Araştırma Makalesi
BibTex RIS Kaynak Göster

Protein Komplekslerini Gruplayarak İnsanda Protein-Protein Etkileşim Ağlarının Karmaşıklığını Düşürmek

Yıl 2019, Cilt: 24 Sayı: 3, 231 - 236, 24.10.2019

Öz

Amaç:



Binlerce insan proteini biraraya
gelerek binlerce farklı işlevsel protein kompleksleri oluşturur. Bu dördüncül
protein yapılarının konformasyonel değişimleri, protein izoformları ve
translasyon sonrası modifikasyonlar bu resmi daha da karmaşık hale getirir.
Özellikle ağ biyolojisinin sağlık bilimlerindeki uygulamalarında, çoğu zaman
bütün protein-protein etkileşim haritasını bir kerede ele almak imkansızdır. Bu
nedenle hesaplama verimliliğini artıran çeşitli ağ küçültme yaklaşımları kullanılır.
Bu noktada protein kompleksleri veri azaltma rehberi olarak çok faydalı
olabilir. Bu çalışmada bir düğüm birleştirme prosedürü önererek, protein
komplekslerine dayalı bir ağ küçültme stratejisi kullandık.



Gereç
ve Yöntemler:



Protein kompleksi etkileşimlerini
çıkarmak için memeli protein komplekslerinin kapsamlı kaynağı kullanıldı. İnsan
protein-protein etkileşim haritası Agile protein interactomes data-server’dan
alındı. Daha küçük bir ağ oluşturmak için özgün bir gruplama yaklaşımı
kullanıldı. Elde edilen bağlama özel ağın ilingesel analizi ve yüksek merkeziliğe
sahip düğümlerin incelenmesi, orijinal ağ ile karşılaştırılmalı olarak yapıldı.



Bulgular:



Gruplama prosedüründen sonra
aralarında 41.940 etkileşimi olan 9.988 protein ve 304 protein grubu içeren
heterojen bir etkileşim haritası elde edilmiştir. Toplam düğüm sayısı ve
etkileşim sayısı sırasıyla% 9,7 ve % 16 azalmıştır. Ortaya çıkan ağ, ölçeksiz
topolojiyi korumuştur.



Sonuç:



Sonuçlar, yaklaşımın biyolojik
olarak anlamlı yapısını bozmadan biyolojik ağı küçültmede işlevsel olduğunu
göstermiştir.

Kaynakça

  • Barabasi A L, Oltvai ZN. Network biology: understanding the cell's functional organization. Nature Rev Genet. 2004; 5(2), 101.
  • Ackermann J, Einloft J, Nöthen J, Koch I. Reduction techniques for network validation in systems biology. J Theor Biol. 2012; 315, 71-80.
  • Vlassis N, Pacheco MP, Sauter T. Fast reconstruction of compact context-specific metabolic network models. PLoS Comput Biol. 2014; 10(1), e1003424.
  • Butland G, Peregrín-Alvarez JM, Li J, et al. Interaction network containing conserved and essential protein complexes in Escherichia coli. Nature. 2005; 433(7025), 531.
  • Ruepp A, Waegele B, Lechner M, et al. CORUM: the comprehensive resource of mammalian protein complexes—2009. Nucleic Acids Res. 2009; 38(suppl_1), D497-D501.
  • Liu CT, Yuan S, Li KC. Patterns of co-expression for protein complexes by size in Saccharomyces cerevisiae. Nucleic Acids Res. 2008; 37(2), 526-532.
  • Jansen R, Greenbaum D, Gerstein M. Relating whole-genome expression data with protein-protein interactions. Genome Res. 2002; 12(1), 37-46.
  • Alonso-Lopez D, Gutiérrez MA, Lopes KP, et al. APID interactomes: providing proteome-based interactomes with controlled quality for multiple species and derived networks. Nucleic Acids Res. 2016; 44(W1), W529-W535.
  • Chatr-Aryamontri A, Breitkreutz BJ, Oughtred R, et al. The BioGRID interaction database: 2015 update. Nucleic Acids Res. 2014; 43(D1), D470-D478.
  • Salwinski L, Miller CS, Smith AJ, Pettit FK, Bowie JU, Eisenberg D. The database of interacting proteins: 2004 update. Nucleic Acids Res. 2004; 32(suppl_1), D449-D451.
  • Keshava Prasad TS, Goel R, Kandasamy K, et al. Human protein reference database—2009 update. Nucleic Acids Res. 2008; 37(suppl_1), D767-D772.
  • Kerrien S, Aranda B, Breuza L, et al. The IntAct molecular interaction database in 2012. Nucleic Acids Res. 2011; 40(D1), D841-D846.
  • Licata L, Briganti L, Peluso D, et al. MINT, the molecular interaction database: 2012 update. Nucleic Acids Res. 2011; 40(D1), D857-D861.
  • Brandes UA. Faster algorithm for betweenness centrality. J Math Sociol. 2001; 25(2), 163-177.

Lumping Protein Complexes to Reduce the Complexity of Human Protein-Protein Interaction Network

Yıl 2019, Cilt: 24 Sayı: 3, 231 - 236, 24.10.2019

Öz

Aim:



Thousands of human proteins
assemble thousands of functional protein complexes. Conformational variations
of these quaternary protein structures, protein isoforms and post-translational
modifications make the picture even more complicated. Especially for network
biology applications in health sciences, most of the time it is impossible to
handle whole protein-protein interaction map at once. There are various approaches
for network reduction for computational efficiency to overcome this obstacle.
Nevertheless protein complexes can be very useful as data reduction guide. Here
in this study we used protein complexes as a base for network-reduction by proposing
a node-lumping procedure.



Materials
and Methods:



The comprehensive resource of
mammalian protein complexes was used to extract protein complex interactions.
Human protein-protein interaction map was retrieved from Agile protein
interactomes data-server. A novel lumping procedure was introduce to create a
reduced network. Topological analysis of the resulting context specific network
and examination of highly connected nodes were compared with the original
network.



Results:



After lumping we get a
heterogeneous map of 9,888 proteins and 304 lumped nodes with 41,940
interactions. Total number of nodes and interactions were reduced by 9.7% and
16%, respectively. The resulting network preserves scale-free topology.



Conclusion:



The results indicated that the
procedure is helpful in network reduction without disturbing biologically
relevant structure of the network. 

Kaynakça

  • Barabasi A L, Oltvai ZN. Network biology: understanding the cell's functional organization. Nature Rev Genet. 2004; 5(2), 101.
  • Ackermann J, Einloft J, Nöthen J, Koch I. Reduction techniques for network validation in systems biology. J Theor Biol. 2012; 315, 71-80.
  • Vlassis N, Pacheco MP, Sauter T. Fast reconstruction of compact context-specific metabolic network models. PLoS Comput Biol. 2014; 10(1), e1003424.
  • Butland G, Peregrín-Alvarez JM, Li J, et al. Interaction network containing conserved and essential protein complexes in Escherichia coli. Nature. 2005; 433(7025), 531.
  • Ruepp A, Waegele B, Lechner M, et al. CORUM: the comprehensive resource of mammalian protein complexes—2009. Nucleic Acids Res. 2009; 38(suppl_1), D497-D501.
  • Liu CT, Yuan S, Li KC. Patterns of co-expression for protein complexes by size in Saccharomyces cerevisiae. Nucleic Acids Res. 2008; 37(2), 526-532.
  • Jansen R, Greenbaum D, Gerstein M. Relating whole-genome expression data with protein-protein interactions. Genome Res. 2002; 12(1), 37-46.
  • Alonso-Lopez D, Gutiérrez MA, Lopes KP, et al. APID interactomes: providing proteome-based interactomes with controlled quality for multiple species and derived networks. Nucleic Acids Res. 2016; 44(W1), W529-W535.
  • Chatr-Aryamontri A, Breitkreutz BJ, Oughtred R, et al. The BioGRID interaction database: 2015 update. Nucleic Acids Res. 2014; 43(D1), D470-D478.
  • Salwinski L, Miller CS, Smith AJ, Pettit FK, Bowie JU, Eisenberg D. The database of interacting proteins: 2004 update. Nucleic Acids Res. 2004; 32(suppl_1), D449-D451.
  • Keshava Prasad TS, Goel R, Kandasamy K, et al. Human protein reference database—2009 update. Nucleic Acids Res. 2008; 37(suppl_1), D767-D772.
  • Kerrien S, Aranda B, Breuza L, et al. The IntAct molecular interaction database in 2012. Nucleic Acids Res. 2011; 40(D1), D841-D846.
  • Licata L, Briganti L, Peluso D, et al. MINT, the molecular interaction database: 2012 update. Nucleic Acids Res. 2011; 40(D1), D857-D861.
  • Brandes UA. Faster algorithm for betweenness centrality. J Math Sociol. 2001; 25(2), 163-177.
Toplam 14 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Sağlık Kurumları Yönetimi
Bölüm ORJİNAL MAKALE
Yazarlar

Muhammed Erkan Karabekmez 0000-0002-0517-5227

Yayımlanma Tarihi 24 Ekim 2019
Kabul Tarihi 6 Temmuz 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 24 Sayı: 3

Kaynak Göster

Vancouver Karabekmez ME. Protein Komplekslerini Gruplayarak İnsanda Protein-Protein Etkileşim Ağlarının Karmaşıklığını Düşürmek. Anadolu Klin. 2019;24(3):231-6.

13151 This Journal licensed under a CC BY-NC (Creative Commons Attribution-NonCommercial 4.0) International License.