Derleme
BibTex RIS Kaynak Göster

THE IMPACT OF NUTRITION ON OXIDATIVE STRESS IN ATHLETES

Yıl 2025, Cilt: 5 Sayı: 3, 121 - 129, 23.09.2025

Öz

Egzersiz, yoğunluk, süre ve bireysel faktörlere bağlı olarak oksidatif stres üzerinde hem olumlu hem de olumsuz etkilere yol açabilmektedir. Özellikle yüksek yoğunluklu ve uzun süreli fiziksel aktiviteler, serbest radikal üretimini artırarak oksidatif hasara neden olmaktadır. Bu süreçte endojen antioksidan sistemlerin kapasitesi yetersiz kaldığında, kas fonksiyonlarında bozulma ve performans kaybı gözlenebilmektedir.
Sporcularda oksidatif stresin değerlendirilmesi, lipid peroksidasyon ürünleri (MDA, TBARS), protein ve DNA oksidasyon belirteçleri (8-OHdG) ile antioksidan enzim aktiviteleri (SOD, GPx, CAT) gibi biyobelirteçler üzerinden gerçekleştirilmektedir. Egzersiz sırasında veya sonrasında bu parametrelerdeki değişimler, fizyolojik stres düzeyinin değerlendirilmesine olanak sağlamaktadır.
Beslenmenin oksidatif stres yönetimindeki rolü kritik öneme sahiptir. Düşük antioksidan içeren, yüksek doymuş yağ ve işlenmiş gıda içeriğine sahip Batı tipi diyetler oksidatif stresi artırırken, meyve, sebze, tam tahıl, sağlıklı yağlar ve fitokimyasal içeriği yüksek Akdeniz diyeti gibi modeller oksidatif stresi azaltıcı etki göstermektedir. Bu kapsamda likopen (domates), polifenoller (üzüm suyu, yeşil çay, nar, aronya, pancar), tokoferoller (yağlı tohumlar), flavonoidler (vişne, kakao) gibi biyoaktif bileşenlerin düzenli tüketimi, antioksidan kapasiteyi artırmakta ve egzersiz kaynaklı oksidatif hasarı azaltabilmektedir.
Bununla birlikte, yüksek dozda antioksidan takviyelerinin fizyolojik adaptasyonları engelleyerek ters etkiler oluşturabileceği ve pro-oksidatif etkilere yol açabileceği de vurgulanmaktadır. Bu nedenle sporcularda doğal besin kaynaklarına dayalı dengeli ve antioksidan açısından zengin bir beslenme stratejisi, farmakolojik müdahalelere gerek kalmaksızın oksidatif stresin yönetimi için etkili ve güvenli bir yaklaşım sunmaktadır.

ABSTRACT
Exercise can have both beneficial and detrimental effects on oxidative stress, depending on factors such as intensity, duration, and individual characteristics. Particularly, high-intensity and prolonged physical activities increase the production of reactive oxygen species (ROS), which may overwhelm endogenous antioxidant systems and lead to oxidative damage.
Assessment of oxidative stress in athletes commonly involves biomarkers such as lipid peroxidation products [Malondialdehyde (MDA), Thiobarbituric acid reactive substances (TBARS)], protein and DNA oxidation indicators [8-hydroxy-2-deoxyguanosine (8-OHdG)], and antioxidant enzyme activities [Superoxide dismutase (SOD), Glutathione peroxidases (GPx), Catalase (CAT)]. Changes in these parameters during or after exercise provide insight into the level of physiological stress.
Nutrition plays a crucial role in the management of exercise-induced oxidative stress. Western-type diets, which are typically low in antioxidants and high in saturated fats and processed foods, tend to worsen oxidative stress. In contrast, dietary patterns rich in fruits, vegetables, whole grains, healthy fats, and phytochemicals—such as the Mediterranean diet—have been shown to exert protective effects. Regular consumption of bioactive compounds like lycopene (tomatoes), polyphenols (grape juice, green tea, pomegranate, aronia, beetroot), tocopherols (nuts and seeds), and flavonoids (sour cherry, cocoa) can enhance antioxidant capacity and reduce exercise-induced oxidative damage.
However, it is also emphasized that high-dose antioxidant supplementation may impair physiological adaptations and exert pro-oxidant effects. Therefore, a balanced and antioxidant-rich diet based on natural food sources offers a safe and effective approach for managing oxidative stress in athletes without the need for pharmacological interventions.

Etik Beyan

Derleme makalesi olduğundan etik izne gerek duyulmamaktadır.

Kaynakça

  • 1. Pingitore A, Lima GPP, Mastorci F, et al. Exercise and oxidative stress: Potential effects of antioxidant dietary strategies in sports. Nutrition. 2015; 31(7–8):916–922.
  • 2. Thomas DT, Erdman KA, Burke LM. Nutrition and athletic performance. Med Sci Sports Exerc. 2016;48(3), 543–568.
  • 3. Thirupathi A, Pinho RA, Ugbolue UC, et al. Effect of running exercise on oxidative stress biomarkers: a systematic review. Front Physiol. 2021;11:610112.
  • 4. Atalay M, Lappalainen J, Sen CK. Dietary antioxidants for the athlete. Curr Sports Med Rep.2006;5(4):182-186. 5. Tuşat E, Parlak E. Polyphenols and their effects on sports performance. Toros Univ J Food Nutr Gastron. 2024; 2(2):225–243.
  • 6. McGinley C, Shafat A, Donnelly AE. Does antioxidant vitamin supplementation protect against muscle damage? Sports Med. 2009; 39(12):1011–1032.
  • 7. Valko M, Leibfritz D, Moncol J, et al. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol. 2007; 39(1): 44–84.
  • 8. Vassalle C, Pingitore A, De Giuseppe R, et al. Biomarkers to estimate bioefficacy of dietary/supplemental antioxidants in sports. In: Lamprecht M, editor. Antioxidants in Sport Nutrition. Boca Raton (FL): CRC Press; 2015. p. 255–72.
  • 9. Karahan M, Özdek B. Sıklet sporcularında hızlı vücut ağırlığı kaybı ile ilişkili oksidatif stres ve kas hasarı. In: Avcı P, editor. Spor Bilimlerinde Farklı Dinamikler-I. İstanbul: Özgür Yayınları; 2024. p. 1–19.
  • 10. Hadžović-Džuvo A, Valjevac A, Lepara O, et al. Oxidative stress status in elite athletes engaged in different sport disciplines. Bosn J Basic Med Sci. 2014; 14(2), 56 –62.
  • 11. Marin DP, Bolin AP, Campoio TR, et al. Oxidative stress and antioxidant status response of handball athletes: implications for sport training monitoring. Int Immunopharmacol. 2013; 17(2), 462–470.
  • 12. Lewis NA, Simpkin AJ, Moseley S, et al. Increased Oxidative Stress in Injured and Ill Elite International Olympic Rowers. Int J Sports Physiol Perform. 2020; 15(5), 625–631.
  • 13. Ovchinnikov AN, Paoli A. Saliva as a diagnostic tool for early detection of exercise-induced oxidative damage in female athletes. Biomedicines. 2024; 12(5), 1006.
  • 14. Aktitiz S, Koşar ŞN, Turnagöl H. mücadele sporlarında hızlı kilo düşme yöntemlerinin kullanım sıklığı: Hızlı Kilo Düşme Anketinin Türkçe geçerlik ve güvenirlik çalışması. Spor Bilimleri Derg. 2024; 35(1), 1-18.
  • 15. Trivic T, Roklicer R, Zenic N, et al. Rapid weight loss can increase the risk of acute kidney injury in wrestlers. BMJ Open Sport Exerc Med. 2023; 9(2), e001617.
  • 16. Rhyu HS, Cho SY, Roh HT. The effects of ketogenic diet on oxidative stress and antioxidative capacity markers of Taekwondo athletes. J Exerc Rehabil. 2014; 10(6), 362–366.
  • 17. Plunkett BA, Callister R, Watson TA, et al. Dietary antioxidant restriction affects the inflammatory response in athletes. Br J Nutr. 2010; 103(8), 1179–1184.
  • 18. Staśkiewicz W, Grochowska-Niedworok E, Kardas M, et al. Evaluation of the frequency of consumption of vegetables, fruits, and products rich in antioxidants by amateur and professional athletes. Sport Tour Cent Eur J. 2023;5(4):83–95.
  • 19. Watson TA, Callister R, Taylor RD, et al. Antioxidant restriction and oxidative stress in short -duration exhaustive exercise. Med Sci Sports Exerc. 2005;37(1):63 –71.
  • 20. Braakhuis AJ, Hopkins WG, Lowe TE. Effects of dietary antioxidants on training and performance in female runners. Eur J Sport Sci. 2014;14(2):160–8.
  • 21. Van Hecke T, Van Camp J, De Smet S. Oxidation during digestion of meat: interactions with the diet and Helicobacter pylori gastritis, and implications on human health. Compr Rev Food Sci Food Saf. 2017;16(2):214–233.
  • 22. Kanner J, Selhub J, Shpaizer A, et al. Redox homeostasis in stomach medium by foods: the postprandial oxidative stress index (POSI) for balancing nutrition and human health. Redox Biol. 2017; 12:929–936. 23. Wolters M, Ahrens J, Romaní‑Pérez M, et al. Dietary fat, the gut microbiota, and metabolic health – a systematic review conducted within the MyNewGut project. Clin Nutr. 2019;38(6):2504 –2520.
  • 24. Vitalievna KI, Mikhailovna KM, Borisovich ND. The role of diet of athletes in maintaining the qualitative and quantitative composition of the microbiome. UAE–Russia–India. 2023.
  • 25. Eck KM, Byrd‑Bredbenner C. Food choice decisions of collegiate Division I athletes: A qualitative exploratory study. Nutrients. 2021; 13(7): 2322.
  • 26. Clemente‑Suárez VJ, Beltrán‑Velasco AI, Redondo‑Flórez L, et al. Global impacts of Western diet and its effects on metabolism and health: A narrative review. Nutrients. 2023; 15(12): 2749.
  • 27. Chaudhary P, Janmeda P, Docea AO, et al. Oxidative stress, free radicals and antioxidants: potential crosstalk in the pathophysiology of human diseases. Front Chem. 2023;11:1158198.
  • 28. Griffiths A, Matu J, Whyte E, et al. The Mediterranean dietary pattern for optimising health and performance in competitive athletes: A narrative review. British Journal of Nutrition. 2022; 128(7):1285–1298.
  • 29. Reinert C, Gabiatti MP, Pillmann‑Ramos H, et al. Dietary antioxidant capacity is inversely associated with F₂‑isoprostane and body fat percentage in elite soccer referees. Sci Rep. 2024; 14(1), Article 30121.
  • 30. Schneider CD, Bock PM, Becker L, et al. Comparison of the effects of two antioxidant diets on oxidative stress markers in triathletes. Biol Sport. 2018; 35(2): 181–189.
  • 31. Zare M, Shoaei N, Karimian M, Zarei M, Saghebjoo M. Effect of a plant-based diet on oxidative stress biomarkers in male footballers. Sci Rep. 2024;14(1):3700.
  • 32. Dewi KI, Sumarmi S, Adiningsih S. Effect of fruits consumption on malondialdehyde (MDA) reduction among athletes: a systematic review and meta-analysis. STRADA J Ilmiah Kesehat. 2021;10(1):166–177.
  • 33. Frei B, Birlouez-Aragon I, Lykkesfeldt J. Authors’ perspective: What is the optimum intake of vitamin C in humans? Crit Rev Food Sci Nutr. 2012;52(9):815–829.
  • 34. Ramaswamy L, Indirani K. Effect of supplementation of tomato juice on the oxidative stress of selected athletes. J Int Soc Sports Nutr. 2011;8(1):21.
  • 35. Rajaram S, Damasceno NRT, Braga RAM, et al. Effect of nuts on markers of inflammation and oxidative stress: A narrative review. Nutrients. 2023;15(5):1099.
  • 36. Yi M, Fu J, Zhou L, et al. The effect of almond consumption on elements of endurance exercise performance in trained athletes. J Int Soc Sports Nutr. 2014;11(1):18.
  • 37. Panza VSP, Wazlawik E, Schütz GR, et al. Consumption of green tea favorably affects oxidative stress markers in weight-trained men. Nutrition. 2008;24(5):433–442.
  • 38. Murase T, Haramizu S, Ota N, et al. Tea catechin ingestion combined with habitual exercise suppresses the aging-associated decline in physical performance in senescence-accelerated mice. Am J Physiol Regul Integr Comp Physiol. 2008;295(1):281–289.
  • 39. Gonçalves MC, Bezerra FF, Eleutherio ECA, et al. Organic grape juice intake improves functional capillary density and postocclusive reactive hyperemia in triathletes. Clinics (Sao Paulo). 2011;66(9):1537–41.
  • 40. de Lima Tavares Toscano L, Silva AS, de França ACL, et al. A single dose of purple grape juice improves physical performance and antioxidant activity in runners: a randomized, crossover, double-blind, placebo study. Eur J Nutr. 2020;59(7):2997–3007.
  • 41. Martins NC, Dorneles GP, Blembeel AS, et al. Effects of grape juice consumption on oxidative stress and inflammation in male volleyball players: a randomized, double-blind, placebo-controlled clinical trial. Complement Ther Med. 2020;54:102570.
  • 42. Atan RM, Ersoy G, Çakıcı Ç. Effects of hardaliye, a fermented grape drink, on oxidative stress, lipid profile, and blood pressure in young soccer players: a randomized controlled trial. J Am Nutr Assoc. 2024;43(4):356–64.
  • 43. Petrovic S, Arsic A, Glibetic M, et al. The effects of polyphenol-rich chokeberry juice on fatty acid profiles and lipid peroxidation of active handball players: results from a randomized, double-blind, placebo-controlled study. Can J Physiol Pharmacol. 2016;94(10):1058–1063.
  • 44. Stankiewicz B, Cieślicka M, Kujawski S, et al. Effects of antioxidant supplementation on oxidative stress balance in young footballers: a randomized double-blind trial. J Int Soc Sports Nutr. 2021;18(1):44.
  • 45. Howatson G, McHugh MP, Hill JA, et al. Influence of tart cherry juice on indices of recovery following marathon running. Scand J Med Sci Sports. 2010;20(6):843–852.
  • 46. Vitale KC, Hueglin S, Broad E. Tart cherry juice in athletes: a literature review and commentary. Curr Sports Med Rep. 2017;16(4):230–239.
  • 47. Bell PG, Stevenson E, Davison GW, et al. The effects of Montmorency tart cherry concentrate supplementation on recovery following prolonged, intermittent exercise. Nutrients. 2016;8(7):441.
  • 48. D’Angelo S, Rosa R. The impact of supplementation with pomegranate fruit (Punica granatum L.) on sport performance. Sport Sci. 2020;13(1):29–37.
  • 49. Ammar A, Turki M, Hammouda O, et al. Effects of pomegranate juice supplementation on oxidative stress biomarkers following weightlifting exercise. Nutrients. 2017;9(8):819.
  • 50. Milton-Laskibar I, Martínez JA, Portillo MP. Current knowledge on beetroot bioactive compounds: role of nitrate and betalains in health and disease. Foods. 2021;10(6):1314.
  • 51. Kozłowska L, Mizera O, Gromadzińska J, et al. Changes in oxidative stress, inflammation, and muscle damage markers following diet and beetroot juice supplementation in elite fencers. Antioxidants. 2020;9(7):571. 52. Patel RK, Brouner J, Spendiff O. Dark chocolate supplementation reduces the oxygen cost of moderate intensity cycling. J Int Soc Sports Nutr. 2015;12(1):47.
  • 53. Akpınar Kocakulak N, Karakuş M, Akkurt S, et al. The effect of dark chocolate on oxidative stress parameters after high-intensity kickboxing training. J Sport Sci Res. 2023;8(3):473–485.
  • 54. Zeng Z, Jendricke P, Centner C, et al. Acute effects of oatmeal on exercise-induced reactive oxygen species production following high-intensity interval training in women: a randomized controlled trial. Antioxidants. 2020;10(1):3.
  • 55. Khan IT, Nadeem M, Imran M, et al. Antioxidant properties of milk and dairy products: a comprehensive review of the current knowledge. Lipids Health Dis. 2019;18(1):41.
  • 56. ankin P, Landy A, Stevenson E, et al. Milk: an effective recovery drink for female athletes. Nutrients. 2018;10(2):228.
  • 57. Setiawan MI, Susanto H, Kartasurya MI. Milk protein consumption improves muscle performance and total antioxidant status in young soccer athletes: a randomized controlled trial. Med J Indones. 2020;29(2):164–171.
  • 58. Mazani M, Nemati A, Amani M, et al. The effect of probiotic yoghurt consumption on oxidative stress and inflammatory factors in young females after exhaustive exercise. J Pak Med Assoc. 2018;68(12):1748–1754.
  • 59. Maqsood S, Arshad MT, Ikram A, et al. Date (Phoenix dactylifera L.) fruit as a functional food for enhancing athletic performance and recovery: a new perspective. eFood. 2025;6(3):e70055.
  • 60. Koivisto AE, Olsen T, Paur I, et al. Effects of antioxidant-rich foods on altitude-induced oxidative stress and inflammation in elite endurance athletes: a randomized controlled trial. PLoS One. 2019;14(6):e0217895.

Atletlerde oksidatif stres üzerine beslenmenin etkisi

Yıl 2025, Cilt: 5 Sayı: 3, 121 - 129, 23.09.2025

Öz

Egzersiz, yoğunluk, süre ve bireysel faktörlere bağlı olarak oksidatif stres üzerinde hem olumlu hem de olumsuz etkilere yol açabilmektedir. Özellikle yüksek yoğunluklu ve uzun süreli fiziksel aktiviteler, serbest radikal üretimini artırarak oksidatif hasara neden olmaktadır. Bu süreçte endojen antioksidan sistemlerin kapasitesi yetersiz kaldığında, kas fonksiyonlarında bozulma ve performans kaybı gözlenebilmektedir.
Sporcularda oksidatif stresin değerlendirilmesi, lipid peroksidasyon ürünleri (MDA, TBARS), protein ve DNA oksidasyon belirteçleri (8-OHdG) ile antioksidan enzim aktiviteleri (SOD, GPx, CAT) gibi biyobelirteçler üzerinden gerçekleştirilmektedir. Egzersiz sırasında veya sonrasında bu parametrelerdeki değişimler, fizyolojik stres düzeyinin değerlendirilmesine olanak sağlamaktadır.
Beslenmenin oksidatif stres yönetimindeki rolü kritik öneme sahiptir. Düşük antioksidan içeren, yüksek doymuş yağ ve işlenmiş gıda içeriğine sahip Batı tipi diyetler oksidatif stresi artırırken, meyve, sebze, tam tahıl, sağlıklı yağlar ve fitokimyasal içeriği yüksek Akdeniz diyeti gibi modeller oksidatif stresi azaltıcı etki göstermektedir. Bu kapsamda likopen (domates), polifenoller (üzüm suyu, yeşil çay, nar, aronya, pancar), tokoferoller (yağlı tohumlar), flavonoidler (vişne, kakao) gibi biyoaktif bileşenlerin düzenli tüketimi, antioksidan kapasiteyi artırmakta ve egzersiz kaynaklı oksidatif hasarı azaltabilmektedir.
Bununla birlikte, yüksek dozda antioksidan takviyelerinin fizyolojik adaptasyonları engelleyerek ters etkiler oluşturabileceği ve pro-oksidatif etkilere yol açabileceği de vurgulanmaktadır. Bu nedenle sporcularda doğal besin kaynaklarına dayalı dengeli ve antioksidan açısından zengin bir beslenme stratejisi, farmakolojik müdahalelere gerek kalmaksızın oksidatif stresin yönetimi için etkili ve güvenli bir yaklaşım sunmaktadır.

Kaynakça

  • 1. Pingitore A, Lima GPP, Mastorci F, et al. Exercise and oxidative stress: Potential effects of antioxidant dietary strategies in sports. Nutrition. 2015; 31(7–8):916–922.
  • 2. Thomas DT, Erdman KA, Burke LM. Nutrition and athletic performance. Med Sci Sports Exerc. 2016;48(3), 543–568.
  • 3. Thirupathi A, Pinho RA, Ugbolue UC, et al. Effect of running exercise on oxidative stress biomarkers: a systematic review. Front Physiol. 2021;11:610112.
  • 4. Atalay M, Lappalainen J, Sen CK. Dietary antioxidants for the athlete. Curr Sports Med Rep.2006;5(4):182-186. 5. Tuşat E, Parlak E. Polyphenols and their effects on sports performance. Toros Univ J Food Nutr Gastron. 2024; 2(2):225–243.
  • 6. McGinley C, Shafat A, Donnelly AE. Does antioxidant vitamin supplementation protect against muscle damage? Sports Med. 2009; 39(12):1011–1032.
  • 7. Valko M, Leibfritz D, Moncol J, et al. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol. 2007; 39(1): 44–84.
  • 8. Vassalle C, Pingitore A, De Giuseppe R, et al. Biomarkers to estimate bioefficacy of dietary/supplemental antioxidants in sports. In: Lamprecht M, editor. Antioxidants in Sport Nutrition. Boca Raton (FL): CRC Press; 2015. p. 255–72.
  • 9. Karahan M, Özdek B. Sıklet sporcularında hızlı vücut ağırlığı kaybı ile ilişkili oksidatif stres ve kas hasarı. In: Avcı P, editor. Spor Bilimlerinde Farklı Dinamikler-I. İstanbul: Özgür Yayınları; 2024. p. 1–19.
  • 10. Hadžović-Džuvo A, Valjevac A, Lepara O, et al. Oxidative stress status in elite athletes engaged in different sport disciplines. Bosn J Basic Med Sci. 2014; 14(2), 56 –62.
  • 11. Marin DP, Bolin AP, Campoio TR, et al. Oxidative stress and antioxidant status response of handball athletes: implications for sport training monitoring. Int Immunopharmacol. 2013; 17(2), 462–470.
  • 12. Lewis NA, Simpkin AJ, Moseley S, et al. Increased Oxidative Stress in Injured and Ill Elite International Olympic Rowers. Int J Sports Physiol Perform. 2020; 15(5), 625–631.
  • 13. Ovchinnikov AN, Paoli A. Saliva as a diagnostic tool for early detection of exercise-induced oxidative damage in female athletes. Biomedicines. 2024; 12(5), 1006.
  • 14. Aktitiz S, Koşar ŞN, Turnagöl H. mücadele sporlarında hızlı kilo düşme yöntemlerinin kullanım sıklığı: Hızlı Kilo Düşme Anketinin Türkçe geçerlik ve güvenirlik çalışması. Spor Bilimleri Derg. 2024; 35(1), 1-18.
  • 15. Trivic T, Roklicer R, Zenic N, et al. Rapid weight loss can increase the risk of acute kidney injury in wrestlers. BMJ Open Sport Exerc Med. 2023; 9(2), e001617.
  • 16. Rhyu HS, Cho SY, Roh HT. The effects of ketogenic diet on oxidative stress and antioxidative capacity markers of Taekwondo athletes. J Exerc Rehabil. 2014; 10(6), 362–366.
  • 17. Plunkett BA, Callister R, Watson TA, et al. Dietary antioxidant restriction affects the inflammatory response in athletes. Br J Nutr. 2010; 103(8), 1179–1184.
  • 18. Staśkiewicz W, Grochowska-Niedworok E, Kardas M, et al. Evaluation of the frequency of consumption of vegetables, fruits, and products rich in antioxidants by amateur and professional athletes. Sport Tour Cent Eur J. 2023;5(4):83–95.
  • 19. Watson TA, Callister R, Taylor RD, et al. Antioxidant restriction and oxidative stress in short -duration exhaustive exercise. Med Sci Sports Exerc. 2005;37(1):63 –71.
  • 20. Braakhuis AJ, Hopkins WG, Lowe TE. Effects of dietary antioxidants on training and performance in female runners. Eur J Sport Sci. 2014;14(2):160–8.
  • 21. Van Hecke T, Van Camp J, De Smet S. Oxidation during digestion of meat: interactions with the diet and Helicobacter pylori gastritis, and implications on human health. Compr Rev Food Sci Food Saf. 2017;16(2):214–233.
  • 22. Kanner J, Selhub J, Shpaizer A, et al. Redox homeostasis in stomach medium by foods: the postprandial oxidative stress index (POSI) for balancing nutrition and human health. Redox Biol. 2017; 12:929–936. 23. Wolters M, Ahrens J, Romaní‑Pérez M, et al. Dietary fat, the gut microbiota, and metabolic health – a systematic review conducted within the MyNewGut project. Clin Nutr. 2019;38(6):2504 –2520.
  • 24. Vitalievna KI, Mikhailovna KM, Borisovich ND. The role of diet of athletes in maintaining the qualitative and quantitative composition of the microbiome. UAE–Russia–India. 2023.
  • 25. Eck KM, Byrd‑Bredbenner C. Food choice decisions of collegiate Division I athletes: A qualitative exploratory study. Nutrients. 2021; 13(7): 2322.
  • 26. Clemente‑Suárez VJ, Beltrán‑Velasco AI, Redondo‑Flórez L, et al. Global impacts of Western diet and its effects on metabolism and health: A narrative review. Nutrients. 2023; 15(12): 2749.
  • 27. Chaudhary P, Janmeda P, Docea AO, et al. Oxidative stress, free radicals and antioxidants: potential crosstalk in the pathophysiology of human diseases. Front Chem. 2023;11:1158198.
  • 28. Griffiths A, Matu J, Whyte E, et al. The Mediterranean dietary pattern for optimising health and performance in competitive athletes: A narrative review. British Journal of Nutrition. 2022; 128(7):1285–1298.
  • 29. Reinert C, Gabiatti MP, Pillmann‑Ramos H, et al. Dietary antioxidant capacity is inversely associated with F₂‑isoprostane and body fat percentage in elite soccer referees. Sci Rep. 2024; 14(1), Article 30121.
  • 30. Schneider CD, Bock PM, Becker L, et al. Comparison of the effects of two antioxidant diets on oxidative stress markers in triathletes. Biol Sport. 2018; 35(2): 181–189.
  • 31. Zare M, Shoaei N, Karimian M, Zarei M, Saghebjoo M. Effect of a plant-based diet on oxidative stress biomarkers in male footballers. Sci Rep. 2024;14(1):3700.
  • 32. Dewi KI, Sumarmi S, Adiningsih S. Effect of fruits consumption on malondialdehyde (MDA) reduction among athletes: a systematic review and meta-analysis. STRADA J Ilmiah Kesehat. 2021;10(1):166–177.
  • 33. Frei B, Birlouez-Aragon I, Lykkesfeldt J. Authors’ perspective: What is the optimum intake of vitamin C in humans? Crit Rev Food Sci Nutr. 2012;52(9):815–829.
  • 34. Ramaswamy L, Indirani K. Effect of supplementation of tomato juice on the oxidative stress of selected athletes. J Int Soc Sports Nutr. 2011;8(1):21.
  • 35. Rajaram S, Damasceno NRT, Braga RAM, et al. Effect of nuts on markers of inflammation and oxidative stress: A narrative review. Nutrients. 2023;15(5):1099.
  • 36. Yi M, Fu J, Zhou L, et al. The effect of almond consumption on elements of endurance exercise performance in trained athletes. J Int Soc Sports Nutr. 2014;11(1):18.
  • 37. Panza VSP, Wazlawik E, Schütz GR, et al. Consumption of green tea favorably affects oxidative stress markers in weight-trained men. Nutrition. 2008;24(5):433–442.
  • 38. Murase T, Haramizu S, Ota N, et al. Tea catechin ingestion combined with habitual exercise suppresses the aging-associated decline in physical performance in senescence-accelerated mice. Am J Physiol Regul Integr Comp Physiol. 2008;295(1):281–289.
  • 39. Gonçalves MC, Bezerra FF, Eleutherio ECA, et al. Organic grape juice intake improves functional capillary density and postocclusive reactive hyperemia in triathletes. Clinics (Sao Paulo). 2011;66(9):1537–41.
  • 40. de Lima Tavares Toscano L, Silva AS, de França ACL, et al. A single dose of purple grape juice improves physical performance and antioxidant activity in runners: a randomized, crossover, double-blind, placebo study. Eur J Nutr. 2020;59(7):2997–3007.
  • 41. Martins NC, Dorneles GP, Blembeel AS, et al. Effects of grape juice consumption on oxidative stress and inflammation in male volleyball players: a randomized, double-blind, placebo-controlled clinical trial. Complement Ther Med. 2020;54:102570.
  • 42. Atan RM, Ersoy G, Çakıcı Ç. Effects of hardaliye, a fermented grape drink, on oxidative stress, lipid profile, and blood pressure in young soccer players: a randomized controlled trial. J Am Nutr Assoc. 2024;43(4):356–64.
  • 43. Petrovic S, Arsic A, Glibetic M, et al. The effects of polyphenol-rich chokeberry juice on fatty acid profiles and lipid peroxidation of active handball players: results from a randomized, double-blind, placebo-controlled study. Can J Physiol Pharmacol. 2016;94(10):1058–1063.
  • 44. Stankiewicz B, Cieślicka M, Kujawski S, et al. Effects of antioxidant supplementation on oxidative stress balance in young footballers: a randomized double-blind trial. J Int Soc Sports Nutr. 2021;18(1):44.
  • 45. Howatson G, McHugh MP, Hill JA, et al. Influence of tart cherry juice on indices of recovery following marathon running. Scand J Med Sci Sports. 2010;20(6):843–852.
  • 46. Vitale KC, Hueglin S, Broad E. Tart cherry juice in athletes: a literature review and commentary. Curr Sports Med Rep. 2017;16(4):230–239.
  • 47. Bell PG, Stevenson E, Davison GW, et al. The effects of Montmorency tart cherry concentrate supplementation on recovery following prolonged, intermittent exercise. Nutrients. 2016;8(7):441.
  • 48. D’Angelo S, Rosa R. The impact of supplementation with pomegranate fruit (Punica granatum L.) on sport performance. Sport Sci. 2020;13(1):29–37.
  • 49. Ammar A, Turki M, Hammouda O, et al. Effects of pomegranate juice supplementation on oxidative stress biomarkers following weightlifting exercise. Nutrients. 2017;9(8):819.
  • 50. Milton-Laskibar I, Martínez JA, Portillo MP. Current knowledge on beetroot bioactive compounds: role of nitrate and betalains in health and disease. Foods. 2021;10(6):1314.
  • 51. Kozłowska L, Mizera O, Gromadzińska J, et al. Changes in oxidative stress, inflammation, and muscle damage markers following diet and beetroot juice supplementation in elite fencers. Antioxidants. 2020;9(7):571. 52. Patel RK, Brouner J, Spendiff O. Dark chocolate supplementation reduces the oxygen cost of moderate intensity cycling. J Int Soc Sports Nutr. 2015;12(1):47.
  • 53. Akpınar Kocakulak N, Karakuş M, Akkurt S, et al. The effect of dark chocolate on oxidative stress parameters after high-intensity kickboxing training. J Sport Sci Res. 2023;8(3):473–485.
  • 54. Zeng Z, Jendricke P, Centner C, et al. Acute effects of oatmeal on exercise-induced reactive oxygen species production following high-intensity interval training in women: a randomized controlled trial. Antioxidants. 2020;10(1):3.
  • 55. Khan IT, Nadeem M, Imran M, et al. Antioxidant properties of milk and dairy products: a comprehensive review of the current knowledge. Lipids Health Dis. 2019;18(1):41.
  • 56. ankin P, Landy A, Stevenson E, et al. Milk: an effective recovery drink for female athletes. Nutrients. 2018;10(2):228.
  • 57. Setiawan MI, Susanto H, Kartasurya MI. Milk protein consumption improves muscle performance and total antioxidant status in young soccer athletes: a randomized controlled trial. Med J Indones. 2020;29(2):164–171.
  • 58. Mazani M, Nemati A, Amani M, et al. The effect of probiotic yoghurt consumption on oxidative stress and inflammatory factors in young females after exhaustive exercise. J Pak Med Assoc. 2018;68(12):1748–1754.
  • 59. Maqsood S, Arshad MT, Ikram A, et al. Date (Phoenix dactylifera L.) fruit as a functional food for enhancing athletic performance and recovery: a new perspective. eFood. 2025;6(3):e70055.
  • 60. Koivisto AE, Olsen T, Paur I, et al. Effects of antioxidant-rich foods on altitude-induced oxidative stress and inflammation in elite endurance athletes: a randomized controlled trial. PLoS One. 2019;14(6):e0217895.
Toplam 57 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Spor Hekimliği
Bölüm Derleme
Yazarlar

Gülsena Akay 0000-0002-5439-9550

Ravza Nur Sözen 0000-0002-9759-0005

Abdullah Öksüz 0000-0001-8778-9320

Yayımlanma Tarihi 23 Eylül 2025
Gönderilme Tarihi 11 Temmuz 2025
Kabul Tarihi 18 Ağustos 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 5 Sayı: 3

Kaynak Göster