Araştırma Makalesi
BibTex RIS Kaynak Göster

İZLANDA’NIN JEOMİRAS POTANSİYELİNE BAZI ÖRNEKLER

Yıl 2025, Cilt: 29 Sayı: 2, 329 - 352, 25.06.2025
https://doi.org/10.53487/atasobed.1621087

Öz

Jeomiras, dünyanın önemi nedeniyle korunmaya değer görülen varlıkları için kullanılan bir
kavram olup, doğal ve beşeri varlıklar jeomirasın kapsamı içerisinde yer almaktadır. Son
yıllarda jeomiras varlıklarını konu alan ve ekoturizmin bir kolu olan jeoturizm ilgi çeken bir
kavram olarak kullanılmaktadır. Bu çalışmada İzlanda’nın jeomiras potansiyelini oluşturan
bazı doğal varlıkların, potansiyel risklerle birlikte değerlendirilmesi amaçlanmıştır. Atlantik
Ortası Sırt Sistemi üzerinde yer alan İzlanda, dünyanın en büyük volkanik adasıdır. Bu durum
nedeniyle son yıllarda Dünya’da jeomiras ve jeoturizm için önemli lokasyon alanı haline
gelmiştir. Genç volkanizma ile şekillenen ada üzerinde jeomiras varlığı olarak çok sayıda
şelale, güncel buzul, proglasyal göl, kanyon vadi, aktif volkan, gayzer ve krater bulunmaktadır.
Jeomiras varlıklarından Gullfoss, Avrupa’nın en iyi şelalelerinden biri olarak kabul
edilmektedir. Sivartifoss, bazalt sütunları ile ziyaretçilerin ilgisini çeken bir şelaledir. Skaftafell
buzulu, Avrupa’nın en büyük buzulu olan Vatnajökull’un dil kısmını oluşturan jeomiras
varlığıdır. Volkanikler üzerinde gelişen Fjaðrárgljúfur Kanyonu şelaleleri ile de dikkat
çekmektedir. Avrupa’nın püsküren tek sıcak su kaynakları geysir jeotermal alanında
bulunmaktadır. İzlanda’da 2010-2018 yılları arasında jeomiras varlıklarına bağlı olarak
yabancı ziyaretçi sayısı yaklaşık 5 kat artmıştır. Bu nedenle adanın jeomiras kaynaklarının
korunması ve gelecek nesillere aktarılması için bozulmalara neden olan antropojenik baskılar
azaltılmalıdır.

Kaynakça

  • Akbulut, G. (2014). Önerilen Levent Vadisi Jeoparkı’nda jeositler. Cumhuriyet Üniversitesi Fen-Edebiyat Fakültesi Sosyal Bilimler Dergisi, 38(1), 29-45.
  • Akbulut Özpay, G. & Ünsal, Ö. (2018). Yukarı Kızılırmak Kültür ve Doğa Yolu I. etap (Sivas-Zara). Atatürk Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 22(Özel Sayı 2), 2173-2193.
  • Akbulut Özpay, G. & Aktaş, A. (2025). Türkiye’de jeopark alanında hazırlanan lisansüstü tezlerinin bibliyometrik analizi. The Journal of Social Sciences, 74, 1-15. https://doi.org/10.29228/SOBIDER.80402
  • Alfama, V., Henriques, M. H. & Barros, A. (2024). The challenging nature of volcanic heritage: The Fogo island (Cabo Verde, W Africa). Geoheritage, 16:34, 1- 18. https://doi.org/10.1007/s12371-024-00939-9
  • Arctic Adventures (2025, 1 Ocak). https://adventures.is/blog/why-is-the-sand-at-icelands-diamond-beach black/#:~:text=The%20'diamonds'%20are%20iceberg%20chunks,their%20way%20to%20the%20shore
  • Arnórsson, S. (1995). Geothermal systems in Iceland: Structure and conceptual models–I. High-temperature areas. Geothermics, 24(5-6), 561–602. https://doi.org/10.1016/0375-6505(95)00025-9
  • Asrat, A. (2018). Potential geoheritage sites in Ethiopia: Challenges of their promotion and conservation. E. Reynard & J. Brilha (Eds.), In Geoheritage, assessment, protection, and management (pp. 339-353). Elsevier. https://doi.org/10.1016/B978-0-12-809531-7.00019-8
  • Baldursson, S., Guðnason, J., Hannesdóttir, H. & Thórðarson, T. (2018). Nomination of Vatnajökull National Park for inclusion in the World Heritage List. Vatnajökull National Park, Reykjavík.
  • Bamlett, M. & Potter, J. F. (1988). Icelandic geology: An explanatory excursion guide based on a 1986 field meeting. Proceedings of the Geologists' Association, 99(3), 221-248. https://doi.org/10.1016/S0016-7878(88)80037-3
  • BBC (2024, 13 Şubat). https://www.bbc.com/news/science-environment-55346329
  • Brilha, J. (2018). Geoheritage: Inventories and evaluation. E. Reynard & J. Brilha (Eds.), In Geoheritage, assessment, protection, and management (pp. 69-85). Elsevier. https://doi.org/10.1016/B978-0-12-809531-7.00004-6
  • Britannica (2024a, 10 Mayıs). https://www.britannica.com/place/Hekla
  • Britannica (2024b, 10 Mayıs). https://www.britannica.com/science/waterfall-geology
  • Bruschi, V. M. & Coratza, P. (2018). Geoheritage and environmental impact assessment (EIA). E. Reynard & J. Brilha (Eds.), In Geoheritage assessment, protection, and management (pp. 251-264). Elsevier. https://doi.org/10.1016/B978-0-12809531-7.00014-9
  • Bussard, J. & Reynard, E. (2022). Heritage value and stakeholders’ perception of four geomorphological landscapes in Southern Iceland. Geoheritage, 14:89, 1-18. https://doi.org/10.1007/s12371-022-00722-8
  • Bussard, J. & Reynard, E. (2023). Conservation of World Heritage glacial landscapes in a changing climate: The Swiss Alps Jungfrau-Aletsch case. International Journal of Geoheritage and Parks, 11(4), 535-552. https://doi.org/10.1016/j.ijgeop.2023.06.003.
  • Carrivick, J. L. & Tweed, F. S. (2013). Proglacial Lakes: character, behaviour and geological importance. Quaternary Science Reviews, 78, 34-52. https://doi.org/10.1016/j.quascirev.2013.07.028
  • Copernicus (2024, 13 Şubat). https://www.copernicus.eu/en/media/image-day-gallery/skaftafellsjokull-glacier-iceland
  • Crofts, R. & Gordon, J. E. (2015). Geoconservation in protected areas. G. L. Worboys, M. Lockwood, A. Kothari, S. Feary & I. Pulsford (Eds.), In Protected area governance and management (pp. 531-568). ANU Press.
  • de Carvalho, I.P., de Holanda Bastos, F. & Cordeiro, A. M. N. (2024). Geomorphological heritage and geotourism in a granite terrain of the Semi-Arid Northeast of Brazil: The case of the Uruburetama Massif. Geoheritage, 16:68, 1-22. https://doi.org/10.1007/s12371-024-00953-x
  • Eibl, E. P. S., Hainzl, S., Vesely, N. I. K., Walter, T.R., Jousset, P., Hersir, G.P. & Dahm, T. (2020). Eruption interval monitoring at Strokkur Geyser, Iceland. Geophysical Research Letters, 47(1), 1-10. https://doi.org/10.1029/2019GL085266
  • Einarsson, M. (1984). Climate of Iceland-World survey of climatology, H. van LOON(Ed.), In Climate of the oceans: 15 (pp. 673-697). Elsevier.
  • Einarsson, P. & Hjartardóttir, Á. Ru. (2015). Structure and tectonic position of the Eyjafjallajökull volcano, S-Iceland. Jökull, 65, 1-16.
  • Eiríksson, J. & Símonarson, L. A. (2021). A brief resumé of the geology of Iceland. J. Eiríksson & L.A. Símonarson (Eds.), In Pacific-Atlantic mollusc migration (pp. 1-11). Topics in Geobiology, 52. Springer, Cham. https://doi.org/10.1007/9783-030-59663-7_1
  • Erfurt, P. (2021). The geoheritage of hot springs, Springer. https://doi.org/10.1007/978-3-030-60463-9
  • Erinç, S. (2000). Jeomorfoloji I. DER Yayınları.
  • Erinç, S. (2001). Jeomorfoloji II. DER Yayınları.
  • Evans, D. J. A., Ewertowski, M., Orton, C., Harris, C. & Guðmundsson, S. (2016). Snæfellsjökull volcano-centred ice cap landsystem, West Iceland. Journal of Maps, 12(5), 1128-1137. https://doi.org/10.1080/17445647.2015.1135301
  • Evtımova, V., Pandourskı, I. & Apostolov, A. (2014). First study on the zooplankton of the Kerid (Kerið) Crater Lake, Iceland. ZooNotes, 55, 1-3.
  • Fairbridge, R. W. (1968). Crater. In Geomorphology. Encyclopedia of Earth Science. Springer. https://doi.org/10.1007/3-54031060-6_72
  • Gioncada, A., Pitzalis, E., Cioni, R., Flugnati, P., Lezzerini, M., Mundula, F. & Funedda, A. (2019). The volcanic and mining geoheritage of San Pietro Island (Sulcis, Sardinia, Italy): The potential for geosite valorization. Geoheritage, 11, 15671581. https://doi.org/10.1007/s12371-019-00418-6
  • Glacierandvolcano (2024, 13 Şubat). https://www.glacierandvolcano.com/
  • Gordon, J. E., Crofts, R. & Díaz-Martínez, E. (2018). Geoheritage Conservation and environmental policies: Retrospect and prospect. E. Reynard & J. Brilha (Eds.), Geoheritage, assessment, protection, and management (pp. 213-235). Elsevier. https://doi.org/10.1016/B978-0-12-809531-7.00012-5.
  • Gudmundsson, A. (2017a). Gullfoss. In The Glorious geology of Iceland's golden circle. (pp. 105-112). GeoGuide. Springer, Cham. https://doi.org/10.1007/978-3-319-55152-4
  • Gudmundsson, A. (2017b). The glorious geology of Iceland's golden circle. GeoGuide. Springer, Cham. https://doi.org/10.1007/978-3-319-55152-4_8
  • Gül, M. & Küçükuysal, C. (2023). Geotourism activities via marine excursion: Muğla, SW Türkiye. Geoheritage, 15(2): 64, 122. https://doi.org/10.1007/s12371-023-00830-z
  • Gümüş, E. (2019). UNESCO Jeoparkları ve jeomorfoloji. Jeomorfolojik Araştırmalar Dergisi, 3, 17-27.
  • Haldar, S. K. & Tišljar, J. (2014). Igneous Rocks. S.K. Haldar & J. Tišljar (Eds.), In Introduction to mineralogy and petrology (pp. 93-120). Elsevier. https://doi.org/10.1016/B978-0-12-408133-8.00004-3.
  • Hanagan, C., La Femina, P. C. & Rodgers, M. (2020). Changes in crater morphology associated with volcanic activity at Telica Volcano, Nicaragua, Geochemistry, Geophysics, Geosystems, e2019GC008889, 21 (7), https://doi.org/10.1029/2019GC008889
  • Hannesdóttir, H., Björnsson, H., Pálsson, F., Aðalgeirsdóttir, G. & Guðmundsson, Sv. (2015). Changes in the southeast Vatnajökull ice cap, Iceland, between 1890 and 2010. The Cryosphere, 9(2), 565–585. https://doi.org/10.5194/tc-9565-2015
  • Hart, C. J. R. & Villeneuve, M. (1999). Geochronology of Neogene alkaline volcanic rocks (Miles Canyon basalt), southern Yukon Territory, Canada: The relative effectiveness of laser 40Ar/39Ar and K-Ar geochronology. Canadian Journal of Earth Sciences, 36(9), 1495-1507.
  • Hatipoğlu, Ş. C. & Bahadır, M. (2020). Altınordu (Ordu) İlçesindeki Jeosit ve Jeomorfositlerin Turizm Potansiyellerinin “Preliminary Geosite Assessment Model (GAM)” ile Ölçümü. Mavi Atlas, 8(2), 548-564. https://doi.org/10.18795/gumusmaviatlas.790874
  • Hauser, S. ve Schmitt, A. (2021). Glacier retreat in Iceland mapped from Space: Time series analysis of geodata from 1941 to 2018. Journal of Photogrammetry, Remote Sensing and Geoinformation Science, 89, 273–291. https://doi.org/10.1007/s41064-021-00139-y
  • Hofmann, M., Anderssohn, R., Bahr, H. A., Weiß, H. J. & Nellesen, J. (2015). Why Hexagonal Basalt Columns?. Physical Review Letters, 115, 154301, 1-5. https://doi.org/10.1103/PhysRevLett.115.154301
  • Huggett, R. J. (2015). Jeomorfolojinin Temelleri, (Prof. Dr. U. Doğan, Çev. Üçüncü Basımdan Çeviri), Nobel Akademik Yayıncılık.
  • Hurwitz, S. & Shelly, D. R. (2017). Illuminating the voluminous subsurface structures of Old Faithful Geyser, Yellowstone National Park. Geophysical Research Letters, 44 (20), 10328–10331. https://doi.org/10.1002/2017gl075833
  • Icelandic Tourist Board (2018). Foreign Visitor Arrivals by Air and Sea to Iceland 1949- 2017, Retrieved from: https://www.ferdamalastofa.is/static/files/ferdama lastofa/Frettamyndir/2018/mai/foreign-visitors-to-iceland-19492017.xls (Accessed 9 October 2018).
  • İzbırak, R. (1992). Coğrafya terimleri sözlüğü. Millî Eğitim Bakanlığı Yayınları Öğretmen Kitapları Dizisi: 157.
  • Jakobsson, S. P. (1966). The grimsnes lavas SW–Iceland. Acta naturalia Islandica, 2(6), 1-30.
  • Jamorska, I., Sobiech, M., Karasiewicz, T. & Tylmann, K. (2020). Geoheritage of Postglacial Areas in Northern Poland-Prospects for Geotourism. Geoheritage, 12(12), 1-13. https://doi.org/10.1007/s12371-020-00431-0
  • Katlageopark (2024, 29 Şubat). https://www.katlageopark.com/geosites/mainly-geology/fjadrargljufur/
  • Kazancı, N., Özgen Erdem, N. & Erturaç, M. K. (2017). Kültürel jeoloji ve jeolojik miras; yerbilimlerinin yeni açılımları. Türkiye Jeoloji Bülteni, 60(1), 1-16. https://doi.org/10.25288/tjb.297797
  • Kazancı, N. & Ürün, Ş. (2019). Doğal taşlar, jeoparklar ve kent kimlikleri. Mavi Gezegen, 26, 40-47.
  • Kerid (2025, 10 Ocak). https://kerid.is/about-kerid-volcano/
  • Loupiote Photography (2024, 5 Aralık). http://www.loupiote.com/photos/4202094424.shtml
  • Lutgens, F. K., Tarbuck, E. J. & Tasa, D. (2014). Genel jeoloji temel ilkeleri. Prof. Dr. C. Helvacı (Çev. Edt. 11. basımdan çeviri gözden geçirilmiş yeni basım). Nobel Akademik Yayıncılık.
  • Macadam, J. (2018). Geoheritage: Getting the message across. What message and to whom?. E. Reynard & J. Brilha (Eds.), In Geoheritage assessment, protection, and management (pp. 267-288). Elsevier https://doi.org/10.1016/B978-0-12809531-7.00015-0.
  • Mackintosh, A. N., Dugmore, A. J. & Hubbard, A. L. (2002). Holocene climatic changes in Iceland: evidence from modelling glacier length fluctuations at Sólheimajökull. Quaternary International, 91(1), 39-52. https://doi.org/10.1016/S10406182(01)00101-X.
  • Mancini, S., Gambino, F. & Dino, G. A. (2024). Georesources in Cultural Heritage: the Mg/Ca Ratio in Lime as a Marker of Variations in the Exploitation of Lime Stones in the Vercelli Area (Piemonte, Italy) over the Centuries. Geoheritage, 16: 70, 1-17. https://doi.org/10.1007/s12371-024-00972-8
  • Mapcache service at Landmælingar Íslands. (2024). https://gis.lmi.is/mapcache/isn93/wms?
  • Marin, J., Paskarana, A., Sandy, E.B.S. & Agustian, J. (2023). Assessing geotourism aspects of ungaran geothermal areas for promoting sustainable energy through volcano-geothermal tourist destination. [Konferans Sunumu], The Second International Seminar on Earth Sciences and Technology (ISEST-2023), IOP Conf. Series: Earth and Environmental Science 1245 (2023) 012018. https://doi.org/10.1088/1755-1315/1245/1/012018
  • Martí-Molist, J., Dorado-García, O. & López-Saavedra, M. (2022). The volcanic geoheritage of El Teide National Park (Tenerife, Canary Islands, Spain). Geoheritage, 14: 65, 1-26. https://doi.org/10.1007/s12371-022-00698-5
  • Matti, S. & Ögmundardóttir, H. (2021). Local knowledge of emerging hazards: Instability above an Icelandic glacier. International Journal of Disaster Risk Reduction, 58, 102187, ISSN 2212-4209, https://doi.org/10.1016/j.ijdrr.2021.102187
  • Migoń, P. (2018). Geoheritage and world heritage sites, E. Reynard & J. Brilha (Eds.) Geoheritage Assessment, Protection, and Management (pp. 237-249). Elsevier. https://doi.org/10.1016/B978-0-12-809531-7.00013-7.
  • Mikhailenko, A. V., Ruban, D. A. & Ermolaev, V. A. (2020). The khadzhokh canyon system-an ımportant geosite of the western caucasus. Geosciences, 10: 181, 1-17. https://doi.org/10.3390/geosciences10050181
  • Monroe, J. S. & Wicander, R. (2007). Fiziksel jeoloji (yeryüzünün araştırılması). (Türkçe 1.Baskıya Hazırlayanlar: Kadir Dirik, Mehmet Şener), Thomson Brooks/Cole, TMMOB Jeoloji Mühendisleri Odası.
  • Munoz-Saez, C., Manga, M., Hurwitz, S., Rudolph, M. L., Namiki, A. & Wang, C. Y. (2015). Dynamics within geyser conduits, and sensitivity to environmental perturbations: Insights from a periodic geyser in the El Tatio geyser field Atacama Desert, Chile. Journal of Volcanology and Geothermal Research, 292, 41-55. https://doi.org/10.1016/j.jvolgeores.2015.01.002
  • Muto, F., Biondino, D., Crisci, G. M. Marabini, S., Procopio, F., Scarciglia, F. & Vai , G. B. (2024). Pages of earth history in an exceptional uniqueness: The geo-heritage of the Sila National Park and its spheroidal boulders geosite (Northern Calabria, Italy). Geoheritage 16: 36, 1-28. https://doi.org/10.1007/s12371-024-00937-x
  • Muzambiq, S., Walid, H., Ganie, T. H. ve Hermewan, H. (2021). The Importance of Public Education and Interpretation in the Conservation of Toba Caldera Geoheritage. Geoheritage 13, 3 https://doi.org/10.1007/s12371-020-00523-x
  • NASA (2024 a 20 Aralık). https://asterweb.jpl.nasa.gov/gdem.asp.
  • NASA (2024 b, 20 Aralık). https://www.earthdata.nasa.gov/topics/cryosphere/glaciers/glacier-power/what-is-glacialcalving#:~:text=Calving%20is%20when%20chunks%20of,Icebergs%20can%20be%20BIG.
  • Nationalgeographic (2024, 15 Haziran). (https://education.nationalgeographic.org/resource/waterfall/
  • Németh, K. (2023). Volcanic geoheritage in the light of volcano geology. J. Dóniz-Páez & N.M. Pérez (Eds.), El Hierro Island global geopark. Geoheritage, geoparks and geotourism. Springer, Cham. https://doi.org/10.1007/978-3-031-072895_1
  • Norðdahl, H., Ingólfsson, Ó. & Ívarsson, G. (2008). 33 IGC Excursion. Geology of Iceland. Reykjavík: 52 p
  • Ólafsdóttir R. & Dowling, R. (2014). Geotourism and geoparks-a tool for geoconservation and rural development in vulnerable environments: A case study from Iceland. Geoheritage, 6, 71-87. https://doi.org/10.1007/s12371-013-0095-3
  • Ólafsson, H., Furger, M. & Brümmer, B. (2007). The weather and climate of Iceland. Meteorologische Zeitschrift, 16(1), 5-8, https://doi.org/10.1127/0941-2948/2007/0185
  • Ortega-Becerril, J. A., Polo, I. & Belmonte, A. (2019). Waterfalls as geological value for geotourism: The Case of ordesa and monte perdido national park. Geoheritage, 11, 1199-1219. https://doi.org/10.1007/s12371-019-00366-1
  • Öngür, T. (1976). Parçalı volkanik kayaların sınıflanması. Yeryuvarı ve İnsan, 1(1), Şubat 1976, 3,8.
  • Özkul, M., Gül, A., Koralay, T., Özen, H., Semiz, B. & Duman, B. (2024). Denizli travertine: A global heritage stone resource nominee from western Türkiye. Geoheritage, 16 (67), 1-20. https://doi.org/10.1007/s12371-024-00970-w
  • Pasquaré Mariotto, F., Bonali, F. L. & Venturini, C. (2020). Iceland, an open-air museum for geoheritage and earth science communication purposes. Resources, 9(2), 14. https://doi.org/10.3390/resources9020014
  • Pasvanoğlu, S., Kristmannsdóttir, H., Björnsson, S. & Torfason, H. (2000). Geochemical study of the geysir geothermal field in Haukadalur, S-Iceland [Konferans Sunumu], Proceedings World Geothermal Congress 2000 Kyushu-Tohoku, Japan, May 28 -June 10, 2000, 675-680.
  • Pekcan, N. (1999). Karst jeomorfolojisi (2.Baskı), Filiz Kitabevi.
  • Prestvik, T. (1980). Petrology of hybrid intermediate and silicic rocks from Öræfajökull, southeast Iceland. Geologiska Föreningens i Stockholm Förhandlingar, 101 (4), 299–307. https://doi.org/10.1080/11035898009450848
  • Prestvik, T. (1985). Petrology of Quaternary volcanic rocks from Öræfi, southeast Iceland. Rep. 21, Geological Institute, NTH. 81 pp.
  • Prosser, C. D. (2013). Our rich and varied geoconservation portfolio: the foundation for the future. Proc. Geol. Assoc. 124(4), 568-580.
  • Reynard, E. & Brilha, J. (2018). Geoheritage: A multidisciplinary and applied research topic. E. Reynard & J. Brilha (Eds.), Geoheritage, Assessment, Protection, and Management (pp. 3-9). Elsevier. https://doi.org/10.1016/B978-0-12809531-7.00030-7
  • Saemundsson, K. (1979). Outline of the geology of Iceland. Jökull, 29, 7-28.
  • Sánchez-Cortez, J. L., Vélez-Macías, K., Macas-Espinosa, V. & Naranjo-Freire, C. (2023). Characterization of geoheritage and geotourism potential of the fluvial-glacial landscapes in the culebrillas lagoon (Ecuador). Tourism and Hospitality, 4, 419-434. https://doi.org/10.3390/tourhosp4030026
  • Scott, S. W., Lévy, L., Covell, C., Franzson, H., Gibert, B., Valfells, Á., Newson, J., Frolova, J., Júlíusson, E. & Guðjónsdóttir, M. S. (2023). Valgarður: a database of the petrophysical, mineralogical, and chemical properties of Icelandic rocks. Earth System Science Data, 15, 1165–1195. https://doi.org/10.5194/essd-15-1165-2023.
  • Selbekk, R. S. & Trønnes, R. G. (2007). The 1362 AD Öræfajökull eruption, Iceland: Petrology and geochemistry of largevolume homogeneous rhyolite. Journal of Volcanology and Geothermal Research, 160(1–2), 42-58. https://doi.org/10.1016/j.jvolgeores.2006.08.005.
  • Sever, R. & Kopar, İ. (2009). Maral Şelalesi (Borçka-Artvin), doğal ortam özellikleri ve ekonomik potansiyeli. Türk Coğrafya Dergisi, 52, 17-29.
  • Sheibani, V.Y. & Zamanian, E. (2023). Geodiversity and geological treasure of tabas unesco global geopark for geotourism development, new UGGp from Iran. Geoheritage, 15: 106, 1-16. https://doi.org/10.1007/s12371-023-00873-2
  • Statistics of Iceland II (1960). Population census 1703. Reykjavík, 1960
  • Štrba, Ľ.., Vravcová, A., Podoláková, M., Varcholová, L. & Kršák, B. (2023). Linking geoheritage or geosite assessment results with geotourism potential and development: A literature review. Sustainability, 15: 12: 9539. https://doi.org/10.3390/su15129539
  • Şengün, M. T., Kılıçarslan, M. & Göktaş, Y. (2023). Karacadağ/Baruttepe (Diyarbakır) çevresinin jeomiras ve jeoturizm özellikleri. Jeomorfolojik Araştırmalar Dergisi, 10, 133-148. https://doi.org/10.46453/jader.1205812 Thorarinsson, S. (1961). Population changes in Iceland. Geographical Review,51(4), 519–533. https://doi.org/10.2307/213106
  • Thordarson, T. & Larsen, G. (2007). Volcanism in Iceland in historical time: Volcano types, eruption styles and eruptive history. Journal of Geodynamics, 43(1), 118–152. https://doi.org/10.1016/j.jog.2006.09.005
  • Turoğlu, H. (2011). Buzullar ve buzul jeomorfolojisi. Çantay Kitabevi.
  • Turoğlu, H. (2025). A Discussion about the “geopark” terminology use based on Turkish researchers’ conceptual perceptions of their publications. Geoheritage, 17, 32. https://doi.org/10.1007/s12371-025-01078-5
  • Ukey, M. S. & Pardeshi, R. G. (2023). Geoscientific and geoheritage value of waterfall calc tufa and speleothem deposits from semi-arid upland deccan traps, India. Geoheritage, 15, 60. https://doi.org/10.1007/s12371-023-00828-7 USGS (2024, 5 Aralık). https://eros.usgs.gov/earthshots/jokulsarlonlagoon#:~:text=Proglacial%20lakes%20are%20water%20bodies,was%20about%2026%2C500%20years%20ago
  • Vatnajokull (2024, 5 Aralık). http://www.vatnajokull.com/glacier
  • Vatnajokulsthjodgardur (2025, 1 Ocak). https://www.vatnajokulsthjodgardur.is/en/melting-glaciers/loftlagsbreytingar-ogjoklar
  • Visit South Iceland (2024, 17 Haziran). https://www.south.is/en/place/seljalandsfoss-waterfall
  • Visitvatnajokull (2024, 13 Şubat). https://visitvatnajokull.is/skaftafell/
  • Vogt, P. R. (1974). The Icelandic phenomenon: imprints of a hot spot on the ocean crust, and implications for flow below the plates. L. Kristjansson (Ed.), In Geodynamics of Iceland and the North Atlantic area (pp. 105-126). Dordrecht.
  • Voytenko, D., Dixon, T. H., Luther, M. E., Lembke, C., Howat, I. M. & de la Peña, S. (2015). Observations of inertial currents in a lagoon in southeastern Iceland using terrestrial radar interferometry and automated iceberg tracking. Computer & Geosciences, 82, 23–30. https://doi.org/10.1016/j.cageo.2015.05.012
  • Walter, T. R., Jousset, P., Allahbakhshi, M., Witt, T., Gudmundsson, M. T. & Hersir, G. P. (2020). Underwater and drone based photogrammetry reveals structural control at Geysir geothermal field in Iceland. Journal of Volcanology and Geothermal Research, 391, 106282. https://doi.org/10.1016/j.jvolgeores.2018.01.010
  • Waterfallseasons (2024, 10 Eylül). https://waterfallseasons.com/home-lists-waterfall types.htm#:~:text=Plunging%20(Curtain)%20Waterfall%3A,the%20base%20of%20the%20falls.
  • Wells, G. H., Sæmundsson, Þ., Pálsson, F., Aðalgeirsdóttir, G., Magnússon, E., Hermanns, R. L. & Guðmundsson, S. (2024). Proglacial lake evolution and outburst flood hazard at Fjallsjökull glacier, southeast Iceland. EGUsphere [preprint], 136. https://doi.org/10.5194/egusphere-2024-2002.
  • Worldbank (2024, 10 Eylül). https://climateknowledgeportal.worldbank.org/country/iceland/climate-data historical#:~:text=Relatively%20mild%20winters%20and%20cool,average%20annually%2C%20depending%20on%20l ocation.
  • Worldometers (2024, 10 Eylül). https://www.worldometers.info/world-population/iceland-population/
  • World Waterfall Database (WWD) (2024a, 14 Temmuz) https://www.worldwaterfalldatabase.com/map
  • World Waterfall Database (WWD) (2024b, 14 Temmuz). https://www.worldwaterfalldatabase.com/help
  • World Waterfall Database (WWD) (2024c, 14 Temmuz). https://www.worldwaterfalldatabase.com/waterfall/Skogafoss-14730
  • World Waterfall Database (WWD) (2024d, 14 Temmuz). https://www.worldwaterfalldatabase.com/waterfall/Svartifoss-14763
  • World Waterfall Database (WWD) (2024e, 14 Temmuz). https://www.worldwaterfalldatabase.com/waterfall/Gullfoss-14455
  • Zorlu, K. & Dede, V. (2023). Assessment of glacial geoheritage by multi-criteria decision making (MCDM) methods in the Yalnızçam Mountains, Northeastern Türkiye. International Journal of Geoheritage and Parks, 11(1), 100-117. https://doi.org/10.1016/j.ijgeop.2023.01.001

SOME EXAMPLES OF ICELAND’S GEOHERITAGE POTENTIAL

Yıl 2025, Cilt: 29 Sayı: 2, 329 - 352, 25.06.2025
https://doi.org/10.53487/atasobed.1621087

Öz

Geoheritage is a concept used for the assets of the world that are considered worthy of
protection due to their importance, and natural and human assets are included in the scope
of geoheritage. Being a branch of ecotourism and the subject of geoheritage assets,
geotourism has been used as an interesting concept in recent years. This study aims to
evaluate some of the natural assets that constitute Iceland’s geoheritage potential, along
with potential risks. Located on the Mid-Atlantic Ridge System, Iceland is the largest volcanic
island in the world. This fact has made the island an important location for geoheritage and
geotourism in the world over recent years. There are many waterfalls, current glaciers,
proglacial lakes, canyon valleys, active volcanoes, geysers and craters on the island, which
was shaped by young volcanism. One of the most notable geomiras features, Gullfoss, is
considered one of the best waterfalls in Europe. Svartifoss is another prominent waterfall
that attracts visitors due to its basalt columns. The Skaftafell glacier, which forms a part of
Vatnajökull, the largest glacier in Europe, is another significant geomiras site. The
Fjaðrárgljúfur Canyon, developed on volcanic terrain, is also known for its impressive
waterfalls. The only erupting hot springs in Europe are located in the Geysir geothermal area.
The number of foreign visitors to Iceland due to geoheritage assets increased approximately
5 times between 2010-2018. Therefore, anthropogenic pressures that cause degradation
should be reduced in order to protect the island’s geoheritage resources and pass them on
to future generations.

Kaynakça

  • Akbulut, G. (2014). Önerilen Levent Vadisi Jeoparkı’nda jeositler. Cumhuriyet Üniversitesi Fen-Edebiyat Fakültesi Sosyal Bilimler Dergisi, 38(1), 29-45.
  • Akbulut Özpay, G. & Ünsal, Ö. (2018). Yukarı Kızılırmak Kültür ve Doğa Yolu I. etap (Sivas-Zara). Atatürk Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 22(Özel Sayı 2), 2173-2193.
  • Akbulut Özpay, G. & Aktaş, A. (2025). Türkiye’de jeopark alanında hazırlanan lisansüstü tezlerinin bibliyometrik analizi. The Journal of Social Sciences, 74, 1-15. https://doi.org/10.29228/SOBIDER.80402
  • Alfama, V., Henriques, M. H. & Barros, A. (2024). The challenging nature of volcanic heritage: The Fogo island (Cabo Verde, W Africa). Geoheritage, 16:34, 1- 18. https://doi.org/10.1007/s12371-024-00939-9
  • Arctic Adventures (2025, 1 Ocak). https://adventures.is/blog/why-is-the-sand-at-icelands-diamond-beach black/#:~:text=The%20'diamonds'%20are%20iceberg%20chunks,their%20way%20to%20the%20shore
  • Arnórsson, S. (1995). Geothermal systems in Iceland: Structure and conceptual models–I. High-temperature areas. Geothermics, 24(5-6), 561–602. https://doi.org/10.1016/0375-6505(95)00025-9
  • Asrat, A. (2018). Potential geoheritage sites in Ethiopia: Challenges of their promotion and conservation. E. Reynard & J. Brilha (Eds.), In Geoheritage, assessment, protection, and management (pp. 339-353). Elsevier. https://doi.org/10.1016/B978-0-12-809531-7.00019-8
  • Baldursson, S., Guðnason, J., Hannesdóttir, H. & Thórðarson, T. (2018). Nomination of Vatnajökull National Park for inclusion in the World Heritage List. Vatnajökull National Park, Reykjavík.
  • Bamlett, M. & Potter, J. F. (1988). Icelandic geology: An explanatory excursion guide based on a 1986 field meeting. Proceedings of the Geologists' Association, 99(3), 221-248. https://doi.org/10.1016/S0016-7878(88)80037-3
  • BBC (2024, 13 Şubat). https://www.bbc.com/news/science-environment-55346329
  • Brilha, J. (2018). Geoheritage: Inventories and evaluation. E. Reynard & J. Brilha (Eds.), In Geoheritage, assessment, protection, and management (pp. 69-85). Elsevier. https://doi.org/10.1016/B978-0-12-809531-7.00004-6
  • Britannica (2024a, 10 Mayıs). https://www.britannica.com/place/Hekla
  • Britannica (2024b, 10 Mayıs). https://www.britannica.com/science/waterfall-geology
  • Bruschi, V. M. & Coratza, P. (2018). Geoheritage and environmental impact assessment (EIA). E. Reynard & J. Brilha (Eds.), In Geoheritage assessment, protection, and management (pp. 251-264). Elsevier. https://doi.org/10.1016/B978-0-12809531-7.00014-9
  • Bussard, J. & Reynard, E. (2022). Heritage value and stakeholders’ perception of four geomorphological landscapes in Southern Iceland. Geoheritage, 14:89, 1-18. https://doi.org/10.1007/s12371-022-00722-8
  • Bussard, J. & Reynard, E. (2023). Conservation of World Heritage glacial landscapes in a changing climate: The Swiss Alps Jungfrau-Aletsch case. International Journal of Geoheritage and Parks, 11(4), 535-552. https://doi.org/10.1016/j.ijgeop.2023.06.003.
  • Carrivick, J. L. & Tweed, F. S. (2013). Proglacial Lakes: character, behaviour and geological importance. Quaternary Science Reviews, 78, 34-52. https://doi.org/10.1016/j.quascirev.2013.07.028
  • Copernicus (2024, 13 Şubat). https://www.copernicus.eu/en/media/image-day-gallery/skaftafellsjokull-glacier-iceland
  • Crofts, R. & Gordon, J. E. (2015). Geoconservation in protected areas. G. L. Worboys, M. Lockwood, A. Kothari, S. Feary & I. Pulsford (Eds.), In Protected area governance and management (pp. 531-568). ANU Press.
  • de Carvalho, I.P., de Holanda Bastos, F. & Cordeiro, A. M. N. (2024). Geomorphological heritage and geotourism in a granite terrain of the Semi-Arid Northeast of Brazil: The case of the Uruburetama Massif. Geoheritage, 16:68, 1-22. https://doi.org/10.1007/s12371-024-00953-x
  • Eibl, E. P. S., Hainzl, S., Vesely, N. I. K., Walter, T.R., Jousset, P., Hersir, G.P. & Dahm, T. (2020). Eruption interval monitoring at Strokkur Geyser, Iceland. Geophysical Research Letters, 47(1), 1-10. https://doi.org/10.1029/2019GL085266
  • Einarsson, M. (1984). Climate of Iceland-World survey of climatology, H. van LOON(Ed.), In Climate of the oceans: 15 (pp. 673-697). Elsevier.
  • Einarsson, P. & Hjartardóttir, Á. Ru. (2015). Structure and tectonic position of the Eyjafjallajökull volcano, S-Iceland. Jökull, 65, 1-16.
  • Eiríksson, J. & Símonarson, L. A. (2021). A brief resumé of the geology of Iceland. J. Eiríksson & L.A. Símonarson (Eds.), In Pacific-Atlantic mollusc migration (pp. 1-11). Topics in Geobiology, 52. Springer, Cham. https://doi.org/10.1007/9783-030-59663-7_1
  • Erfurt, P. (2021). The geoheritage of hot springs, Springer. https://doi.org/10.1007/978-3-030-60463-9
  • Erinç, S. (2000). Jeomorfoloji I. DER Yayınları.
  • Erinç, S. (2001). Jeomorfoloji II. DER Yayınları.
  • Evans, D. J. A., Ewertowski, M., Orton, C., Harris, C. & Guðmundsson, S. (2016). Snæfellsjökull volcano-centred ice cap landsystem, West Iceland. Journal of Maps, 12(5), 1128-1137. https://doi.org/10.1080/17445647.2015.1135301
  • Evtımova, V., Pandourskı, I. & Apostolov, A. (2014). First study on the zooplankton of the Kerid (Kerið) Crater Lake, Iceland. ZooNotes, 55, 1-3.
  • Fairbridge, R. W. (1968). Crater. In Geomorphology. Encyclopedia of Earth Science. Springer. https://doi.org/10.1007/3-54031060-6_72
  • Gioncada, A., Pitzalis, E., Cioni, R., Flugnati, P., Lezzerini, M., Mundula, F. & Funedda, A. (2019). The volcanic and mining geoheritage of San Pietro Island (Sulcis, Sardinia, Italy): The potential for geosite valorization. Geoheritage, 11, 15671581. https://doi.org/10.1007/s12371-019-00418-6
  • Glacierandvolcano (2024, 13 Şubat). https://www.glacierandvolcano.com/
  • Gordon, J. E., Crofts, R. & Díaz-Martínez, E. (2018). Geoheritage Conservation and environmental policies: Retrospect and prospect. E. Reynard & J. Brilha (Eds.), Geoheritage, assessment, protection, and management (pp. 213-235). Elsevier. https://doi.org/10.1016/B978-0-12-809531-7.00012-5.
  • Gudmundsson, A. (2017a). Gullfoss. In The Glorious geology of Iceland's golden circle. (pp. 105-112). GeoGuide. Springer, Cham. https://doi.org/10.1007/978-3-319-55152-4
  • Gudmundsson, A. (2017b). The glorious geology of Iceland's golden circle. GeoGuide. Springer, Cham. https://doi.org/10.1007/978-3-319-55152-4_8
  • Gül, M. & Küçükuysal, C. (2023). Geotourism activities via marine excursion: Muğla, SW Türkiye. Geoheritage, 15(2): 64, 122. https://doi.org/10.1007/s12371-023-00830-z
  • Gümüş, E. (2019). UNESCO Jeoparkları ve jeomorfoloji. Jeomorfolojik Araştırmalar Dergisi, 3, 17-27.
  • Haldar, S. K. & Tišljar, J. (2014). Igneous Rocks. S.K. Haldar & J. Tišljar (Eds.), In Introduction to mineralogy and petrology (pp. 93-120). Elsevier. https://doi.org/10.1016/B978-0-12-408133-8.00004-3.
  • Hanagan, C., La Femina, P. C. & Rodgers, M. (2020). Changes in crater morphology associated with volcanic activity at Telica Volcano, Nicaragua, Geochemistry, Geophysics, Geosystems, e2019GC008889, 21 (7), https://doi.org/10.1029/2019GC008889
  • Hannesdóttir, H., Björnsson, H., Pálsson, F., Aðalgeirsdóttir, G. & Guðmundsson, Sv. (2015). Changes in the southeast Vatnajökull ice cap, Iceland, between 1890 and 2010. The Cryosphere, 9(2), 565–585. https://doi.org/10.5194/tc-9565-2015
  • Hart, C. J. R. & Villeneuve, M. (1999). Geochronology of Neogene alkaline volcanic rocks (Miles Canyon basalt), southern Yukon Territory, Canada: The relative effectiveness of laser 40Ar/39Ar and K-Ar geochronology. Canadian Journal of Earth Sciences, 36(9), 1495-1507.
  • Hatipoğlu, Ş. C. & Bahadır, M. (2020). Altınordu (Ordu) İlçesindeki Jeosit ve Jeomorfositlerin Turizm Potansiyellerinin “Preliminary Geosite Assessment Model (GAM)” ile Ölçümü. Mavi Atlas, 8(2), 548-564. https://doi.org/10.18795/gumusmaviatlas.790874
  • Hauser, S. ve Schmitt, A. (2021). Glacier retreat in Iceland mapped from Space: Time series analysis of geodata from 1941 to 2018. Journal of Photogrammetry, Remote Sensing and Geoinformation Science, 89, 273–291. https://doi.org/10.1007/s41064-021-00139-y
  • Hofmann, M., Anderssohn, R., Bahr, H. A., Weiß, H. J. & Nellesen, J. (2015). Why Hexagonal Basalt Columns?. Physical Review Letters, 115, 154301, 1-5. https://doi.org/10.1103/PhysRevLett.115.154301
  • Huggett, R. J. (2015). Jeomorfolojinin Temelleri, (Prof. Dr. U. Doğan, Çev. Üçüncü Basımdan Çeviri), Nobel Akademik Yayıncılık.
  • Hurwitz, S. & Shelly, D. R. (2017). Illuminating the voluminous subsurface structures of Old Faithful Geyser, Yellowstone National Park. Geophysical Research Letters, 44 (20), 10328–10331. https://doi.org/10.1002/2017gl075833
  • Icelandic Tourist Board (2018). Foreign Visitor Arrivals by Air and Sea to Iceland 1949- 2017, Retrieved from: https://www.ferdamalastofa.is/static/files/ferdama lastofa/Frettamyndir/2018/mai/foreign-visitors-to-iceland-19492017.xls (Accessed 9 October 2018).
  • İzbırak, R. (1992). Coğrafya terimleri sözlüğü. Millî Eğitim Bakanlığı Yayınları Öğretmen Kitapları Dizisi: 157.
  • Jakobsson, S. P. (1966). The grimsnes lavas SW–Iceland. Acta naturalia Islandica, 2(6), 1-30.
  • Jamorska, I., Sobiech, M., Karasiewicz, T. & Tylmann, K. (2020). Geoheritage of Postglacial Areas in Northern Poland-Prospects for Geotourism. Geoheritage, 12(12), 1-13. https://doi.org/10.1007/s12371-020-00431-0
  • Katlageopark (2024, 29 Şubat). https://www.katlageopark.com/geosites/mainly-geology/fjadrargljufur/
  • Kazancı, N., Özgen Erdem, N. & Erturaç, M. K. (2017). Kültürel jeoloji ve jeolojik miras; yerbilimlerinin yeni açılımları. Türkiye Jeoloji Bülteni, 60(1), 1-16. https://doi.org/10.25288/tjb.297797
  • Kazancı, N. & Ürün, Ş. (2019). Doğal taşlar, jeoparklar ve kent kimlikleri. Mavi Gezegen, 26, 40-47.
  • Kerid (2025, 10 Ocak). https://kerid.is/about-kerid-volcano/
  • Loupiote Photography (2024, 5 Aralık). http://www.loupiote.com/photos/4202094424.shtml
  • Lutgens, F. K., Tarbuck, E. J. & Tasa, D. (2014). Genel jeoloji temel ilkeleri. Prof. Dr. C. Helvacı (Çev. Edt. 11. basımdan çeviri gözden geçirilmiş yeni basım). Nobel Akademik Yayıncılık.
  • Macadam, J. (2018). Geoheritage: Getting the message across. What message and to whom?. E. Reynard & J. Brilha (Eds.), In Geoheritage assessment, protection, and management (pp. 267-288). Elsevier https://doi.org/10.1016/B978-0-12809531-7.00015-0.
  • Mackintosh, A. N., Dugmore, A. J. & Hubbard, A. L. (2002). Holocene climatic changes in Iceland: evidence from modelling glacier length fluctuations at Sólheimajökull. Quaternary International, 91(1), 39-52. https://doi.org/10.1016/S10406182(01)00101-X.
  • Mancini, S., Gambino, F. & Dino, G. A. (2024). Georesources in Cultural Heritage: the Mg/Ca Ratio in Lime as a Marker of Variations in the Exploitation of Lime Stones in the Vercelli Area (Piemonte, Italy) over the Centuries. Geoheritage, 16: 70, 1-17. https://doi.org/10.1007/s12371-024-00972-8
  • Mapcache service at Landmælingar Íslands. (2024). https://gis.lmi.is/mapcache/isn93/wms?
  • Marin, J., Paskarana, A., Sandy, E.B.S. & Agustian, J. (2023). Assessing geotourism aspects of ungaran geothermal areas for promoting sustainable energy through volcano-geothermal tourist destination. [Konferans Sunumu], The Second International Seminar on Earth Sciences and Technology (ISEST-2023), IOP Conf. Series: Earth and Environmental Science 1245 (2023) 012018. https://doi.org/10.1088/1755-1315/1245/1/012018
  • Martí-Molist, J., Dorado-García, O. & López-Saavedra, M. (2022). The volcanic geoheritage of El Teide National Park (Tenerife, Canary Islands, Spain). Geoheritage, 14: 65, 1-26. https://doi.org/10.1007/s12371-022-00698-5
  • Matti, S. & Ögmundardóttir, H. (2021). Local knowledge of emerging hazards: Instability above an Icelandic glacier. International Journal of Disaster Risk Reduction, 58, 102187, ISSN 2212-4209, https://doi.org/10.1016/j.ijdrr.2021.102187
  • Migoń, P. (2018). Geoheritage and world heritage sites, E. Reynard & J. Brilha (Eds.) Geoheritage Assessment, Protection, and Management (pp. 237-249). Elsevier. https://doi.org/10.1016/B978-0-12-809531-7.00013-7.
  • Mikhailenko, A. V., Ruban, D. A. & Ermolaev, V. A. (2020). The khadzhokh canyon system-an ımportant geosite of the western caucasus. Geosciences, 10: 181, 1-17. https://doi.org/10.3390/geosciences10050181
  • Monroe, J. S. & Wicander, R. (2007). Fiziksel jeoloji (yeryüzünün araştırılması). (Türkçe 1.Baskıya Hazırlayanlar: Kadir Dirik, Mehmet Şener), Thomson Brooks/Cole, TMMOB Jeoloji Mühendisleri Odası.
  • Munoz-Saez, C., Manga, M., Hurwitz, S., Rudolph, M. L., Namiki, A. & Wang, C. Y. (2015). Dynamics within geyser conduits, and sensitivity to environmental perturbations: Insights from a periodic geyser in the El Tatio geyser field Atacama Desert, Chile. Journal of Volcanology and Geothermal Research, 292, 41-55. https://doi.org/10.1016/j.jvolgeores.2015.01.002
  • Muto, F., Biondino, D., Crisci, G. M. Marabini, S., Procopio, F., Scarciglia, F. & Vai , G. B. (2024). Pages of earth history in an exceptional uniqueness: The geo-heritage of the Sila National Park and its spheroidal boulders geosite (Northern Calabria, Italy). Geoheritage 16: 36, 1-28. https://doi.org/10.1007/s12371-024-00937-x
  • Muzambiq, S., Walid, H., Ganie, T. H. ve Hermewan, H. (2021). The Importance of Public Education and Interpretation in the Conservation of Toba Caldera Geoheritage. Geoheritage 13, 3 https://doi.org/10.1007/s12371-020-00523-x
  • NASA (2024 a 20 Aralık). https://asterweb.jpl.nasa.gov/gdem.asp.
  • NASA (2024 b, 20 Aralık). https://www.earthdata.nasa.gov/topics/cryosphere/glaciers/glacier-power/what-is-glacialcalving#:~:text=Calving%20is%20when%20chunks%20of,Icebergs%20can%20be%20BIG.
  • Nationalgeographic (2024, 15 Haziran). (https://education.nationalgeographic.org/resource/waterfall/
  • Németh, K. (2023). Volcanic geoheritage in the light of volcano geology. J. Dóniz-Páez & N.M. Pérez (Eds.), El Hierro Island global geopark. Geoheritage, geoparks and geotourism. Springer, Cham. https://doi.org/10.1007/978-3-031-072895_1
  • Norðdahl, H., Ingólfsson, Ó. & Ívarsson, G. (2008). 33 IGC Excursion. Geology of Iceland. Reykjavík: 52 p
  • Ólafsdóttir R. & Dowling, R. (2014). Geotourism and geoparks-a tool for geoconservation and rural development in vulnerable environments: A case study from Iceland. Geoheritage, 6, 71-87. https://doi.org/10.1007/s12371-013-0095-3
  • Ólafsson, H., Furger, M. & Brümmer, B. (2007). The weather and climate of Iceland. Meteorologische Zeitschrift, 16(1), 5-8, https://doi.org/10.1127/0941-2948/2007/0185
  • Ortega-Becerril, J. A., Polo, I. & Belmonte, A. (2019). Waterfalls as geological value for geotourism: The Case of ordesa and monte perdido national park. Geoheritage, 11, 1199-1219. https://doi.org/10.1007/s12371-019-00366-1
  • Öngür, T. (1976). Parçalı volkanik kayaların sınıflanması. Yeryuvarı ve İnsan, 1(1), Şubat 1976, 3,8.
  • Özkul, M., Gül, A., Koralay, T., Özen, H., Semiz, B. & Duman, B. (2024). Denizli travertine: A global heritage stone resource nominee from western Türkiye. Geoheritage, 16 (67), 1-20. https://doi.org/10.1007/s12371-024-00970-w
  • Pasquaré Mariotto, F., Bonali, F. L. & Venturini, C. (2020). Iceland, an open-air museum for geoheritage and earth science communication purposes. Resources, 9(2), 14. https://doi.org/10.3390/resources9020014
  • Pasvanoğlu, S., Kristmannsdóttir, H., Björnsson, S. & Torfason, H. (2000). Geochemical study of the geysir geothermal field in Haukadalur, S-Iceland [Konferans Sunumu], Proceedings World Geothermal Congress 2000 Kyushu-Tohoku, Japan, May 28 -June 10, 2000, 675-680.
  • Pekcan, N. (1999). Karst jeomorfolojisi (2.Baskı), Filiz Kitabevi.
  • Prestvik, T. (1980). Petrology of hybrid intermediate and silicic rocks from Öræfajökull, southeast Iceland. Geologiska Föreningens i Stockholm Förhandlingar, 101 (4), 299–307. https://doi.org/10.1080/11035898009450848
  • Prestvik, T. (1985). Petrology of Quaternary volcanic rocks from Öræfi, southeast Iceland. Rep. 21, Geological Institute, NTH. 81 pp.
  • Prosser, C. D. (2013). Our rich and varied geoconservation portfolio: the foundation for the future. Proc. Geol. Assoc. 124(4), 568-580.
  • Reynard, E. & Brilha, J. (2018). Geoheritage: A multidisciplinary and applied research topic. E. Reynard & J. Brilha (Eds.), Geoheritage, Assessment, Protection, and Management (pp. 3-9). Elsevier. https://doi.org/10.1016/B978-0-12809531-7.00030-7
  • Saemundsson, K. (1979). Outline of the geology of Iceland. Jökull, 29, 7-28.
  • Sánchez-Cortez, J. L., Vélez-Macías, K., Macas-Espinosa, V. & Naranjo-Freire, C. (2023). Characterization of geoheritage and geotourism potential of the fluvial-glacial landscapes in the culebrillas lagoon (Ecuador). Tourism and Hospitality, 4, 419-434. https://doi.org/10.3390/tourhosp4030026
  • Scott, S. W., Lévy, L., Covell, C., Franzson, H., Gibert, B., Valfells, Á., Newson, J., Frolova, J., Júlíusson, E. & Guðjónsdóttir, M. S. (2023). Valgarður: a database of the petrophysical, mineralogical, and chemical properties of Icelandic rocks. Earth System Science Data, 15, 1165–1195. https://doi.org/10.5194/essd-15-1165-2023.
  • Selbekk, R. S. & Trønnes, R. G. (2007). The 1362 AD Öræfajökull eruption, Iceland: Petrology and geochemistry of largevolume homogeneous rhyolite. Journal of Volcanology and Geothermal Research, 160(1–2), 42-58. https://doi.org/10.1016/j.jvolgeores.2006.08.005.
  • Sever, R. & Kopar, İ. (2009). Maral Şelalesi (Borçka-Artvin), doğal ortam özellikleri ve ekonomik potansiyeli. Türk Coğrafya Dergisi, 52, 17-29.
  • Sheibani, V.Y. & Zamanian, E. (2023). Geodiversity and geological treasure of tabas unesco global geopark for geotourism development, new UGGp from Iran. Geoheritage, 15: 106, 1-16. https://doi.org/10.1007/s12371-023-00873-2
  • Statistics of Iceland II (1960). Population census 1703. Reykjavík, 1960
  • Štrba, Ľ.., Vravcová, A., Podoláková, M., Varcholová, L. & Kršák, B. (2023). Linking geoheritage or geosite assessment results with geotourism potential and development: A literature review. Sustainability, 15: 12: 9539. https://doi.org/10.3390/su15129539
  • Şengün, M. T., Kılıçarslan, M. & Göktaş, Y. (2023). Karacadağ/Baruttepe (Diyarbakır) çevresinin jeomiras ve jeoturizm özellikleri. Jeomorfolojik Araştırmalar Dergisi, 10, 133-148. https://doi.org/10.46453/jader.1205812 Thorarinsson, S. (1961). Population changes in Iceland. Geographical Review,51(4), 519–533. https://doi.org/10.2307/213106
  • Thordarson, T. & Larsen, G. (2007). Volcanism in Iceland in historical time: Volcano types, eruption styles and eruptive history. Journal of Geodynamics, 43(1), 118–152. https://doi.org/10.1016/j.jog.2006.09.005
  • Turoğlu, H. (2011). Buzullar ve buzul jeomorfolojisi. Çantay Kitabevi.
  • Turoğlu, H. (2025). A Discussion about the “geopark” terminology use based on Turkish researchers’ conceptual perceptions of their publications. Geoheritage, 17, 32. https://doi.org/10.1007/s12371-025-01078-5
  • Ukey, M. S. & Pardeshi, R. G. (2023). Geoscientific and geoheritage value of waterfall calc tufa and speleothem deposits from semi-arid upland deccan traps, India. Geoheritage, 15, 60. https://doi.org/10.1007/s12371-023-00828-7 USGS (2024, 5 Aralık). https://eros.usgs.gov/earthshots/jokulsarlonlagoon#:~:text=Proglacial%20lakes%20are%20water%20bodies,was%20about%2026%2C500%20years%20ago
  • Vatnajokull (2024, 5 Aralık). http://www.vatnajokull.com/glacier
  • Vatnajokulsthjodgardur (2025, 1 Ocak). https://www.vatnajokulsthjodgardur.is/en/melting-glaciers/loftlagsbreytingar-ogjoklar
  • Visit South Iceland (2024, 17 Haziran). https://www.south.is/en/place/seljalandsfoss-waterfall
  • Visitvatnajokull (2024, 13 Şubat). https://visitvatnajokull.is/skaftafell/
  • Vogt, P. R. (1974). The Icelandic phenomenon: imprints of a hot spot on the ocean crust, and implications for flow below the plates. L. Kristjansson (Ed.), In Geodynamics of Iceland and the North Atlantic area (pp. 105-126). Dordrecht.
  • Voytenko, D., Dixon, T. H., Luther, M. E., Lembke, C., Howat, I. M. & de la Peña, S. (2015). Observations of inertial currents in a lagoon in southeastern Iceland using terrestrial radar interferometry and automated iceberg tracking. Computer & Geosciences, 82, 23–30. https://doi.org/10.1016/j.cageo.2015.05.012
  • Walter, T. R., Jousset, P., Allahbakhshi, M., Witt, T., Gudmundsson, M. T. & Hersir, G. P. (2020). Underwater and drone based photogrammetry reveals structural control at Geysir geothermal field in Iceland. Journal of Volcanology and Geothermal Research, 391, 106282. https://doi.org/10.1016/j.jvolgeores.2018.01.010
  • Waterfallseasons (2024, 10 Eylül). https://waterfallseasons.com/home-lists-waterfall types.htm#:~:text=Plunging%20(Curtain)%20Waterfall%3A,the%20base%20of%20the%20falls.
  • Wells, G. H., Sæmundsson, Þ., Pálsson, F., Aðalgeirsdóttir, G., Magnússon, E., Hermanns, R. L. & Guðmundsson, S. (2024). Proglacial lake evolution and outburst flood hazard at Fjallsjökull glacier, southeast Iceland. EGUsphere [preprint], 136. https://doi.org/10.5194/egusphere-2024-2002.
  • Worldbank (2024, 10 Eylül). https://climateknowledgeportal.worldbank.org/country/iceland/climate-data historical#:~:text=Relatively%20mild%20winters%20and%20cool,average%20annually%2C%20depending%20on%20l ocation.
  • Worldometers (2024, 10 Eylül). https://www.worldometers.info/world-population/iceland-population/
  • World Waterfall Database (WWD) (2024a, 14 Temmuz) https://www.worldwaterfalldatabase.com/map
  • World Waterfall Database (WWD) (2024b, 14 Temmuz). https://www.worldwaterfalldatabase.com/help
  • World Waterfall Database (WWD) (2024c, 14 Temmuz). https://www.worldwaterfalldatabase.com/waterfall/Skogafoss-14730
  • World Waterfall Database (WWD) (2024d, 14 Temmuz). https://www.worldwaterfalldatabase.com/waterfall/Svartifoss-14763
  • World Waterfall Database (WWD) (2024e, 14 Temmuz). https://www.worldwaterfalldatabase.com/waterfall/Gullfoss-14455
  • Zorlu, K. & Dede, V. (2023). Assessment of glacial geoheritage by multi-criteria decision making (MCDM) methods in the Yalnızçam Mountains, Northeastern Türkiye. International Journal of Geoheritage and Parks, 11(1), 100-117. https://doi.org/10.1016/j.ijgeop.2023.01.001
Toplam 116 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Turizm Politikası
Bölüm Araştırma Makalesi
Yazarlar

Vedat Avci 0000-0003-1439-3098

Gönderilme Tarihi 20 Ocak 2025
Kabul Tarihi 26 Mayıs 2025
Erken Görünüm Tarihi 25 Haziran 2025
Yayımlanma Tarihi 25 Haziran 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 29 Sayı: 2

Kaynak Göster

APA Avci, V. (2025). İZLANDA’NIN JEOMİRAS POTANSİYELİNE BAZI ÖRNEKLER. Current Perspectives in Social Sciences, 29(2), 329-352. https://doi.org/10.53487/atasobed.1621087

Content of this journal is licensed under a Creative Commons Attribution NonCommercial 4.0 International License
29909