Araştırma Makalesi
BibTex RIS Kaynak Göster

TÜRKİYE ŞEHİRLERİNİN SOSYO-EKONOMİK ÖZELLİKLERİNİN BÖLGESEL ANALİZİ

Yıl 2018, Cilt: 32 Sayı: 4, 1135 - 1153, 05.10.2018
https://doi.org/10.16951/atauniiibd.451199

Öz

Türkiye
şehir yerlerine bağlı olarak 7 bölgeye ayrılmıştır. Aynı bölgedeki şehirlerin
coğrafi özellikleri aynı olduğundan, nüfus, göç oranı, kişi başına düşen yıllık
gelir gibi sosyo-ekonomik göstergelerinin de benzer olması beklenir. Bazı
şehirler bulunduğu bölge içindeki diğer şehirlerden sosyo-ekonomik yapı
bakımından farklı olmasına rağmen coğrafi yakınlık sebebiyle bulunduğu bölgeye
atanmış olabilirler. Bu çalışma, bölgelerinde bir anlamda aykırı olan şehirleri
tespit etmeyi amaçlamaktadır. Şehirlerin coğrafi yakınlığının etkisini ortadan
kaldırmak için şehirlerin gerçek yerleri değil çok-boyutlu ölçeklendirme
yönteminin verdiği şehir yerleri kullanılmaktadır. Başlangıçta sadece coğrafi
yer bilgisine dayanan k-ortalama gruplandırma yöntemiyle şehirler 7 ayrı gruba
bölünmüştür. Ardından, şehir yerleri ve sosyo-ekonomik göstergeleri beraber
kullanan karar ağacı yöntemi grup oluşturmak için kullanılmıştır. K-ortalama ve
karar ağacı yöntemlerinin verdiği gruplar birbirleriyle ve ardından gerçek
Türkiye bölgeleriyle kıyaslanmış ve tartışılmıştır.

Kaynakça

  • Alpaydin, E. (2009), "Introduction to machine learning", MIT press, Cambridge, London.
  • Altınel, K., Aras, N., & Oommen, J. B. (2003, September) "A self-organizing method for map reconstruction", Neural Networks for Signal Processing, 2003. NNSP'03. 2003 IEEE 13th Workshop on (pp. 677-687)
  • Ben-Arieh, David, and Deep Kumar Gullipalli (2012). "Data Envelopment Analysis of clinics with sparse data: Fuzzy clustering approach.", Computers & Industrial Engineering 63 (1):13-21.
  • Borg, I., & Groenen, P. (2003) "Modern multidimensional scaling: theory and applications", Journal of Educational Measurement, 40(3), 277-280.
  • Breiman, L. (2017). Classification and regression trees. Routledge.
  • Brodley, C. E., and P. E. Utgoff. (1995) "Multivariate Decision Trees.", Machine Learning 19: 45-77.
  • Bronstein, A. M., Bronstein, M. M., & Kimmel, R. (2006) "Generalized multidimensional scaling: a framework for isometry-invariant partial surface matching", Proceedings of the National Academy of Sciences, 103(5), 1168-1172.
  • Cömertler, N., & Kar, M. (2007) "Türkiye’de suç oranının sosyo-ekonomik belirleyicileri: yatay kesit analizi", Journal of the Faculty of Political Sciences, Ankara University , Vol. 62, No. 2 (2007): pp. 37-57.
  • Delias, Pavlos, Michael Doumpos, Evangelos Grigoroudis, Panagiotis Manolitzas, and Nikolaos Matsatsinis. (2015) "Supporting healthcare management decisions via robust clustering of event logs", Knowledge-Based Systems 84:203-13.
  • Götz, T. I., Ermer, M., Salas-González, D., Kellermeier, M., Strnad, V., Bert, C., ... & Lang, E. W. (2017) "On the use of multi-dimensional scaling and electromagnetic tracking in high dose rate brachytherapy", Physics in Medicine & Biology, 62(20), 7959.
  • Gürbüz, M., & Karabulut, M. (2008). "Kırsal göçler ile sosyo-ekonomik özellikler arasındaki ilişkilerin analizi", Türk Coğrafya Dergisi, (50), 37-60.
  • Kandogan, E. (2001, August) "Visualizing multi-dimensional clusters, trends, and outliers using star coordinates", Proceedings of the seventh ACM SIGKDD international conference on Knowledge discovery and data mining, (pp. 107-116). ACM.
  • AK Jain, MN Murty, and PJ Flynn (1999), “Data Clustering: A Review”,ACM Computing Surveys, Vol. 31, No. 3, pp. 264-323
  • Olson, Catherine H, Sanjoy Dey, Vipin Kumar, Karen A Monsen, and Bonnie L Westra. (2016) "Clustering of elderly patient subgroups to identify medication-related readmission risks.", International journal of medical informatics 85 (1):43-52.
  • Parekh, Maulik, and B Saleena. (2015) "Designing a cloud based framework for healthcare system and applying clustering techniques for region wise diagnosis.", Procedia Computer Science 50:537-42.
  • Rokach, L., and Maimon, O. Z. (2008), Data mining with decision trees: theory and applications (Vol. 69). World scientific publishing, Singapore.
  • Tsumoto, Shusaku, Shoji Hirano, and Haruko Iwata. (2015) "Mining Schedule of Nursing Care Based on Dual-Clustering.", Procedia Computer Science 55:1203-12.
  • Vens, C., Struyf, J., Schietgat, L., Džeroski, S., & Blockeel, H. (2008) "Decision trees for hierarchical multi-label classification", Machine learning, 73(2), 185.
  • Yildiz, C. T., & Alpaydin, E. (2001) "Omnivariate decision trees", IEEE Transactions on Neural Networks, 12(6), 1539-1546.

A REGIONAL ANALYSIS OF THE SOCIO-ECONOMICAL PROPERTIES OF THE TURKEY CITIES

Yıl 2018, Cilt: 32 Sayı: 4, 1135 - 1153, 05.10.2018
https://doi.org/10.16951/atauniiibd.451199

Öz

Turkey
is divided into 7 regions depending on the cities’ geographic locations. Since
the geographic properties of the cities belonging the same region are the same,
socio-economical properties like populations, migration rates, annual incomes
per person are expected to be similar. Some cities may not possess the same
socio-economic structure with the rest of the cities that are from the same region
but are assigned to the region anyway just because of geographical proximity. This
study aims to find the cities which are in a sense exceptional in their
regions. In order to eliminate the effect of the geographical proximity of the
cities, not exact locations of the cities but the estimate locations obtained
from multi-dimensional scaling are used. At the first hand, a k-means
clustering algorithm which only depends on the geographical locations of the
cities are used to form 7 clusters. Then, a decision tree analysis is used to
form the clusters using both coordinates of the cities and socio-economical
properties. Clusters obtained by k-means and decision tree analysis are then
compared by themselves and with the real regions of Turkey and discussed.

Kaynakça

  • Alpaydin, E. (2009), "Introduction to machine learning", MIT press, Cambridge, London.
  • Altınel, K., Aras, N., & Oommen, J. B. (2003, September) "A self-organizing method for map reconstruction", Neural Networks for Signal Processing, 2003. NNSP'03. 2003 IEEE 13th Workshop on (pp. 677-687)
  • Ben-Arieh, David, and Deep Kumar Gullipalli (2012). "Data Envelopment Analysis of clinics with sparse data: Fuzzy clustering approach.", Computers & Industrial Engineering 63 (1):13-21.
  • Borg, I., & Groenen, P. (2003) "Modern multidimensional scaling: theory and applications", Journal of Educational Measurement, 40(3), 277-280.
  • Breiman, L. (2017). Classification and regression trees. Routledge.
  • Brodley, C. E., and P. E. Utgoff. (1995) "Multivariate Decision Trees.", Machine Learning 19: 45-77.
  • Bronstein, A. M., Bronstein, M. M., & Kimmel, R. (2006) "Generalized multidimensional scaling: a framework for isometry-invariant partial surface matching", Proceedings of the National Academy of Sciences, 103(5), 1168-1172.
  • Cömertler, N., & Kar, M. (2007) "Türkiye’de suç oranının sosyo-ekonomik belirleyicileri: yatay kesit analizi", Journal of the Faculty of Political Sciences, Ankara University , Vol. 62, No. 2 (2007): pp. 37-57.
  • Delias, Pavlos, Michael Doumpos, Evangelos Grigoroudis, Panagiotis Manolitzas, and Nikolaos Matsatsinis. (2015) "Supporting healthcare management decisions via robust clustering of event logs", Knowledge-Based Systems 84:203-13.
  • Götz, T. I., Ermer, M., Salas-González, D., Kellermeier, M., Strnad, V., Bert, C., ... & Lang, E. W. (2017) "On the use of multi-dimensional scaling and electromagnetic tracking in high dose rate brachytherapy", Physics in Medicine & Biology, 62(20), 7959.
  • Gürbüz, M., & Karabulut, M. (2008). "Kırsal göçler ile sosyo-ekonomik özellikler arasındaki ilişkilerin analizi", Türk Coğrafya Dergisi, (50), 37-60.
  • Kandogan, E. (2001, August) "Visualizing multi-dimensional clusters, trends, and outliers using star coordinates", Proceedings of the seventh ACM SIGKDD international conference on Knowledge discovery and data mining, (pp. 107-116). ACM.
  • AK Jain, MN Murty, and PJ Flynn (1999), “Data Clustering: A Review”,ACM Computing Surveys, Vol. 31, No. 3, pp. 264-323
  • Olson, Catherine H, Sanjoy Dey, Vipin Kumar, Karen A Monsen, and Bonnie L Westra. (2016) "Clustering of elderly patient subgroups to identify medication-related readmission risks.", International journal of medical informatics 85 (1):43-52.
  • Parekh, Maulik, and B Saleena. (2015) "Designing a cloud based framework for healthcare system and applying clustering techniques for region wise diagnosis.", Procedia Computer Science 50:537-42.
  • Rokach, L., and Maimon, O. Z. (2008), Data mining with decision trees: theory and applications (Vol. 69). World scientific publishing, Singapore.
  • Tsumoto, Shusaku, Shoji Hirano, and Haruko Iwata. (2015) "Mining Schedule of Nursing Care Based on Dual-Clustering.", Procedia Computer Science 55:1203-12.
  • Vens, C., Struyf, J., Schietgat, L., Džeroski, S., & Blockeel, H. (2008) "Decision trees for hierarchical multi-label classification", Machine learning, 73(2), 185.
  • Yildiz, C. T., & Alpaydin, E. (2001) "Omnivariate decision trees", IEEE Transactions on Neural Networks, 12(6), 1539-1546.
Toplam 19 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Makaleler
Yazarlar

Muhammed Emre Keskin

Yayımlanma Tarihi 5 Ekim 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 32 Sayı: 4

Kaynak Göster

APA Keskin, M. E. (2018). A REGIONAL ANALYSIS OF THE SOCIO-ECONOMICAL PROPERTIES OF THE TURKEY CITIES. Atatürk Üniversitesi İktisadi Ve İdari Bilimler Dergisi, 32(4), 1135-1153. https://doi.org/10.16951/atauniiibd.451199

4aoDA4.pngithenticate-badge-rec-positive.png800px-Open-Access-PLoS.svg.png