Derleme
BibTex RIS Kaynak Göster

OLİGODONTİNİN GENETİK TEMELİ

Yıl 2021, Cilt: 31 Sayı: 1, 124 - 129, 15.01.2021
https://doi.org/10.17567/ataunidfd.718002

Öz

Oligodonti, çeşitli nedenlerle altı ya da daha fazla dişin oluşmamasına bağlı izlenen bir sayı anomalisidir. Görülme sıklığı kıtalara, toplumlara ve cinsiyetlere göre farklılık göstermektedir. Diş gelişimi ağırlıklı olarak genetik kontrolü altında ilerlemektedir. Diş gelişimi sırasında 200'den fazla gen rol oynamakta ve bu genlerde meydana gelen mutasyonların, oligodontiye neden olduğu düşünülmektedir.
Oligodontiye neden olan genlerde, bireyler arası önemli varyasyonlar bulunmakta ve oluşan gen mutasyonlarının oligodontiyle birlikte bazı anomalilere ve kanserlere neden olduğu ifade edilmektedir. Oligodontili bireylerde etiyolojinin belirlenmesi, bu durumu etkileyen genlerin, ileride neden olabileceği çeşitli sağlık problemlerinin de önüne geçilmesi açısından önem taşımaktadır.
Derlememiz, daha önceki yayınlarda bildirilmiş olan oligodonti ile ilişkili insan genomundaki mutasyonları gözden geçirmek ve dahil olan farklı genler hakkında gene özgü detaylar sağlamak için hazırlanmıştır.
Anahtar Kelimeler: Diş Eksikliği, Etiyoloji, Genetik


GENETIC BASIS OF OLIGODONTIA

Abstract

Oligodontia is a number anomaly that is observed due to the absence of six or more teeth for various reason. The prevalance of oligodontia have varies according to continents, societies and genders. Tooth development have proceed predominantly genetic control. More than 200 genes have play a role during dental development, and mutations in these genes are thought to cause oligodontia.
There are important inter-individual differences in the genes that cause oligodontia, and it is stated that the gene mutations that cause oligodontia cause some anomalies and cancers. The determination of the etiology in individuals with oligodontia is important in order to prevent the various health problems that may be caused by the genes that affect this condition.
Our review was prepared to review mutations in the human genome associated with oligodontia reported in previous publications and to provide gene-specific details about the different genes involved.
Keywords: Tooth Agenesis, Etiology, Genetics

Kaynakça

  • 1. Schalk-Van Der Weide Y, Beemer F, Faber J, Bosman F. Symptomatology of patients with oligodontia. J Oral Rehabil 1994; 21:247.
  • 2. Stockton DW, Das P, Goldenberg M, D'Souza RN, Patel PI. Mutation of PAX9 is associated with oligodontia. Nat Genet 2000; 24:18-9.
  • 3. Polder BJ, Van’t Hof MA, Van der Linden FP, Kuijpers‐Jagtman AM. A meta‐analysis of the prevalence of dental agenesis of permanent teeth. Community Dent Oral Epidemiol 2004; 32:217-26.
  • 4. Muller T, Hill I, Petersen A, Blayney J. A survey of congenitally missing permanent teeth. J Am Dent Assoc 1970; 81:101-7.
  • 5. Maklin M, Dummett JC, Weinberg R. A study of oligodontia in a sample of New Orleans children. ASDC J Dent Child 1979; 46:478-82.
  • 6. Nordgarden H, Jensen JL, Storhaug K. Reported prevalence of congenitally missing teeth in two Norwegian counties. Community Dent Health 2002; 19:258-61.
  • 7. Sen Tunc E, Koyuturk AE. Karadeniz bölgesi çocuklarında konjenital daimi diş eksikliği prevalansı. Atatürk Üniv Dis Hek Fak Derg 2006; 16:37-40.
  • 8. Altug-Atac AT, Erdem D. Prevalence and distribution of dental anomalies in orthodontic patients. Am J Orthod Dentofacial Orthop 2007; 131:510-4.
  • 9. Celikoglu M, Kazanci F, Miloglu O, Oztek O, Kamak H, Ceylan I. Frequency and characteristics of tooth agenesis among an orthodontic patient population. Med Oral Patol Oral Cir Bucal 2010; 15:797-801.
  • 10. Aktan AM, Kara IM, Şener İ, Bereket C, Ay S, Çiftçi ME. Radiographic study of tooth agenesis in the Turkish population. Oral Radiol 2010; 26:95-100.
  • 11. Gupta SK, Saxena P, Jain S, Jain D. Prevalence and distribution of selected developmental dental anomalies in an Indian population J Oral Sci 2011; 53:231-8.
  • 12. Gkantidis N, Katib H, Oeschger E, Karamolegkou M, Topouzelis N, Kanavakis G. Patterns of non-syndromic permanent tooth agenesis in a large orthodontic population. Arch Oral Biol 2017; 79:42-7.
  • 13. Sökücü O, Ünal M, Topcuoğlu T, Öztaş N. Çocuklarda daimi dentisyonda hipodonti görülme sıklığı. GÜ Diş Hek Fak Derg 2009; 26:33-7.
  • 14. Kazancı F, Celikoglu M, Miloglu O, Ceylan I, Kamak H. Frequency and distribution of developmental anomalies in the permanent teeth of a Turkish orthodontic patient population. J Dent Sci 2011; 6:82-9.
  • 15. Cantekin K, Dane A, Miloglu O, Kazancı F, Bayrakdar S, Celikoglu M. Prevalence and intra-oral distribution of permanent teeth among Eastern Turkish. Eur J Paediatr Dent 2012; 13:53-6.
  • 16. Karadas M, Celikoglu M, Akdag MS. Evaluation of tooth number anomalies in a subpopulation of the North‐East of Turkey. Eur J Dent 2014; 8:337-41.
  • 17. Karadas M, Akdag MS. Prevalence of taurodontism and its association with tooth agenesis in a Turkish subpopulation. Indian J Oral Sci 2015; 6;128-32.
  • 18. Thesleff I, Nieminen P. Tooth morphogenesis and cell differentiation. Curr Opin Cell Biol 2006; 8:844–50.
  • 19. Nieminen P. Genetic basis of tooth agenesis. J Exp Zool Mol Dev Evol 2009; 312:320-42.
  • 20. Jumlongras D, Bei M, Stimson JM, Wang W, DePalma SR, Seidman CE, Felbor U, Maas R, Seidman JG, Olsen BR. A nonsense mutation in MSX1 causes Witkop syndrome. Am J Hum Genet 2001; 69:67–74.
  • 21. Sliwinski T, Synowiec E, Czarny P, Gomulak P, Forma E, Morawiec Z, Morawiec J, Dziki L, Wasylecka M, Blasiak J. The c.469+46_56del mutation in the homeobox MSX1 gene – A novel risk factor in breast cancer? Cancer Epidemiol 2010; 34:652–5.
  • 22. Song S, Han D, Qu H, Gong Y, Wu H, Zhang X, Zhong N, Feng H. EDA gene mutations underlie non-syndromic oligodontia. J Dent Res 2009; 88:126–31.
  • 23. Kere J, Srivastava AK, Montonen O, Zonana J, Thomas N, Ferguson B, Munoz F, Morgan D, Clarke A, Baybayan P, Chen EY, Ezer S, Saarialho-Kere U, Chapelle A, Schlessinger D. X-linked anhidrotic (hypohidrotic) ectodermal dysplasia is caused by mutation in a novel transmembrane protein. Nat Genet 1998; 13:409–16.
  • 24. Lammi L, Arte S, Somer M, Jarvinen H, Lahermo P, Thesleff I, Pirinen S, Nieminen P. Mutations in AXIN2 cause familial tooth agenesis and predispose to colorectal cancer. Am J Hum Genet 2004; 74:1043–50.
  • 25. Nunn J, Carter N, Gillgrass T, Hobson R, Jepson N, Meechan J, Nohl FS. The interdisciplinary management of hypodontia: background and role of paediatric dentistry. Br Dent J 2003; 194:245-51.
  • 26. Cobourne M. Familial human hypodontia–is it all in the genes? Br Dent J 2007; 203:203-8. 27. Matalova E, Fleischmannova J, Sharpe P, Tucker A. Tooth agenesis: from molecular genetics to molecular dentistry. J Dent Res 2008; 87:617-23.
  • 28. Shimizu T, Maeda T. Prevalence and genetic basis of tooth agenesis. Jpn Dent Sci Rev 2009; 45:52-8.
  • 29. Ahmad W, Brancolini V, Ul Faiyaz M, Lam H, ul Haque S, Haider M, Maimon A, Aita VM, Owen J, Brown D, Zegarelli DJ, Ahmad M, Ott J, Christiano AM. A locus for autosomal recessive hypodontia with associated dental anomalies maps to chromosome 16q12. 1. Am J Hum Genet 1998; 62:987-91. 30. Satokata I, Maas R. Msx1 deficient mice exhibit cleft palate and abnormalities of craniofacial and tooth development. Nat Genet 1994; 6:348-56.
  • 31. Lidral AC, Reising B. The role of MSX1 in human tooth agenesis. J Dent Res. 2002; 81:274-8.
  • 32. Kim JW, Simmer J, Lin BJ, Hu JC. Novel MSX1 frameshift causes autosomal-dominant oligodontia. J Dent Res 2006; 85:267-71.
  • 33. Ma T, Liu Y, Zhao X, Wu J, Wang H, Chen J, Liu P, Zhang X, Zhang X. A novel mutation of MSX1 inherited from maternal mosaicism causes a severely affected child with nonsyndromic oligodontia. Ann Hum Genet 2020; 84:97-101.
  • 34. Bonczek O, Balcar V, Šerý O. PAX9 gene mutations and tooth agenesis: a review. Clin Genet 2017; 92:467-76.
  • 35. Zhao J, Chen Y, Bao L, Xia Q, Wu T, Zhou L. Novel mutations of PAX9 gene in Chinese patients with oligodontia. Zhonghua Kou Qiang Yi Xue Za Zhi 2005; 40:266-70.
  • 36. Kapadia H, Frazier-Bowers S, Ogawa T, D'souza RN. Molecular characterization of a novel PAX9 missense mutation causing posterior tooth agenesis. Eur J Hum Genet 2006; 14:403-9.
  • 37. Azzaldeen A, Watted N, Mai A, Borbély P, Abu-Hussein M. Tooth agenesis; aetiological factors. IOSR-JDMS 2017; 16:75-85.
  • 38. Beard C, Purvis R, Winship IM, Macrae FA, Buchanan DD. Phenotypic confirmation of oligodontia, colorectal polyposis and cancer in a family carrying an exon 7 nonsense variant in the AXIN2 gene. Fam Cancer 2019; 18:311-15.
  • 39. Marvin ML, Mazzoni SM, Herron CM, Edwards S, Gruber SB, Petty EM. AXIN2‐associated autosomal dominant ectodermal dysplasia and neoplastic syndrome. Am J Med Genet Suppl 2011; 155:898-902.
  • 40. Bergendal B, Klar J, Stecksén‐Blicks C, Norderyd J, Dahl N. Isolated oligodontia associated with mutations in EDARADD, AXIN2, MSX1, and PAX9 genes. Am J Med Genet Suppl 2011; 155:1616-22.
  • 41. Arzoo PS, Klar J, Bergendal B, Norderyd J, Dahl N. WNT10A mutations account for ¼ of population‐based isolated oligodontia and show phenotypic correlations. Am J Med Genet Suppl 2014; 164:353-9.
  • 42. Ruiz-Heiland G, Lenz S, Bock N, Ruf S. Prevalence of WNT10A gene mutations in non-syndromic oligodontia. Clin Oral Investig 2019; 23:3103-13.
  • 43. Van den Boogaard MJ, Créton M, Bronkhorst Y, van der Hout A, Hennekam E, Lindhout D, Cune M, van Amstel HKP. Mutations in WNT10A are present in more than half of isolated hypodontia cases. J Med Gene 2012; 49:327-31.
  • 44. Park H, Song JS, Shin TJ, Hyun HK, Kim YJ, Kim JW. WNT10A mutations causing oligodontia. Arch Oral Biol 2019; 103:8-11.
  • 45. Yu P, Yang W, Han D, Wang X, Guo S, Li J, Li F, Zhang X, Wong SW, Bai B, Liu Y, Du J, Sun ZS, Shi S, Feng H, Cai T. Mutations in WNT10B are identified in individuals with oligodontia. Am J Med Genet Suppl 2016; 99:195-201.
  • 46. Massink MP, Créton MA, Spanevello F, Fennis WM, Cune MS, Savelberg SM, Nijman IJ, Maurice MM, Van den Boogaard MH, Haaften G. Loss-of-function mutations in the WNT co-receptor LRP6 cause autosomal-dominant oligodontia. Am J Med Genet Suppl 2015; 97:621-6.
  • 47. Kantaputra PN, Kaewgahya M, Hatsadaloi A, Vogel P, Kawasaki K, Ohazama A, Cairns K. GREMLIN 2 mutations and dental anomalies. J Dent Res 2015; 94:1646-52.
  • 48. Du R, Dinckan N, Song X. Coban-Akdemir Z, Jhangiani SN, Guven Y, Uyguner ZO. Identification of likely pathogenic and known variants in TSPEAR, LAMB3, BCOR, and WNT10A in four Turkish families with tooth agenesis. Hum Genet 2018; 137:689– 703.
  • 49. Song JS, Bae M, Kim JW. Novel TSPEAR mutations in non-syndromic oligodontia. Oral Dis 2020; 26:847-49.
  • 50. Larmour CJ, Mossey PA, Thind BS, Forgie AH, Stirrups DA. Hypodontia-A retrospective review of prevalence and etiology. Part I. Quintessence Int 2005; 36:263-70.
  • 51. Stimson JM, Sivers JE, Hlava GL. Features of oligodontia in three generations. Int J Clin Pediatr Dent 1997; 21:269-75.
  • 52. Orup JH, Keith DA, Holmes LB. Prenatal anticonvulsant drug exposure: teratogenic effect on the dentition. J Craniofac Genet Dev Biol Suppl 1998; 18:129-37.
  • 53. Axrup K, d'Avignon M, Hellgren K, Henrikson CO, Juhlin IM, Larsson KS, Persson GE, Welander E. Children with thalidomide emrryopathy: odontological observations and aspects. Acta Odontol Scand 1966; 24:3-21. 54. Näsman M, Forsberg CM, Dahllöf G. Long-term dental development in children after treatment for malignant disease. Eur J Orthod 1997; 19:151-9.
  • 55. Alaluusua S, Calderara P, Gerthoux PM, Lukinmaa P-L, Kovero O, Needham L, Patterson DG, Tuomisto J, Mocarelli P. Developmental dental aberrations after the dioxin accident in Seveso. Environ Health Perspect 2004; 112:1313-8.
  • 56. Yamaguchi T, Tomoyasu Y, Nakadate T, Oguchi K, Maki K. Allergy as a possible predisposing factor for hypodontia. Eur J Orthod 2008; 30:641-4.
Toplam 53 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Diş Hekimliği
Bölüm Derleme
Yazarlar

Canan Bayraktar Bu kişi benim 0000-0003-1388-1778

Zuhal Kırzıoğlu Bu kişi benim 0000-0002-3726-2392

Yayımlanma Tarihi 15 Ocak 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 31 Sayı: 1

Kaynak Göster

APA Bayraktar, C., & Kırzıoğlu, Z. (2021). OLİGODONTİNİN GENETİK TEMELİ. Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi, 31(1), 124-129. https://doi.org/10.17567/ataunidfd.718002
AMA Bayraktar C, Kırzıoğlu Z. OLİGODONTİNİN GENETİK TEMELİ. Ata Diş Hek Fak Derg. Ocak 2021;31(1):124-129. doi:10.17567/ataunidfd.718002
Chicago Bayraktar, Canan, ve Zuhal Kırzıoğlu. “OLİGODONTİNİN GENETİK TEMELİ”. Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi 31, sy. 1 (Ocak 2021): 124-29. https://doi.org/10.17567/ataunidfd.718002.
EndNote Bayraktar C, Kırzıoğlu Z (01 Ocak 2021) OLİGODONTİNİN GENETİK TEMELİ. Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi 31 1 124–129.
IEEE C. Bayraktar ve Z. Kırzıoğlu, “OLİGODONTİNİN GENETİK TEMELİ”, Ata Diş Hek Fak Derg, c. 31, sy. 1, ss. 124–129, 2021, doi: 10.17567/ataunidfd.718002.
ISNAD Bayraktar, Canan - Kırzıoğlu, Zuhal. “OLİGODONTİNİN GENETİK TEMELİ”. Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi 31/1 (Ocak 2021), 124-129. https://doi.org/10.17567/ataunidfd.718002.
JAMA Bayraktar C, Kırzıoğlu Z. OLİGODONTİNİN GENETİK TEMELİ. Ata Diş Hek Fak Derg. 2021;31:124–129.
MLA Bayraktar, Canan ve Zuhal Kırzıoğlu. “OLİGODONTİNİN GENETİK TEMELİ”. Atatürk Üniversitesi Diş Hekimliği Fakültesi Dergisi, c. 31, sy. 1, 2021, ss. 124-9, doi:10.17567/ataunidfd.718002.
Vancouver Bayraktar C, Kırzıoğlu Z. OLİGODONTİNİN GENETİK TEMELİ. Ata Diş Hek Fak Derg. 2021;31(1):124-9.

Bu eser Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır. Tıklayınız.