Araştırma Makalesi
BibTex RIS Kaynak Göster

Metilen Mavisi Boyasının Giderilmesinde Tekrar Kullanılabilir Biyosorbent Olarak Sphagnum palustre L. Bataklık-Karayosununun Kullanılması

Yıl 2019, Cilt: 5 Sayı: 1, 1 - 7, 10.03.2019
https://doi.org/10.26672/anatolianbryology.469358

Öz



Bu çalışmada, Sphagnum
palustre
L. bataklık-karayosunu (SPM) metilen mavisi (MB) gideriminde tekrar
kullanılabilir ve ekonomik bir biyomateryal olarak kullanılmıştır. Farklı pH,
sıcaklık, zaman, statik / çalkalama koşulları, adsorban miktarı ve boya
konsantrasyonunun boyar madde giderimine etkileri araştırılmıştır. Bataklık-karayosunu,
düşük konsantrasyon boyar maddeyi (50 mg L
−1) 1 saat içinde
neredeyse tamamını (% 99,5) giderirken, 500 mg L
-1 yüksek
konsantrasyonu %85 oranında giderdiği belirlenmiştir. Adsorpsiyon izoterm
verilerinin Langmuir izotermi ile uygun olduğu bulunmuştur. Bu duruma ilaveten,
tekrar kullanılabilirlik deneyleri
S.
palustre
’nin en az altı renk giderimi işleminde yüksek giderim verimi ile
kullanıldığını göstermiştir. Altıncı tekrar kullanılabilirlik testinde, metilen
mavisinin renk giderim verimi % 65 ± 0.2 olarak bulunmuştur. Bu sonuçlar, çok
yönlülüğü ve yeniden kullanılabilirliği nedeniyle Sphagnum’un renk giderimi
uygulamasında kullanılabileceğini önermektedir.




Kaynakça

  • Allen S.J. McKay G. Khader K.Y.H. 1988. Multi-component sorption isotherms of basic dyes onto peat. Environmental Pollution. 52: 39-53.
  • Argun M.E. Dursun S. Karatas M. Gürü M. 2008. Activation of pine cone using Fenton oxidation for Cd (II) and Pb (II) removal. Bioresource Technology. 99:18, 8691-8698.
  • Atafar Z. Mesdaghinia A. Nouri J. Homaee M. Yunesian M. 2010. Effect of fertilize application on soil heavy metal concentration. Environmental Monitoring and Assessment. 160-183.
  • Balan C. Bilba D. Macoveanu M. 2009. Studies on chromium (III) removal from aqueous solutions by sorption on Sphagnum moss peat. Journal of the Serbian Chemical Society. 74:8-9, 953-964.
  • Chakraborty S. De S. Basu J. K. Das Gupta S. 2005. Treatment of a textile effluent: application of a combination method involving adsorption and nanofiltration. Desalination. 174: 73-85.
  • Contreras E.G. Martinez B.E. Sepúlveda L.A. Palma C.L. 2007. Kinetics of basic dye adsorption onto Sphagnum magellanicum peat. Adsorption Science & Technology. 25:9, 637-646.
  • Daniels R.E. Eddy A. 1985. Handbook of European Sphagna, Natural Environment Research Council, Institute of Terrestrial Ecology, Huntington.
  • Du J. Zhang L. Gao H. Liao Y. 2016. Removal of Methylene Blue from aqueous solutions using Poly (AA-co-DVB). Journal of Dispersion Science and Technology. 1489-1494.
  • Garg V.K. Gupta R. Yadav A.B. Kumar R. 2003. Dye removal from aqueous solution by adsorption on treated sawdust. Bioresource Technology. 89: 121-124.
  • Ghaedi M. Mosallanejad N. 2014. Study of competitive adsorption of malachite green and sunset yellow dyes on cadmium hydroxide nanowires loaded on activated carbon. Journal of Industrial and Engineering Chemistry. 20: 1085-1096.
  • Gupta B.S. Curran M. Hasan S. Ghosh T.K. 2009. Adsorption characteristics of Cu and Ni on Irish peat moss. Journal of Environmental Management. 90: 954-960.
  • Gupta V.K.S. 2009. Application of low-cost adsorbents for dye removal-A review. Journal of Environmental Management. 90: 2313-2342.
  • Hajati S. Ghaedi M. Yaghoubi S. 2014. Local, cheap and nontoxic activated carbon as efficient adsorbent for the simultaneous removal of cadmium ions and malachite green: optimization by surface response methodology. Journal of Industrial and Engineering Chemistry. 21: 760-767.
  • Hemmati F. Norouzbeigi R. Sarbisheh, F. Shayesteh H. 2016. Malachite green removal using modified sphagnum peat moss as a low-cost biosorbent: Kinetic, equilibrium and thermodynamic studies. Journal of the Taiwan Institute of Chemical Engineers. 58: 482-489.
  • Kazemi P. Peydayesh M. Bandegi A. Mohammad T. Bakhtiari O. 2013. Pertraction of methylene blue using a mixture of D2EHPA/M2EHPA and sesame oil as a liquid membrane. Chemical Papers. 67: 722-729.
  • Lee Y.C. Kim E.J. Yang J.W. Shin H.I. 2011. Removal of malachite green by adsorption and precipitation using amino propyl functionalized magnesium phyllosilicate. Journal of Hazardous Materials. 192: 62-70.
  • Malik A. 2014. Metal bioremediation through growing cells. Environment International. 30: 261-278.
  • Marrakchi F. Bouaziz M. Hameed B.H. 2017. Adsorption of acid blue 29 and methylene blue on mesoporous K2CO3-activated olive pomace boiler ash. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 535: 157-165.
  • Ören M. Uyar G. Ezer T. Gözcü M.C. 2017. New and noteworthy bryophyte records for Turkey and Southwest Asia. Telopea Journal of Plant Systematics. 20: 97-104.
  • Raghu S. Lee C.W. Chellammal S. Palanichamy S. 2009. Evaluation of electrochemical oxidation techniques for degradation of dye effluents a comparative approach. Journal of Hazardous Materials. 171: 748-754.
  • Saeed A. Iqbal M. Zafar S.I. 2009. Immobilization of Trichoderma viride for enhanced methylene blue biosorption: batch and column studies. Journal of Hazardous Materials. 168: 406-415.
  • Saeed A. Sharif M. Iqbal M. 2010. Application potential of grape fruit peel as dye sorbent: kinetics, equilibrium and mechanism of crystal violet adsorption. Journal of Hazardous Materials. 179: 564-572.
  • San N.O. Celebioglu A. Tümtaş Y. Uyar T. Tekinay T. 2014. Reusable bacteria immobilized electrospun nanofibrous webs for decolorization of methylene blue dye in wastewater treatment. RSC Advances. 4:61, 32249-32255.
  • San Keskin N.O. Celebioglu A. Uyar T. Tekinay T. 2015. Microalgae immobilized nanofibrous web for removal of reactive dyes from wastewater. Industrial and Engineering Chemistry Research. 54: 5802-5809.
  • San Keskin N.O. Celebioglu A. Sarioglu O.F. Ozkan A.D. Uyar T. Tekinay T. 2015. Removal of a reactive dye and hexavalent chromium by a reusable bacteria attached electrospun nanofibrous web. RSC Advances. 5:106, 86867-86874.
  • Schofield W.B. 2001. Introduction to Bryology, The Blackburn Press, Caldwell, USA, ISBN: 973-228-7077, pp. 431.
  • Soni A. Tiwari A. Bajpai A. K. 2014. Removal of malachite green from aqueous solution using nano-ironoxide loaded alginate microspheres: batch and column studies. Research on Chemical Intermediates. 40: 913-930.
  • Toor M. Jin B. Dai S. Vimonses V. 2015. Activating natural bentonite as a cost-effective adsorbent for removal of Congo-red in wastewater. Journal of Industrial and Engineering Chemistry. 21: 653-661.
  • Turabık M. Gozmen B. 2013. Removal of basic textile dyes in single and multi‐dye solutions by adsorption: statistical optimization and equilibrium isotherm studies. Clean. 41:11, 1080-1092.
  • Wagner H. Siebert T. Ellerby D.J. Marsh R.L. Blickhan R. 2005. ISOFIT: a model-based method to measure muscle–tendon properties simultaneously. Biomechanics and Modeling in Mechanobiology, 4:1, 10-19.
  • Wang S. Zhu Z.H. Coomes A. Haghseresht F. Lu G.Q. 2005. The physical and surface chemical characteristics of activated carbons and the adsorption of methylene blue from wastewater. Journal of Colloid Interface Science. 284: 440-446.
  • Zaghbani N. Hafiane A. Dhahbi M. 2007. Separation of methylene blue from aqueous solution by micellar enhanced ultrafiltration. Separation and Purification Technology. 55: 117-121.

Methylene blue dye removal using Sphagnum palustre L. Bog-moss as a reusable biosorbent

Yıl 2019, Cilt: 5 Sayı: 1, 1 - 7, 10.03.2019
https://doi.org/10.26672/anatolianbryology.469358

Öz





In this study, Sphagnum palustre L. Bog-moss (SPM) was used as a reusable and economical
biomaterial for the removal of methylene blue (MB). The effects of different pH,
temperature, time, static/shaking conditions, adsorbent amount and concentration
of dye were investigated. We evaluated that moss can almost completely remove
(99.5 %) MB at low (50 mg L
−1) concentration within 1 h, while 85 % dye
removal was observed at approximately higher concentration 500 mg L
−1.
The adsorption isotherm data were fitted well to the Langmuir isotherm. Furthermore,
reusability tests showed that
S. palustre
could be used in at least six decolorization steps with high removal efficiency.
After the 6
th reuse step, the decolorization rate of the MB was
found to be 65 ± 0.2 %. As a result, Sphagnum moss could be applicable for the
decolorization due to their versatility and reusability.








Kaynakça

  • Allen S.J. McKay G. Khader K.Y.H. 1988. Multi-component sorption isotherms of basic dyes onto peat. Environmental Pollution. 52: 39-53.
  • Argun M.E. Dursun S. Karatas M. Gürü M. 2008. Activation of pine cone using Fenton oxidation for Cd (II) and Pb (II) removal. Bioresource Technology. 99:18, 8691-8698.
  • Atafar Z. Mesdaghinia A. Nouri J. Homaee M. Yunesian M. 2010. Effect of fertilize application on soil heavy metal concentration. Environmental Monitoring and Assessment. 160-183.
  • Balan C. Bilba D. Macoveanu M. 2009. Studies on chromium (III) removal from aqueous solutions by sorption on Sphagnum moss peat. Journal of the Serbian Chemical Society. 74:8-9, 953-964.
  • Chakraborty S. De S. Basu J. K. Das Gupta S. 2005. Treatment of a textile effluent: application of a combination method involving adsorption and nanofiltration. Desalination. 174: 73-85.
  • Contreras E.G. Martinez B.E. Sepúlveda L.A. Palma C.L. 2007. Kinetics of basic dye adsorption onto Sphagnum magellanicum peat. Adsorption Science & Technology. 25:9, 637-646.
  • Daniels R.E. Eddy A. 1985. Handbook of European Sphagna, Natural Environment Research Council, Institute of Terrestrial Ecology, Huntington.
  • Du J. Zhang L. Gao H. Liao Y. 2016. Removal of Methylene Blue from aqueous solutions using Poly (AA-co-DVB). Journal of Dispersion Science and Technology. 1489-1494.
  • Garg V.K. Gupta R. Yadav A.B. Kumar R. 2003. Dye removal from aqueous solution by adsorption on treated sawdust. Bioresource Technology. 89: 121-124.
  • Ghaedi M. Mosallanejad N. 2014. Study of competitive adsorption of malachite green and sunset yellow dyes on cadmium hydroxide nanowires loaded on activated carbon. Journal of Industrial and Engineering Chemistry. 20: 1085-1096.
  • Gupta B.S. Curran M. Hasan S. Ghosh T.K. 2009. Adsorption characteristics of Cu and Ni on Irish peat moss. Journal of Environmental Management. 90: 954-960.
  • Gupta V.K.S. 2009. Application of low-cost adsorbents for dye removal-A review. Journal of Environmental Management. 90: 2313-2342.
  • Hajati S. Ghaedi M. Yaghoubi S. 2014. Local, cheap and nontoxic activated carbon as efficient adsorbent for the simultaneous removal of cadmium ions and malachite green: optimization by surface response methodology. Journal of Industrial and Engineering Chemistry. 21: 760-767.
  • Hemmati F. Norouzbeigi R. Sarbisheh, F. Shayesteh H. 2016. Malachite green removal using modified sphagnum peat moss as a low-cost biosorbent: Kinetic, equilibrium and thermodynamic studies. Journal of the Taiwan Institute of Chemical Engineers. 58: 482-489.
  • Kazemi P. Peydayesh M. Bandegi A. Mohammad T. Bakhtiari O. 2013. Pertraction of methylene blue using a mixture of D2EHPA/M2EHPA and sesame oil as a liquid membrane. Chemical Papers. 67: 722-729.
  • Lee Y.C. Kim E.J. Yang J.W. Shin H.I. 2011. Removal of malachite green by adsorption and precipitation using amino propyl functionalized magnesium phyllosilicate. Journal of Hazardous Materials. 192: 62-70.
  • Malik A. 2014. Metal bioremediation through growing cells. Environment International. 30: 261-278.
  • Marrakchi F. Bouaziz M. Hameed B.H. 2017. Adsorption of acid blue 29 and methylene blue on mesoporous K2CO3-activated olive pomace boiler ash. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 535: 157-165.
  • Ören M. Uyar G. Ezer T. Gözcü M.C. 2017. New and noteworthy bryophyte records for Turkey and Southwest Asia. Telopea Journal of Plant Systematics. 20: 97-104.
  • Raghu S. Lee C.W. Chellammal S. Palanichamy S. 2009. Evaluation of electrochemical oxidation techniques for degradation of dye effluents a comparative approach. Journal of Hazardous Materials. 171: 748-754.
  • Saeed A. Iqbal M. Zafar S.I. 2009. Immobilization of Trichoderma viride for enhanced methylene blue biosorption: batch and column studies. Journal of Hazardous Materials. 168: 406-415.
  • Saeed A. Sharif M. Iqbal M. 2010. Application potential of grape fruit peel as dye sorbent: kinetics, equilibrium and mechanism of crystal violet adsorption. Journal of Hazardous Materials. 179: 564-572.
  • San N.O. Celebioglu A. Tümtaş Y. Uyar T. Tekinay T. 2014. Reusable bacteria immobilized electrospun nanofibrous webs for decolorization of methylene blue dye in wastewater treatment. RSC Advances. 4:61, 32249-32255.
  • San Keskin N.O. Celebioglu A. Uyar T. Tekinay T. 2015. Microalgae immobilized nanofibrous web for removal of reactive dyes from wastewater. Industrial and Engineering Chemistry Research. 54: 5802-5809.
  • San Keskin N.O. Celebioglu A. Sarioglu O.F. Ozkan A.D. Uyar T. Tekinay T. 2015. Removal of a reactive dye and hexavalent chromium by a reusable bacteria attached electrospun nanofibrous web. RSC Advances. 5:106, 86867-86874.
  • Schofield W.B. 2001. Introduction to Bryology, The Blackburn Press, Caldwell, USA, ISBN: 973-228-7077, pp. 431.
  • Soni A. Tiwari A. Bajpai A. K. 2014. Removal of malachite green from aqueous solution using nano-ironoxide loaded alginate microspheres: batch and column studies. Research on Chemical Intermediates. 40: 913-930.
  • Toor M. Jin B. Dai S. Vimonses V. 2015. Activating natural bentonite as a cost-effective adsorbent for removal of Congo-red in wastewater. Journal of Industrial and Engineering Chemistry. 21: 653-661.
  • Turabık M. Gozmen B. 2013. Removal of basic textile dyes in single and multi‐dye solutions by adsorption: statistical optimization and equilibrium isotherm studies. Clean. 41:11, 1080-1092.
  • Wagner H. Siebert T. Ellerby D.J. Marsh R.L. Blickhan R. 2005. ISOFIT: a model-based method to measure muscle–tendon properties simultaneously. Biomechanics and Modeling in Mechanobiology, 4:1, 10-19.
  • Wang S. Zhu Z.H. Coomes A. Haghseresht F. Lu G.Q. 2005. The physical and surface chemical characteristics of activated carbons and the adsorption of methylene blue from wastewater. Journal of Colloid Interface Science. 284: 440-446.
  • Zaghbani N. Hafiane A. Dhahbi M. 2007. Separation of methylene blue from aqueous solution by micellar enhanced ultrafiltration. Separation and Purification Technology. 55: 117-121.
Toplam 32 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Araştırma Makaleleri
Yazarlar

Nalan Oya San Keskin 0000-0001-6645-3561

Güray Uyar Bu kişi benim 0000-0003-4038-6107

Yayımlanma Tarihi 10 Mart 2019
Gönderilme Tarihi 11 Ekim 2018
Yayımlandığı Sayı Yıl 2019 Cilt: 5 Sayı: 1

Kaynak Göster

APA San Keskin, N. O., & Uyar, G. (2019). Methylene blue dye removal using Sphagnum palustre L. Bog-moss as a reusable biosorbent. Anatolian Bryology, 5(1), 1-7. https://doi.org/10.26672/anatolianbryology.469358

Cited By







13304133141331513316133242069422229 27016 27017 27017  27018