Bioindicator Mosses in Environmental Radioactivity Studies
Yıl 2023,
, 50 - 57, 21.06.2023
Gamze Gürsu
,
Nevin Taşaltın
Öz
The environmental pollution problem continues to increase in intensity. For this reason, atmospheric element levels should continue to be determined using bioindicator organisms and pollution measurements should be made regularly. The main reasons for the increase in radioactive pollution are mining activities, thermal power plants, base stations and nuclear power plants where fossil fuels are preferred as a source. The radiation doses that the members of the society are exposed to for all reasons other than natural radioactivity are controlled by regulations that prevent the leakage of radioactive materials to radiation and the environment. In this context, the detection and monitoring of radionuclides by bioindicator organs is reported in detail. Mosses are frequently used as biological indicators for monitoring environmental radioactivity in current studies.
Kaynakça
- Aleksiayenak Y.V. Frontasyeva M.V. Florek M. Sykora I. Holy K. Masarik J. Brestakova L. Jeskovsky M. Steinnes E. Faanhof A. Ramatlhape, K.I. 2013. Distributions of 137Cs and 210Pb in moss collected from Belarus and Slovakia. J. Environ. Radioact. 117: 19–24.
- ANSI. 1978. American National Standards Institute, Calibration and Usage of Germanium detectors for Measurement of Gamma-ray Emission Rates of Radionuclides, Rep. N42.14, ANSI, New York.
- Belivermiş M. Kılıç Ö. Çotuk Y. Topçuoğlu S. 2009. Trakya Bölgesi’ nde Doğal ve Yapay Radyonüklitlerin Biyoindikatör Organizmalarla İzlenmesi, X. Ulusal Nükleer Bilimler ve Teknolojileri Kongresi, 6-9 Ekim, İstanbul Üniversitesi Fen Fakültesi Biyoloji Bölümü, 187-194.
- Belivermiş M. Kılıç O. Çotuk Y. Topcuoğlu S. Kalaycı G. Peştereli D. 2010. The usability of tree barks as long term biomonitors of atmospheric radionuclide deposition, Applied Radiation and Isotopes. 68: 2433–2437.
- Boryło A. Romańczyk G. Skwarzec B. 2017. Lichens and mosses as polonium and uranium biomonitors on Sobieszewo Island. Journal of Radioanalytical and Nuclear Chemistry, 311:1.
- Brown D.H. R.M. Brown. 1990. Reproducibility of sampling for element analysis using bryophytes. In: Element Concentration Cadasters in Ecosystems (Eds. H. Lieth and B. Markert). 55–62. VCH Publishers, Weinheim.
- Celik N. Cevik U. Celik A. Koz B. 2009. Natural and artifical radioactivity measurements in Eastern Black Sea region of Turkey, Journal of Hazardous Materials, 162: 146-153.
- Cwanek A. Mietelski J.W. Okas E. Olech M.A. Misiak R. 2019. Sources and variation of isotopic ratio of airborne radionuclides in Western Arctic lichens and mosses. J. Chemosphere. 239: 124783.
- Çetin B. 1988. Dilek Yarımadası Milli Parkı Karayosunları (Musci). (I). Doğa Türk Botanik Dergisi, 12:3, 207–214.
- Dragović S. Nedić O. Stanković S. G. Bačić. 2004. Radiocesium accumulation in mosses from highlands of Serbia and Montenegro: chemical and physiological aspects. J. Environ. Radioact., 77: 381–388.
- Ellenberg H. Arndt U. Bretthauer R. Ruthsatz B. Steubing L. 1991. Biological Monitoring; Signals from the Environment, Friaedr, Vieureg and Sohn Verlagsgesellschaft mbtt, Braunschweig; pp. 318.
- Elstner E.F. Fink R. Höll W. Lengfelder E. H. Ziegler. 1987. Natural and Chernobyl-caused radioactivity in mushrooms, mosses and soil-samples of defined biotops in SW Bavaria. Oecologia. 73: 553-558.
- Erdurmuş B. 2007. İzmit Körfezi’nde 137Cs ve 210Po radyonüklidlerinin seviyelerini ve ürünlere topraktan transfer faktörlerini saptamak. Yüksek Lisans Tezi, Kocaeli Üniversitesi Fen Bilimleri Enstitüsü Fizik Anabilim Dalı, Kocaeli.
- Frahm J.P. 1998. Moose Als Bioindikatoren; Quelle & Meyer: Wiesbaden, Germany, 187.
- Freitas M.C. Reis M.A. Alves L.C. Wolterbeek, H.T. 1999. Distribution in Portugal of Some Pollutans in Lichen Parmelia Sulcata. Environmental Pollution, 106:2, 229-235.
- Glime J.M. 2013. Bryophyte Ecology. Ebook sponsored by Michigan Technological University and the International Association of Bryologists.
- Görür Ş. 2006. Çevresel Radyoaktivite ile Bu Çevrede Yaşayanlara Ait Diş Örneklerindeki Radyoaktivite Arasındaki İlişkinin Araştırılması. Yüksek Lisans Tezi, Çukurova Üniversitesi Fen Bilimleri Enstitüsü Fizik Anabilim Dalı, Adana.
- Gürsu G. 2020. Ankara İli’nin Radyoaktif Kirliliğinin Liken Türleriyle Biyoizlenmesi. Doktora Tezi, Ankara Üniversitesi Fen Bilimleri Enstitüsü Biyoloji Anabilim Dalı, Ankara.
- Harmens H. Norris, D.A. Steinnes E. Kubin E. Piispanen J. Alber R. Aleksiayenak Y. 2010. Mosses as biomonitors of atmospheric heavy metal deposition: spatial patterns and temporal trends in Europe. J. Environ. Pollut. 158: 3144–3156.
- Heinzl J. Korscinek G. E. Nolte. 1988. Some measurement on Chernobyl, Phys. Scr., 37, 314-316.
- Ilus E. Sjöblom K.L. Aaltonen H. Klemola S. H. Arvela. 1987. Monitoring of radioactivity in the environs of Finnish Nuclear power stations in 1986: Supplement 12 to annual report STUK-A55. Report No. STUK-A67.
- Kaya S. Karabıdak S.M. Çevik U. 2015. Gümüşhane İli Çevresinde Toplanan Toprak ve Karayosunu Örneklerinde Doğal (226Ra, 232Th ve 40K) ve Yapay (137Cs) Radyoaktivite Konsantrasyonlarının Belirlenmesi. GÜFBED/GUSTIJ, 5:1, 24-33.
- Knoll F.G. 2000. Radiation Detection and Measurement Third Edition. Wiley, 816, New York.
- Krmar M. Radnović D. Mihailović D.T. Lalić B. Slivka J.A. Bikit. 2009. Temporal variations of 7Be, 210Pb and 137Cs in moss samples over 14 month period. Appl. Radiat. Isot. 67: 1139-1147.
- Kryshev I.I. Sazykina T. Beresford N.A. 2005. Effects on Wildlife. In Chernobyl: Catastrophe and Consequences, 1st ed.; Smith, J.T. Beresford, N.A., Eds.; Springer: Berlin, Germany. 267–287.
- Manning W.J. Feder W.A. 1980. Biomonitoring air pollutants with plants. Applied Science Publishers, London.
- Marović G. Franić Z. Sencar J. Bituh T.O. Vugrinec. 2008. Mosses and some mushroom species as bioindicators of radiocaesium contamination and risk assessment. Coll Antropol. 32: 109-14.
- Martin M.H. Coughtrey P.J. 1982. Biological monitoring of heavy metal pollution. Applied Science Publishers, London.
- Papastefanou C. Manolopoulou M. Sawidis T. 1989. Lichens and mosses: Biological monitors of radioactive fallout from the Chernobyl reactor accident. J. Environ. Radioact. 9: 199–207.
- Puckett K.J. 1988. Bryophytesand lichensas monitorsofmetaldeposition,in T.H. III Nash and V. Wirth (eds.), Lichens, Bryophytes and Air Quality, BibliothecaLichenologica30, Cramer,Berlin, pp. 231-267.
- Sabovljević M. Vukojević V. Mihajlović N. Dražić, G. Ž. Vučinić. 2005. Determination of heavy metal deposition in the county of Obrenovac (Serbia) using mosses as bioindicators. I: Aluminum (Al), arsenic (As) and boron (B). Arch. Biol. Sci. 57: 205-212.
- Saka A.Z. Çevik U. Bacaksız E. Kopya A.İ. Tıraşoğlu E. 1997. Levels of cesium radionuclides in lichens and mosses from the province of Ordu in the Eastern Black Sea area of Turkey. Journal of Radioanalytical and Nuclear Chemistry, 222:1-2, 87-92.
- Saračević L. Kljajić R. Mihajl A.Z. Milošević. 1989. Komparativni prikaz nivoa radioaktivnosti lišaja i mahovine u lovištima BiH prije i poslije havarije u Černobilju. XV Jugoslovenski simpozijum za zaštitu od zračenja, Priština, 3-6.
- Schmidt B. Kegler F. Steinhauser G. Chyzhevskyi I. Dubchak S. Ivesic C. Koller Peroutka, M. Laarouchi A. Adlassnig, W. 2023. Uptake of Radionuclides by Bryophytes in the Chornobyl Exclusion Zone. Toxics 2023, 11: 218.
- Sert E. Uğur A. Özden B. Sa. M.M. Camgöz B. 2011. Biomonitoring of 210Po and 210Pb using lichens and mosses around coal-fired power plants in Western Turkey. Journal of Environmental Radioactivity, June 2011102:6, 535–542.
- Smidt S. Bauer H. Fürst A. Jandl R. Mutsch F. Seidel C. Zechmeister H. 2011. Schwermetalle und Radionuklide in Österreichis chen Waldökosystemen. Austrian J. For. Sci. 28: 251–278.
- Stainnes E. 1995. A critical evaluation of the use of naturally growing moss to monitor the deposition of atmospheric metals. Sci. Total Environ. 160: 243–249.
- Steemans P. Lepot K. Marshall C.P. Javaux E.l. 2010. FTIR characterisation of the chemical composition of Silurian cryptospores from Gotland, Sweden. Review of Paleobotany and Palynology.
- TAEK. 2006. Türkiye’ de Çernobil Sonrası Radyasyon ve Radyoaktivite Ölçümleri 6: 89-90.
- TAEK. 2009. Radyasyon, İnsan ve Çevre 3-12.
- Taylor F.G. Whitherspoon J.P. 1972. Retention of simulated fall out particles by lichens and mosses. Health Physics. 23: 867–869.
- Tyler G. 1990. Bryophytes and heavy metals: a literature review. Bot. J. Linn. Soc., 104: 231–253.
- Topçuoğlu S. Van Dawen A.M. Güngör N. 1995. The Natural Depuration Rate of 137Cs Radionuclides in a Lichen and Moss Species. J. Environ. Radioactivity, 29:2, 157-162.
- Topçuoğlu S. Karahan G. Güngör N. Kırbaşoğlu Ç. 2003a. Natural and artificial radioactivity in Emendere thermal spring area in Western Anatolia. Journal of Radioanalytical and Nuclear Chemistry, 256:3: 395- 398.
- UNSCEAR. 2000. Report on Sources and Effects of Ionizing Radiation to the General Assembly (2 Volumes), United Nations, Vienna.
- Ursavaş S. Öztürk E. 2016. Çankırı Karatekin Üniversitesi, Orman Fakültesi Araştırma ve Uygulama Ormanında Ölü Ağaçlar Üzerinde Tespit Edilen Karayosunları. Anatolian Bryology. 6: 1-27.
- Wolterbeek B. 2002. Biomonitoring of trace element air pollution: principles, possibilities and perspectives. Environ. Pollut. 120: 11–21.
- Wattanavatee K. Krmar M. Bhongsuwan T. 2017. A survey of natural terrestrial and airborne radionuclides in moss samples from the peninsular Thailand. J. Environ. Radioact. 177: 113–127.
- Wells J.M. D.H. Brown. 1990. Ionic control of intracellular and extracellular Cd uptake by the moss Rhytidiadelphus squarrosus (Hedw.) Warnst.
- Wittig R. 1993. General aspects of biomonitoring heavy metals by plants, In: Plants as biomonitors: Indicators for heavy metals in the terrestrial environment. Markert, B. (ed), VCH, pp. 3-27, Weinheim.
Çevresel Radyoaktivite Çalışmalarında Biyoindikatör Karayosunları
Yıl 2023,
, 50 - 57, 21.06.2023
Gamze Gürsu
,
Nevin Taşaltın
Öz
Çevre kirliliği sorunu şiddetini artırarak devam etmektedir. Bu nedenle biyoindikatör
organizmalar kullanılarak atmosferik element seviyeleri belirlenmeye devam edilmeli ve
kirlilik ölçümleri düzenli olarak yapılmalıdır. Radyoaktif kirliliğin artmasının başlıca nedenleri
madencilik faaliyetleri, termik santraller, baz istasyonları ve fosil yakıtların kaynak olarak
tercih edildiği nükleer santrallerdir. Toplum bireylerinin doğal radyoaktivite dışındaki tüm
nedenlerle maruz kaldıkları radyasyon dozları, radyoaktif maddelerin radyasyon ve çevreye
sızmasını önleyen yönetmeliklerle kontrol edilmektedir. Bu bağlamda, radyonüklidlerin
biyoindikatör organlar tarafından saptanması ve izlenmesi ayrıntılı olarak rapor edilmektedir.
Karayosunları, mevcut çalışmalarda çevresel radyoaktivitenin izlenmesi için sıklıkla biyolojik
göstergeler olarak kullanılmaktadır.
Kaynakça
- Aleksiayenak Y.V. Frontasyeva M.V. Florek M. Sykora I. Holy K. Masarik J. Brestakova L. Jeskovsky M. Steinnes E. Faanhof A. Ramatlhape, K.I. 2013. Distributions of 137Cs and 210Pb in moss collected from Belarus and Slovakia. J. Environ. Radioact. 117: 19–24.
- ANSI. 1978. American National Standards Institute, Calibration and Usage of Germanium detectors for Measurement of Gamma-ray Emission Rates of Radionuclides, Rep. N42.14, ANSI, New York.
- Belivermiş M. Kılıç Ö. Çotuk Y. Topçuoğlu S. 2009. Trakya Bölgesi’ nde Doğal ve Yapay Radyonüklitlerin Biyoindikatör Organizmalarla İzlenmesi, X. Ulusal Nükleer Bilimler ve Teknolojileri Kongresi, 6-9 Ekim, İstanbul Üniversitesi Fen Fakültesi Biyoloji Bölümü, 187-194.
- Belivermiş M. Kılıç O. Çotuk Y. Topcuoğlu S. Kalaycı G. Peştereli D. 2010. The usability of tree barks as long term biomonitors of atmospheric radionuclide deposition, Applied Radiation and Isotopes. 68: 2433–2437.
- Boryło A. Romańczyk G. Skwarzec B. 2017. Lichens and mosses as polonium and uranium biomonitors on Sobieszewo Island. Journal of Radioanalytical and Nuclear Chemistry, 311:1.
- Brown D.H. R.M. Brown. 1990. Reproducibility of sampling for element analysis using bryophytes. In: Element Concentration Cadasters in Ecosystems (Eds. H. Lieth and B. Markert). 55–62. VCH Publishers, Weinheim.
- Celik N. Cevik U. Celik A. Koz B. 2009. Natural and artifical radioactivity measurements in Eastern Black Sea region of Turkey, Journal of Hazardous Materials, 162: 146-153.
- Cwanek A. Mietelski J.W. Okas E. Olech M.A. Misiak R. 2019. Sources and variation of isotopic ratio of airborne radionuclides in Western Arctic lichens and mosses. J. Chemosphere. 239: 124783.
- Çetin B. 1988. Dilek Yarımadası Milli Parkı Karayosunları (Musci). (I). Doğa Türk Botanik Dergisi, 12:3, 207–214.
- Dragović S. Nedić O. Stanković S. G. Bačić. 2004. Radiocesium accumulation in mosses from highlands of Serbia and Montenegro: chemical and physiological aspects. J. Environ. Radioact., 77: 381–388.
- Ellenberg H. Arndt U. Bretthauer R. Ruthsatz B. Steubing L. 1991. Biological Monitoring; Signals from the Environment, Friaedr, Vieureg and Sohn Verlagsgesellschaft mbtt, Braunschweig; pp. 318.
- Elstner E.F. Fink R. Höll W. Lengfelder E. H. Ziegler. 1987. Natural and Chernobyl-caused radioactivity in mushrooms, mosses and soil-samples of defined biotops in SW Bavaria. Oecologia. 73: 553-558.
- Erdurmuş B. 2007. İzmit Körfezi’nde 137Cs ve 210Po radyonüklidlerinin seviyelerini ve ürünlere topraktan transfer faktörlerini saptamak. Yüksek Lisans Tezi, Kocaeli Üniversitesi Fen Bilimleri Enstitüsü Fizik Anabilim Dalı, Kocaeli.
- Frahm J.P. 1998. Moose Als Bioindikatoren; Quelle & Meyer: Wiesbaden, Germany, 187.
- Freitas M.C. Reis M.A. Alves L.C. Wolterbeek, H.T. 1999. Distribution in Portugal of Some Pollutans in Lichen Parmelia Sulcata. Environmental Pollution, 106:2, 229-235.
- Glime J.M. 2013. Bryophyte Ecology. Ebook sponsored by Michigan Technological University and the International Association of Bryologists.
- Görür Ş. 2006. Çevresel Radyoaktivite ile Bu Çevrede Yaşayanlara Ait Diş Örneklerindeki Radyoaktivite Arasındaki İlişkinin Araştırılması. Yüksek Lisans Tezi, Çukurova Üniversitesi Fen Bilimleri Enstitüsü Fizik Anabilim Dalı, Adana.
- Gürsu G. 2020. Ankara İli’nin Radyoaktif Kirliliğinin Liken Türleriyle Biyoizlenmesi. Doktora Tezi, Ankara Üniversitesi Fen Bilimleri Enstitüsü Biyoloji Anabilim Dalı, Ankara.
- Harmens H. Norris, D.A. Steinnes E. Kubin E. Piispanen J. Alber R. Aleksiayenak Y. 2010. Mosses as biomonitors of atmospheric heavy metal deposition: spatial patterns and temporal trends in Europe. J. Environ. Pollut. 158: 3144–3156.
- Heinzl J. Korscinek G. E. Nolte. 1988. Some measurement on Chernobyl, Phys. Scr., 37, 314-316.
- Ilus E. Sjöblom K.L. Aaltonen H. Klemola S. H. Arvela. 1987. Monitoring of radioactivity in the environs of Finnish Nuclear power stations in 1986: Supplement 12 to annual report STUK-A55. Report No. STUK-A67.
- Kaya S. Karabıdak S.M. Çevik U. 2015. Gümüşhane İli Çevresinde Toplanan Toprak ve Karayosunu Örneklerinde Doğal (226Ra, 232Th ve 40K) ve Yapay (137Cs) Radyoaktivite Konsantrasyonlarının Belirlenmesi. GÜFBED/GUSTIJ, 5:1, 24-33.
- Knoll F.G. 2000. Radiation Detection and Measurement Third Edition. Wiley, 816, New York.
- Krmar M. Radnović D. Mihailović D.T. Lalić B. Slivka J.A. Bikit. 2009. Temporal variations of 7Be, 210Pb and 137Cs in moss samples over 14 month period. Appl. Radiat. Isot. 67: 1139-1147.
- Kryshev I.I. Sazykina T. Beresford N.A. 2005. Effects on Wildlife. In Chernobyl: Catastrophe and Consequences, 1st ed.; Smith, J.T. Beresford, N.A., Eds.; Springer: Berlin, Germany. 267–287.
- Manning W.J. Feder W.A. 1980. Biomonitoring air pollutants with plants. Applied Science Publishers, London.
- Marović G. Franić Z. Sencar J. Bituh T.O. Vugrinec. 2008. Mosses and some mushroom species as bioindicators of radiocaesium contamination and risk assessment. Coll Antropol. 32: 109-14.
- Martin M.H. Coughtrey P.J. 1982. Biological monitoring of heavy metal pollution. Applied Science Publishers, London.
- Papastefanou C. Manolopoulou M. Sawidis T. 1989. Lichens and mosses: Biological monitors of radioactive fallout from the Chernobyl reactor accident. J. Environ. Radioact. 9: 199–207.
- Puckett K.J. 1988. Bryophytesand lichensas monitorsofmetaldeposition,in T.H. III Nash and V. Wirth (eds.), Lichens, Bryophytes and Air Quality, BibliothecaLichenologica30, Cramer,Berlin, pp. 231-267.
- Sabovljević M. Vukojević V. Mihajlović N. Dražić, G. Ž. Vučinić. 2005. Determination of heavy metal deposition in the county of Obrenovac (Serbia) using mosses as bioindicators. I: Aluminum (Al), arsenic (As) and boron (B). Arch. Biol. Sci. 57: 205-212.
- Saka A.Z. Çevik U. Bacaksız E. Kopya A.İ. Tıraşoğlu E. 1997. Levels of cesium radionuclides in lichens and mosses from the province of Ordu in the Eastern Black Sea area of Turkey. Journal of Radioanalytical and Nuclear Chemistry, 222:1-2, 87-92.
- Saračević L. Kljajić R. Mihajl A.Z. Milošević. 1989. Komparativni prikaz nivoa radioaktivnosti lišaja i mahovine u lovištima BiH prije i poslije havarije u Černobilju. XV Jugoslovenski simpozijum za zaštitu od zračenja, Priština, 3-6.
- Schmidt B. Kegler F. Steinhauser G. Chyzhevskyi I. Dubchak S. Ivesic C. Koller Peroutka, M. Laarouchi A. Adlassnig, W. 2023. Uptake of Radionuclides by Bryophytes in the Chornobyl Exclusion Zone. Toxics 2023, 11: 218.
- Sert E. Uğur A. Özden B. Sa. M.M. Camgöz B. 2011. Biomonitoring of 210Po and 210Pb using lichens and mosses around coal-fired power plants in Western Turkey. Journal of Environmental Radioactivity, June 2011102:6, 535–542.
- Smidt S. Bauer H. Fürst A. Jandl R. Mutsch F. Seidel C. Zechmeister H. 2011. Schwermetalle und Radionuklide in Österreichis chen Waldökosystemen. Austrian J. For. Sci. 28: 251–278.
- Stainnes E. 1995. A critical evaluation of the use of naturally growing moss to monitor the deposition of atmospheric metals. Sci. Total Environ. 160: 243–249.
- Steemans P. Lepot K. Marshall C.P. Javaux E.l. 2010. FTIR characterisation of the chemical composition of Silurian cryptospores from Gotland, Sweden. Review of Paleobotany and Palynology.
- TAEK. 2006. Türkiye’ de Çernobil Sonrası Radyasyon ve Radyoaktivite Ölçümleri 6: 89-90.
- TAEK. 2009. Radyasyon, İnsan ve Çevre 3-12.
- Taylor F.G. Whitherspoon J.P. 1972. Retention of simulated fall out particles by lichens and mosses. Health Physics. 23: 867–869.
- Tyler G. 1990. Bryophytes and heavy metals: a literature review. Bot. J. Linn. Soc., 104: 231–253.
- Topçuoğlu S. Van Dawen A.M. Güngör N. 1995. The Natural Depuration Rate of 137Cs Radionuclides in a Lichen and Moss Species. J. Environ. Radioactivity, 29:2, 157-162.
- Topçuoğlu S. Karahan G. Güngör N. Kırbaşoğlu Ç. 2003a. Natural and artificial radioactivity in Emendere thermal spring area in Western Anatolia. Journal of Radioanalytical and Nuclear Chemistry, 256:3: 395- 398.
- UNSCEAR. 2000. Report on Sources and Effects of Ionizing Radiation to the General Assembly (2 Volumes), United Nations, Vienna.
- Ursavaş S. Öztürk E. 2016. Çankırı Karatekin Üniversitesi, Orman Fakültesi Araştırma ve Uygulama Ormanında Ölü Ağaçlar Üzerinde Tespit Edilen Karayosunları. Anatolian Bryology. 6: 1-27.
- Wolterbeek B. 2002. Biomonitoring of trace element air pollution: principles, possibilities and perspectives. Environ. Pollut. 120: 11–21.
- Wattanavatee K. Krmar M. Bhongsuwan T. 2017. A survey of natural terrestrial and airborne radionuclides in moss samples from the peninsular Thailand. J. Environ. Radioact. 177: 113–127.
- Wells J.M. D.H. Brown. 1990. Ionic control of intracellular and extracellular Cd uptake by the moss Rhytidiadelphus squarrosus (Hedw.) Warnst.
- Wittig R. 1993. General aspects of biomonitoring heavy metals by plants, In: Plants as biomonitors: Indicators for heavy metals in the terrestrial environment. Markert, B. (ed), VCH, pp. 3-27, Weinheim.