3390/genes9060309.
  • Kaya, E., and E. Yılmaz-Gokdogan. 2016. Using two retrotransposon based marker systems IRAP and REMAP for molecular characterization of Olive Olea europaea L. cultivars. Not. Bot. Horti Agrobot. Cluj-Napoca 44(1): 167-174.
  • Kaya, E., F.V.D. Souza, J.A. dos Santos-Serejo, and S. Galatali. 2020. Influence of dehydration on cryopreservation of Musa spp. germplasm. Acta Botan. Croat. 79(2): 99-104. https://doi.org/10.37427/botcro-2020-024.
  • Kaya, E., R. Vatansever, and E. Filiz. 2018. Assessment of the genetic relationship of Turkish olives (Olea europaea subsp. europaea) cultivars based on cpDNA trnL-F regions. Acta Botan. Croat. 77(1): 88-92. https://doi.org/10.1515/botcro-2017-0019.
  • Kıvrak-Kıran, S., S. Galatalı, S. Yeniocak, D.E. Ozkaya, T. Mercan, S. Guldag, O. Celik, N. Abdul Ghafoor, and E. Kaya. 2021. Investigation of modified WPM medium for the best meristem proliferation of Corylus avellana L. Adv. Hortic. Sci. 35(3): 285-292. https://doi.org/10.36253/ahsc-10536.
  • Kim, T.K. 2015. T test as a parametric statistic. Korean J Anesthesiol 68(6): 540-546. https://doi.org/10.4097/kjae. 2015.68.6.540.
  • Krumova, K., and G. Cosa. 2016. In singlet oxygen: applications in biosciences and nanosciences. pp. 1-21. In: S. Nonell., C. Flors., S. Nonell., and C. Flors (Eds.). The Royal Society of Chemistry. United Kingdom.
  • Lambardi, M., E.A. Ozudogru, and R. Roncasaglia. 2013. In vitro propagation of olive (Olea europaea L.) by nodal segmentation of elongated shoots. Protocols for Micropropagation of Selected Economically-Important Horticultural Plants 33-44.
  • Livak, K.J., and T.D. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods 25(4): 402-408.
  • Mehbub, H., A. Akter, M.A. Akter, M.S.H. Mandal, M.A. Hoque, M. Tuleja, and H. Mehraj. 2022. Tissue Culture in Ornamentals: cultivation factors, propagation techniques, and Its application. Plants (Basel). 11(23): 3208. https://doi.org/10.3390/plants11233208.
  • Mercan, T., S. Galatalı, D.E. Özkaya, O. Celik, and E. Kaya. 2022. Effects of different boron salt treatments on micropropagation and genetic stability in in vitro cultures of Liquidambar orientalis Miller. Journal of Boron 7(4): 521-527. https://doi.org/10.30728/boron.1140926.
  • Murashige, T., and F.A. Skoog. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15: 473-497.
  • Nable, R.O., G.S. Banuelos., and J.G. Paull. 1997. Boron toxicity. Plant Soil. 193: 181-198. https://doi.org/10.1023/A:1004272227886.
  • Nordgren, M., and M. Fransen. 2014. Peroxisomal metabolism and oxidative stress. Biochimie 98: 56-62. https://doi.org/10.1016/j.biochi.2013.07.026.
  • Ozden-Ciftci, Y., E.A. Ozudogru, E. Kaya ve H. Akdemir. 2010. Zeytin (Olea europaea) bitkisinin geçici daldırma biyoreaktör sistemleri (TIS) ile in vitro sürgün çoğaltımının iyileştirilmesi. Zeytin Bilimi 1(1): 1-6.
  • Ozudogru, E.A., E. Kaya, E. Kirdok, and S. Issever-Ozturk. 2011. İn vitro propagation from young and mature explants of thyme (Thymus vulgaris and T. longicaulis) resulting in genetically stable shoots. İn vitro Cell Dev Biol Plant 47: 309–320. https://doi.org/10.1007/s11627-011-9347-6.
  • Rugini, E. (1984). In vitro propagation of some olive (Olea europaea sativa L.) cultivars with different root-ability, and medium development using analytical data from developing shoots and embryos. Sci. Hortic. 24: 123-134 https://doi.org/10.1016/0304-4238(84)90143-2.
  • Sharma, P., A.B. Jha, and R.S. Dubey. 2019. Oxidative stress and antioxidative defense system in plants growing under abiotic stresses. pp. 93-136. In: M. Pessarakli (Ed.). Handbook of Plant and Crop Stress. CRC press. 4th Edition. https://doi.org/10.1201/9781351104609.
  • Sharma, P., R.S. Dubey. 2007. Involvement of oxidative stress and role of antioxidative defense system in growing rice seedlings exposed to toxic concentrations of aluminum. Plant Cell Rep. 26: 2027-2038. https://doi.org/10.1007/s00299-007-0416-6.
  • Shi, X., B. Li, G. Qin, and S. Tian. 2012. Mechanism of antifungal action of borate against Colletotrichum gloeosporioides related to mitochondrial degradation in spores. Postharvest Biol. Technol. 67: 138-143. https://doi.org/10.1016/j.postharvbio.2012.01.003.
  • Shigeoka, S., Y. Nakano, and S. Kitaoka. 1980. Metabolism of hydrogen peroxide in Euglena gracilis Z by L-ascorbic acid peroxidase. Biochem. J. 186(1): 377. Doi: 10.1042/bj1860377.
  • Souza, F.V.D., E. Kaya, L. de Jesus Vieira, A. da Silva Souza, M. de Jesus da Silva Carvalho, E.B. Santos, A.A.C. Alves, and D. Ellis, 2017. Cryopreservation of Hamilin sweet orange [(Citrus sinensis (L.) Osbeck)] embryogenic calli using a modified aluminum cryo-plate technique. Sci. Hortic. 224: 302–305.
  • SWU. 2022. qPCR primer database. Available at https://biodb.swu.edu.cn/qprimerdb/. Southern Wesleyan University, USA.
  • Takeda, T., K. Yoshimura, M. Yoshii, H. Kanahoshi, H. Miyasaka, and S. Shigeoka. 2000. Molecular characterization and physiological role of ascorbate peroxidase from halotolerant Chlamydomonas sp. W80 strain. Arch. Biochem. Biophys. 376(1): 82-90. https://doi.org/10.1006/abbi.1999.1564.
  • Takeda, T., K. Yoshimura, T. Ishikawa, and S. Shigeoka. 1998. Purification and characterization of ascorbate peroxidase in Chlorella vulgaris. Biochimie 80(4): 295-301. https://doi.org/10.1016/S0300-9084(98)80070-9.
  • Tanada, T. 1978. Boron—key element in the actions of phytochrome and gravity? Planta 143: 109-111. https://doi.org/10.1007/BF00389059.
  • Vanderauwera, S., P. Zimmermann, S. Rombauts, S. Vandenabeele, C. Langebartels, W. Gruissem, D. Inzé, and F. Van Breusegem. 2005. Genome-wide analysis of hydrogen peroxide-regulated gene expression in Arabidopsis reveals a high light-induced transcriptional cluster involved in anthocyanin biosynthesis. Plant Physiol. 139(2): 806-821. https://doi.org/10.1104/pp.105.065896.
  • Willekens, H., S. Chamnongpol, M. Davey, M. Schraudner, C. Langebartels, M. Van Montagu, D. Inzé, and W. Van Camp. 1997. Catalase is a sink for H2O2 and is indispensable for stress defence in C3 plants. The EMBO Journal 16(16): 4806-4816. https://doi.org/10.1093/emboj/16.16.4806.
Toplam 45 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Bitki Biyoteknolojisi
Bölüm Makaleler
Yazarlar

Onur Çelik 0000-0002-1040-9833

Ergun Kaya 0000-0003-4255-3802

Yayımlanma Tarihi 30 Haziran 2024
Gönderilme Tarihi 22 Mart 2024
Kabul Tarihi 24 Mayıs 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 34 Sayı: 1

Kaynak Göster

APA Çelik, O., & Kaya, E. (2024). mRNA Transcription Analyses of ROS Genes of Olea europaea L. In Vitro Cultures Treated with Different Boron Salts. ANADOLU Ege Tarımsal Araştırma Enstitüsü Dergisi, 34(1), 24-32. https://doi.org/10.18615/anadolu.1457244
AMA Çelik O, Kaya E. mRNA Transcription Analyses of ROS Genes of Olea europaea L. In Vitro Cultures Treated with Different Boron Salts. ANADOLU. Haziran 2024;34(1):24-32. doi:10.18615/anadolu.1457244
Chicago Çelik, Onur, ve Ergun Kaya. “MRNA Transcription Analyses of ROS Genes of Olea Europaea L. In Vitro Cultures Treated With Different Boron Salts”. ANADOLU Ege Tarımsal Araştırma Enstitüsü Dergisi 34, sy. 1 (Haziran 2024): 24-32. https://doi.org/10.18615/anadolu.1457244.
EndNote Çelik O, Kaya E (01 Haziran 2024) mRNA Transcription Analyses of ROS Genes of Olea europaea L. In Vitro Cultures Treated with Different Boron Salts. ANADOLU Ege Tarımsal Araştırma Enstitüsü Dergisi 34 1 24–32.
IEEE O. Çelik ve E. Kaya, “mRNA Transcription Analyses of ROS Genes of Olea europaea L. In Vitro Cultures Treated with Different Boron Salts”, ANADOLU, c. 34, sy. 1, ss. 24–32, 2024, doi: 10.18615/anadolu.1457244.
ISNAD Çelik, Onur - Kaya, Ergun. “MRNA Transcription Analyses of ROS Genes of Olea Europaea L. In Vitro Cultures Treated With Different Boron Salts”. ANADOLU Ege Tarımsal Araştırma Enstitüsü Dergisi 34/1 (Haziran 2024), 24-32. https://doi.org/10.18615/anadolu.1457244.
JAMA Çelik O, Kaya E. mRNA Transcription Analyses of ROS Genes of Olea europaea L. In Vitro Cultures Treated with Different Boron Salts. ANADOLU. 2024;34:24–32.
MLA Çelik, Onur ve Ergun Kaya. “MRNA Transcription Analyses of ROS Genes of Olea Europaea L. In Vitro Cultures Treated With Different Boron Salts”. ANADOLU Ege Tarımsal Araştırma Enstitüsü Dergisi, c. 34, sy. 1, 2024, ss. 24-32, doi:10.18615/anadolu.1457244.
Vancouver Çelik O, Kaya E. mRNA Transcription Analyses of ROS Genes of Olea europaea L. In Vitro Cultures Treated with Different Boron Salts. ANADOLU. 2024;34(1):24-32.
29899ANADOLU Journal by Aegean Agricultural Research Institute is licensed under CC BY-NC-ND 4.0  

30009     30010       30011     30012   30013      30014        30015  30016