Prototyping an Industrial Robot Arm for Deburring in Machining
Year 2020,
Volume: 8 Issue: 2, 304 - 309, 26.05.2020
Yusuf Hamida El Naser
,
Gökhan Atalı
,
Durmuş Karayel
Sinan Serdar Özkan
Abstract
Deburring after production is an important problem for machining, casting and plastic forming in the manufacturing sector. The main subject of this study is to design a deburring robot arm. In the study, deburring operation has been performed by integrating a deburring tool at the end of the robot arm. To control the trajectory of deburring tool and optimum deburring force are two critical situations in such a special robot arm design. Since the parts that need to be cleaned are often not of uniform geometry and so the distribution of the burr and trajectory of robot arm will not uniform. Therefore, the robot arm that can follow this trajectory must have enough degrees of freedom. On the other hand, the cutting force between the deburring tool and the work piece and the magnitude of the normal force is also important. This force must be small so that it will not affect the structural rigidity of the arm and not damage the part and at the same time it must be big enough for deburring. This robot arm designed for deburring can also be used for industrial purposes when parameters are changed.
Supporting Institution
Sakarya University
Project Number
2017-50-01-009
Thanks
This study was supported by Sakarya University Scientific Research Projects Commission with the name “Industrial Purpose Robot Arm Design and Production” within the scope of Master Thesis Projects numbered 2017-50-01-009.
References
- [1] L. Leitz, V. Franke, and J.C. Aurich, Burr Formation in Drilling Intersecting Holes, Proceedings of the CIRP International Conference on Burrs, 2009; 109-115.
- [2] G. Ziliani, A. Visioli, G. Legnani, A mechatronic approach for robotic deburring, Mechatronics 17, 2007; 431–441.
- [3] Carlos M. O. Valente, João F. G. Oliveira, A New Approach For Tool Path Control In Robotic Deburring Operations, ABCM Symposium Series in Mechatronics, 2004; 124-133.
- [4] Hubert Kosler, Urban Pavlovčič, Matija Jezeršek, Janez Možina, Adaptive Robotic Deburring of Die-Cast Parts with Position and Orientation Measurements Using a 3D Laser-Triangulation Sensor, Strojniški vestnik - Journal of Mechanical Engineering 62, 2016; 207-212.
- [5] H. Kazerooni, J. J. Bausch, B. M. Kramer, An Approach to Automated Deburring by Robot Manipulators, Transactions of the ASME 108, 1986; 354-359.
- [6] M. G. Her, H. Kazerooni, Automated Robotic Deburring of Parts Using Compliance Control, Transactions of the ASME 113, 1991; 60-66.
- [7] Fusaomi Nagata, Tetsuo Hase, Zenku Haga, Masaaki Omoto, Keigo Watanabe, CAD/CAMbased position/force controller for a mold polishing robot, Mechatronics 17, 2007; 207–216.
- [8] Thomas M. Stepien, Larry M. Sweet, Malcolm C. Good, Masayoshi Tomizuka, Control of Tool/Workpiece Contact Force with Application to Robotic Deburring, IEEE Journal Of Robotics And Automation, 1987; 7-18.
- [9] G. M. Bone, M. A. Elbestawi, R. Lingarkar, L. Liu, Force Control for Robotic Deburring, Journal of Dynamic Systems, Measurement, and Control 113, 1991; 395-400.
- [10] J. Norberto Pires, J. Ramming, S. Rauch, R. Araújo, Force/Torque Sensing Applied to Industrial Robotic Deburring Control for Robotic Deburring, Sensor Review 22, 2002; 232 – 241.
- [11] G. M. Bone, M. A. Elbestawi, Robotic force control for deburring using an active end effector. Robotica, 7(4), 1989; 303-308.
- [12] M. H. Liu, Force-controlled fuzzy-logic-based robotic deburring. Control engineering practice, 3(2), 1995; 189-201.
- [13] K. Kiguchi, T. Fukuda, Position/force control of robot manipulators for geometrically unknown objects using fuzzy neural networks, IEEE Transactions on Industrial Electronics, 47(3), 2000; 641-649.
- [14] A. Sokolov, Robot motion realisation using LabVIEW, Periodica Polytechnica. Engineering. Mechanical Engineering, 1999; 43(2), 131.
- [15] S. Malkin, Grinding technology. Theory and applications of machining with abrasives. Ellis Horwood Limited, England; 1989.
Talaşlı İmalatta Çapakların Giderilmesi için Endüstriyel Robot Kol Prototiplemesi
Year 2020,
Volume: 8 Issue: 2, 304 - 309, 26.05.2020
Yusuf Hamida El Naser
,
Gökhan Atalı
,
Durmuş Karayel
Sinan Serdar Özkan
Abstract
İmalat sektöründe gerek talaşlı imalat, gerekse döküm ve plastik şekil verme işlemlerinde üretim sonrası çapağın temizlenmesi önemli bir problemdir. Bu çalışmanın ana konusu çapak temizleyici bir robot kolun tasarlanmasıdır. Çalışmada bu işlem robot kolun uç kısmına çapak temizleyici entegre edilerek gerçekleştirilmektedir. Bu çalışmaya özel robot kol tasarımında, çapak temizleyicinin izleyeceği yörüngenin ve temizlemeye uygun kuvvetin kontrol edilebilmesi iki kritik durumdur. Temizlenmesi gereken parçalar çoğu zaman düzgün geometride olmayacağından çapağın dağılımı ve dolayısıyla robotun hareket yörüngesi de düzgün olmayacaktır. Bu nedenle bu yörüngeyi izleyebilecek robot kolun da yeterli serbestlik derecesine sahip olması gerekmektedir. Diğer taraftan çapak temizleyiciyle iş parçası arasında oluşan kesme kuvveti ve normal kuvvetin büyüklüğü de çok önemlidir. Zira bu kuvvetin robot kolun yapısal rijitliğini etkilemeyecek ve parçaya zarar vermeyecek kadar küçük, diğer taraftan çapağı temizlemeye yetecek kadar da büyük olması gerekmektedir. Çapak temizleme amaçlı olarak tasarlanan bu robot kol bir prototip olmakla birlikte, parametreler değiştirildiğinde endüstriyel amaçlar içinde kullanılabilecek niteliktedir.
Project Number
2017-50-01-009
References
- [1] L. Leitz, V. Franke, and J.C. Aurich, Burr Formation in Drilling Intersecting Holes, Proceedings of the CIRP International Conference on Burrs, 2009; 109-115.
- [2] G. Ziliani, A. Visioli, G. Legnani, A mechatronic approach for robotic deburring, Mechatronics 17, 2007; 431–441.
- [3] Carlos M. O. Valente, João F. G. Oliveira, A New Approach For Tool Path Control In Robotic Deburring Operations, ABCM Symposium Series in Mechatronics, 2004; 124-133.
- [4] Hubert Kosler, Urban Pavlovčič, Matija Jezeršek, Janez Možina, Adaptive Robotic Deburring of Die-Cast Parts with Position and Orientation Measurements Using a 3D Laser-Triangulation Sensor, Strojniški vestnik - Journal of Mechanical Engineering 62, 2016; 207-212.
- [5] H. Kazerooni, J. J. Bausch, B. M. Kramer, An Approach to Automated Deburring by Robot Manipulators, Transactions of the ASME 108, 1986; 354-359.
- [6] M. G. Her, H. Kazerooni, Automated Robotic Deburring of Parts Using Compliance Control, Transactions of the ASME 113, 1991; 60-66.
- [7] Fusaomi Nagata, Tetsuo Hase, Zenku Haga, Masaaki Omoto, Keigo Watanabe, CAD/CAMbased position/force controller for a mold polishing robot, Mechatronics 17, 2007; 207–216.
- [8] Thomas M. Stepien, Larry M. Sweet, Malcolm C. Good, Masayoshi Tomizuka, Control of Tool/Workpiece Contact Force with Application to Robotic Deburring, IEEE Journal Of Robotics And Automation, 1987; 7-18.
- [9] G. M. Bone, M. A. Elbestawi, R. Lingarkar, L. Liu, Force Control for Robotic Deburring, Journal of Dynamic Systems, Measurement, and Control 113, 1991; 395-400.
- [10] J. Norberto Pires, J. Ramming, S. Rauch, R. Araújo, Force/Torque Sensing Applied to Industrial Robotic Deburring Control for Robotic Deburring, Sensor Review 22, 2002; 232 – 241.
- [11] G. M. Bone, M. A. Elbestawi, Robotic force control for deburring using an active end effector. Robotica, 7(4), 1989; 303-308.
- [12] M. H. Liu, Force-controlled fuzzy-logic-based robotic deburring. Control engineering practice, 3(2), 1995; 189-201.
- [13] K. Kiguchi, T. Fukuda, Position/force control of robot manipulators for geometrically unknown objects using fuzzy neural networks, IEEE Transactions on Industrial Electronics, 47(3), 2000; 641-649.
- [14] A. Sokolov, Robot motion realisation using LabVIEW, Periodica Polytechnica. Engineering. Mechanical Engineering, 1999; 43(2), 131.
- [15] S. Malkin, Grinding technology. Theory and applications of machining with abrasives. Ellis Horwood Limited, England; 1989.