Derleme
BibTex RIS Kaynak Göster

Kök Hücre

Yıl 2019, Cilt: 14 Sayı: 2, 221 - 228, 25.10.2019

Öz

Doku ve organlarda bulunan, kendini yenileyebilen ve canlının ihtiyacına göre farklılaşarak diğer doku hücrelerine

dönüşebilen ve çoğalabilen hücreler ‘‘Kök Hücre’’ olarak tanımlanır. Kök hücreler; embriyonik kök hücrelerden ve embriyonik

olmayan kök hücrelerden elde edilebilir. Embriyonik olmayan kök hücreler fötal kök hücrelerden, kadavradan, göbek

kordonundan, plasentadan, kemik iliğinden, yağ dokudan, pekçok organda bulunan kök hücrelerden (somatik kök hücreler)

veya son yıllarda farklılaştırma ile herhangi bir hücrenin kök hücre haline dönüştürülmesiyle oluşan hücrelerden elde

edilebilmektedir. Totipotent, pluripotent ve yetişkin mezenkimal kök hücreler rejeneratif tıp, doku mühendisliği, veteriner

hekimliği ile biyomühendislik alanları tarafından büyük ilgi görmektedir. Mezenkimal kök hücrelerin sağlıklı, ekonomik olarak

çoğaltılabilmesi, ihtiyaç duyulan hücre tiplerine dönüştürülebilmesi, kök hücrelerin insan ve hayvanlarda tedavi amaçlı

kullanımını mümkün kılacaktır. Bu derlemede; kök hücre, kök hücrelerin potansiyel kullanım alanları ve özellikle veteriner

hekimlikteki uygulamaları yer almaktadır.

Kaynakça

  • 1. Okarma T., 1998. Human primordial stem cells, Hastings Cent Rep, 104, 30. 2. Aragona M., Maisano R., Panetta S., Giudice A., Morelli M., La Torre I., La Torre F., 2000. Telomere length maintenance in aging and carcinogenesis, Int J Oncol, 17, 981–989. 3. Huang S., Fu R., Shyu W., 2013. Adipose‐derived stem cells: Isolation, characterization, and differentiation potential. Cell Transplant, 22, 701‐ 709. 4. Morgani SM., Canham MA., Nichols J., Sharov A. A., Migueles RP., Ko MS., Brickman JM., 2013. Totipotent embryonic stem cells arise in groundstate culture conditions. Cell Rep, 3, 1945‐1957. 5. Friedenstein A., Gorskaja J., Kulagina N., 1976. Fibroblast precursors in normal and irradiated mouse hematopoietic organs, Exp Hematol, 4, 267‐274. 6. Erdost H., Çerçi E., 2018. Immunohistochemical localization of Ki67 antibody derived by adipose tissue, ISMSIT, 385‐392. 7. Hoogduijn MJ., 2015. Are mesenchymal stromal cells immune cells?, Arthritis Res Ther, 17, 88. 8. Özen A., Gül Sancak İ., Ceylan A., Özgenç Ö., 2016. Isolation of adipose tissue‐derived stem cells. Turkish J Vet Anim Sci, 40, 137–141. 9. Çerçi E., Erdost H., 2016. Adipose tissue derived mesenchymal stem cells from rat with nonenzymatic isolation method. CBU‐SBED, 3:(2), 299‐302. 10. Mauro A., 1961. Satellite cell of skeletal muscle fibers. J Biophys Biochem Cytol, 9, 493‐495. 11. Krause D., 2002. Plasticity of marrow‐derived stem cells. Gene Ther. 9,754‐758. 12. Erdost H., 2017. Mezenkimal Kök Hücre, 1. baskı, ''Kök Hücre'', Dora Yayınları, 15‐18, Bursa, Türkiye. 13. Karathanasis SK., 2014. Regenerative medicine: Transforming the drug discovery and development paradigm. Cold Spring Harb Perspect Med, 4, 1‐11. 14. Zuk PA., Zhu M., Mizuno H., Huang J., Futrell JW., Katz AJ., Benhaim P., Lorenz HP., Hedrick MH. 2001. Multilineage cells from human adipose tissue: implications for cell‐based therapies, Tissue Eng, 7, 211‐228. 15. Chen Z., Chang M., Peng Y., Zhao L., Zhan Y., Wang LJ., Wang R., 2007. Osteogenic growth peptide Cterminal pentapeptide [OGP(10‐14)] acts on rat bone marrow mesenchymal stem cells to promote differentiation to osteoblasts and to inhibit differentiation to adipocytes, Regul Pept, 142, 16‐23. 16. Colter D., Class R., Di Girolam C., Prockop D., 2000. Rapid expansion of recycling stem cells in cultures of plastic‐adherent cells from human bone marrow. Proc Natl Acad Sci U S A, 28, 3213‐3218. 17. Cuiffo BG., Karnoub AE., 2012. Mesenchymal stem cells in tumor development: emerging roles and concepts. Cell Adh Migr, 6, 220‐230. 18. Szöke K., Dankova J., Buzgo M., Amler E., Brinchmann JE., Ostrup E., 2017. The effect of medium composition on deposition of collagen type 1 and expression of osteogenic genes in mesenchymal stem cells derived from human adipose tissue and bone marrow. Process Biochem, 59, 321‐328. 19. Li C., Wu X., Tong J., Yang X., Zhao J., Zheng Q., Zhao G., Ma Z., 2015. Comparative analysis of human mesenchymal stem cells from bone marrow and adipose tissue under xeno‐free conditions for cell therapy. Stem Cell Res Ther, 6,55. 20. Sichien D., Lambrecht BN., Guilliams M., Scott CL., 2017. Development of conventional dendritic cells: From common bone marrow progenitors to multiple subsets in peripheral tissues. Mucosal Immunol, 10, 831‐844. 21. Abou‐Saleh H., Zouein FA., El‐Yazbi A., Sanoudou D., Raynaud C., Rao C., Pintus G., Dehaini H., Eid AH., 2018. The march of pluripotent stem cells in cardiovascular regenerative medicine. Stem Cell Res Ther, 9, 201. 22. Yang C., Li J., Lin H., Zhao K., Zheng C., 2015. Nasal mucosa derived‐mesenchymal stem cells from mice reduce inflammation via modulating immune responses. PLoS One, 10, 1‐11. 23. Weissman I., 2016. Linked references are available on JSTOR for this article : Translating stem and progenitor to the clinic : barriers and opportunities. Science, 287(5457), 1442–1446. 24. Erdost H., Çerçi E., 2018. Growth curve of mesenchymal stem cell originated from adipose tissue. ISMSIT, 393‐397. 25. Munir H., Ward LSC., Sheriff L., Kemble S., Nayar S., Barone F., Gerard B. Nash, McGettrick H.M., 2017. Adipogenic differentiation of mesenchymal stem cells alters their immunomodulatory properties in a tissue‐specific manner. Stem Cells, 35, 1636–1646. 26. Erdost H., Çerçi E., İlhan T., Özgüden Akkoç CG., 2017. Use of mesenchymal stem cells originated from fat tissue in bone tissue regeneration. III. International Stem Cell Symposium; New Approaches to Stem Cell Application in Patient‐Based Therapy, pp:76‐77, Manisa, Turkey. 27. Badimon L., Onate B., Vilahur G., 2015. Adiposederived mesenchymal stem cells and their reparative potential in ischemic heart disease.Rev Esp Cardiol (Engl Ed), 68, 599‐611. 28. Christ GJ., Saul JM., Furth ME., Andersson KE., 2013. The pharmacology of regenerative medicine. Pharmacol Rev, 65, 1091‐1133. 29. Duncan T., Valenzuela M., 2017. Alzheimer's disease, dementia, and stem cell therapy. Stem Cell Res Ther, 8, 111. 30. Henning RJ., 2018. Current status of stem cells in cardiac repair. Future Cardiol, 14, 181‐192. 31. Fang Y., Gao T., Zhang B., Pu J., 2018. Recent advances: Decoding Alzheimer's disease with stem cells. Front Aging Neurosci, 10, 77. 32. Peng BY., Dubey NK., Mishra VK., Tsai FC., Dubey R., Deng WP., Wei HJ., 2018. Addressing Stem Cell Therapeutic Approaches in Pathobiology of Diabetes and Its Complications. J Diabetes Res, Article ID 7806435, 16. 33. Muraro PA., Martin R., Mancardi GL., Nicholas R., Sormani MP., Saccardi R., 2017. Autologous haematopoietic stem cell transplantation for treatment of multiple sclerosis. Nat Rev Neurol, 13, 391‐405. 34. Zhang XM., Zhang YJ., Wang W., Wei YQ., Deng HX., 2017. Mesenchymal stem cells to treat crohn's disease with fistula. Hum Gene Ther, 28, 534‐540. 35. Shi Y., Wang Y., Li Q., Liu K., Hou J., Shao C., Wang Y., 2018. Immunoregulatory mechanisms of mesenchymal stem and stromal cells in inflammatory diseases. Nat Rev Nephrol, 14, 493‐ 507. 36. Markoski MM., 2016. Advances in the use of stem cells in Veterinary medicine: from basic research to clinical practice. Scientifica (Cairo), 4516920. 37. Nam Y., Rim YA., Lee J., Ju JH. 2018. Current therapeutic strategies for stem cell‐based cartilage regeneration. Stem cells Int, 8490489. 38. Ouyang H., Goldberg JL., Chen S., Li W., Xu G‐T, Li W., Zhang K., Nussenblatt RB., Liu Y., Xie T., Chan C‐C, Zack DJ, 2016. Ocular stem cell research from basic science to clinical application: A report from zhongshan ophthalmic center ocular stem cell symposium. Int J Mol Sci, 17, 415. 39. Zheng J., Wang Q., Leng W., Sun X., Peng J., 2018. Bone marrow‐derived mesenchymal stem cell‐conditioned medium attenuates tubulointerstitial fibrosis by inhibiting monocyte mobilization in an irreversible model of unilateral ureteral obstruction. Mol Med Reports, 17, 7701‐ 7707. 40. Fang Y., Gao T., Zhang B., Pu J., 2018. Recent advances: Decoding Alzheimer's disease with stem cells. Front Aging Neurosci, 10, 77. 41. Spaas JH., Broeckx S., Van De Walle GR., Polettini M., 2013. The effects of equine peripheral blood stem cells on cutaneous wound healing: A clinical evaluation in four horses, Clin Exp Dermatol, 38, 280‐284. 42. Guercio A., Di Marco P., Casella S., Russotto L., Puglisi F., Majolino C., Giudice SD., Purpari G., Cannella V., Piccione G., 2015. Mesenchymal stem cells derived from subcutaneous fat and platelet‐rich plasma used in athletic horses with lameness of the superficial digital flexor tendon. J Equine Vet Sci, 35, 19‐26. 43. Morcos MW., Al‐Jallad H., Hamdy R., 2015. Comprehensive review of adipose stem cells and their implication in distraction osteogenesis and bone regeneration. Biomed Res Int,1‐20. 44. Vilar JM., Batista M., Morales M., Santana A., Cuervo B., Rubio M., Cugat R., Sopena J., Carrillo JM., 2014. Assessment of the effect of intraarticular injection of autologous adiposederived mesenchymal stem cells in osteoarthritic dogs using a double blinded force platform analysis. BMC Vet Res, 10, 1‐7. 45. Kirkby KA., Lewis DD., 2012. Canine hip dysplasia: Reviewing the evidence for nonsurgical management. Vet Surg, 41, 2‐9.

Stem Cell

Yıl 2019, Cilt: 14 Sayı: 2, 221 - 228, 25.10.2019

Öz

'' Stem Cell'' is defined as the cell which are found in a tissue or organ which can renew and replicate themselves according to the needs of the body and differentiate into other tissue cells. Stem cells can be obtained from embryonic stem cells and non‐embryonic stem cells. Non‐embryonic stem cells can be obtained from fetal stem cells, cadavers, umbilical cord, placenta, bone marrow, adipose tissue and in many organs (somatic stem cells) or in recent years, differentiation can be obtained from cells formed by transdifferentiating any cell into stem cells. Totipotent, pluripotent and adult mesenchymal stem cells are of great interest by regenerative medicine, tissue engineering, veterinary and bioengineering fields. The ability to reproduce mesenchymal stem cells in healthy, economically, and differentiate them into needed cell types will enable the use of stem cells in order to support the regeneration in humans and animals. This review covers the informations about stem cell, potential use of stem cells and their applications especially in veterinary medicine.

Kaynakça

  • 1. Okarma T., 1998. Human primordial stem cells, Hastings Cent Rep, 104, 30. 2. Aragona M., Maisano R., Panetta S., Giudice A., Morelli M., La Torre I., La Torre F., 2000. Telomere length maintenance in aging and carcinogenesis, Int J Oncol, 17, 981–989. 3. Huang S., Fu R., Shyu W., 2013. Adipose‐derived stem cells: Isolation, characterization, and differentiation potential. Cell Transplant, 22, 701‐ 709. 4. Morgani SM., Canham MA., Nichols J., Sharov A. A., Migueles RP., Ko MS., Brickman JM., 2013. Totipotent embryonic stem cells arise in groundstate culture conditions. Cell Rep, 3, 1945‐1957. 5. Friedenstein A., Gorskaja J., Kulagina N., 1976. Fibroblast precursors in normal and irradiated mouse hematopoietic organs, Exp Hematol, 4, 267‐274. 6. Erdost H., Çerçi E., 2018. Immunohistochemical localization of Ki67 antibody derived by adipose tissue, ISMSIT, 385‐392. 7. Hoogduijn MJ., 2015. Are mesenchymal stromal cells immune cells?, Arthritis Res Ther, 17, 88. 8. Özen A., Gül Sancak İ., Ceylan A., Özgenç Ö., 2016. Isolation of adipose tissue‐derived stem cells. Turkish J Vet Anim Sci, 40, 137–141. 9. Çerçi E., Erdost H., 2016. Adipose tissue derived mesenchymal stem cells from rat with nonenzymatic isolation method. CBU‐SBED, 3:(2), 299‐302. 10. Mauro A., 1961. Satellite cell of skeletal muscle fibers. J Biophys Biochem Cytol, 9, 493‐495. 11. Krause D., 2002. Plasticity of marrow‐derived stem cells. Gene Ther. 9,754‐758. 12. Erdost H., 2017. Mezenkimal Kök Hücre, 1. baskı, ''Kök Hücre'', Dora Yayınları, 15‐18, Bursa, Türkiye. 13. Karathanasis SK., 2014. Regenerative medicine: Transforming the drug discovery and development paradigm. Cold Spring Harb Perspect Med, 4, 1‐11. 14. Zuk PA., Zhu M., Mizuno H., Huang J., Futrell JW., Katz AJ., Benhaim P., Lorenz HP., Hedrick MH. 2001. Multilineage cells from human adipose tissue: implications for cell‐based therapies, Tissue Eng, 7, 211‐228. 15. Chen Z., Chang M., Peng Y., Zhao L., Zhan Y., Wang LJ., Wang R., 2007. Osteogenic growth peptide Cterminal pentapeptide [OGP(10‐14)] acts on rat bone marrow mesenchymal stem cells to promote differentiation to osteoblasts and to inhibit differentiation to adipocytes, Regul Pept, 142, 16‐23. 16. Colter D., Class R., Di Girolam C., Prockop D., 2000. Rapid expansion of recycling stem cells in cultures of plastic‐adherent cells from human bone marrow. Proc Natl Acad Sci U S A, 28, 3213‐3218. 17. Cuiffo BG., Karnoub AE., 2012. Mesenchymal stem cells in tumor development: emerging roles and concepts. Cell Adh Migr, 6, 220‐230. 18. Szöke K., Dankova J., Buzgo M., Amler E., Brinchmann JE., Ostrup E., 2017. The effect of medium composition on deposition of collagen type 1 and expression of osteogenic genes in mesenchymal stem cells derived from human adipose tissue and bone marrow. Process Biochem, 59, 321‐328. 19. Li C., Wu X., Tong J., Yang X., Zhao J., Zheng Q., Zhao G., Ma Z., 2015. Comparative analysis of human mesenchymal stem cells from bone marrow and adipose tissue under xeno‐free conditions for cell therapy. Stem Cell Res Ther, 6,55. 20. Sichien D., Lambrecht BN., Guilliams M., Scott CL., 2017. Development of conventional dendritic cells: From common bone marrow progenitors to multiple subsets in peripheral tissues. Mucosal Immunol, 10, 831‐844. 21. Abou‐Saleh H., Zouein FA., El‐Yazbi A., Sanoudou D., Raynaud C., Rao C., Pintus G., Dehaini H., Eid AH., 2018. The march of pluripotent stem cells in cardiovascular regenerative medicine. Stem Cell Res Ther, 9, 201. 22. Yang C., Li J., Lin H., Zhao K., Zheng C., 2015. Nasal mucosa derived‐mesenchymal stem cells from mice reduce inflammation via modulating immune responses. PLoS One, 10, 1‐11. 23. Weissman I., 2016. Linked references are available on JSTOR for this article : Translating stem and progenitor to the clinic : barriers and opportunities. Science, 287(5457), 1442–1446. 24. Erdost H., Çerçi E., 2018. Growth curve of mesenchymal stem cell originated from adipose tissue. ISMSIT, 393‐397. 25. Munir H., Ward LSC., Sheriff L., Kemble S., Nayar S., Barone F., Gerard B. Nash, McGettrick H.M., 2017. Adipogenic differentiation of mesenchymal stem cells alters their immunomodulatory properties in a tissue‐specific manner. Stem Cells, 35, 1636–1646. 26. Erdost H., Çerçi E., İlhan T., Özgüden Akkoç CG., 2017. Use of mesenchymal stem cells originated from fat tissue in bone tissue regeneration. III. International Stem Cell Symposium; New Approaches to Stem Cell Application in Patient‐Based Therapy, pp:76‐77, Manisa, Turkey. 27. Badimon L., Onate B., Vilahur G., 2015. Adiposederived mesenchymal stem cells and their reparative potential in ischemic heart disease.Rev Esp Cardiol (Engl Ed), 68, 599‐611. 28. Christ GJ., Saul JM., Furth ME., Andersson KE., 2013. The pharmacology of regenerative medicine. Pharmacol Rev, 65, 1091‐1133. 29. Duncan T., Valenzuela M., 2017. Alzheimer's disease, dementia, and stem cell therapy. Stem Cell Res Ther, 8, 111. 30. Henning RJ., 2018. Current status of stem cells in cardiac repair. Future Cardiol, 14, 181‐192. 31. Fang Y., Gao T., Zhang B., Pu J., 2018. Recent advances: Decoding Alzheimer's disease with stem cells. Front Aging Neurosci, 10, 77. 32. Peng BY., Dubey NK., Mishra VK., Tsai FC., Dubey R., Deng WP., Wei HJ., 2018. Addressing Stem Cell Therapeutic Approaches in Pathobiology of Diabetes and Its Complications. J Diabetes Res, Article ID 7806435, 16. 33. Muraro PA., Martin R., Mancardi GL., Nicholas R., Sormani MP., Saccardi R., 2017. Autologous haematopoietic stem cell transplantation for treatment of multiple sclerosis. Nat Rev Neurol, 13, 391‐405. 34. Zhang XM., Zhang YJ., Wang W., Wei YQ., Deng HX., 2017. Mesenchymal stem cells to treat crohn's disease with fistula. Hum Gene Ther, 28, 534‐540. 35. Shi Y., Wang Y., Li Q., Liu K., Hou J., Shao C., Wang Y., 2018. Immunoregulatory mechanisms of mesenchymal stem and stromal cells in inflammatory diseases. Nat Rev Nephrol, 14, 493‐ 507. 36. Markoski MM., 2016. Advances in the use of stem cells in Veterinary medicine: from basic research to clinical practice. Scientifica (Cairo), 4516920. 37. Nam Y., Rim YA., Lee J., Ju JH. 2018. Current therapeutic strategies for stem cell‐based cartilage regeneration. Stem cells Int, 8490489. 38. Ouyang H., Goldberg JL., Chen S., Li W., Xu G‐T, Li W., Zhang K., Nussenblatt RB., Liu Y., Xie T., Chan C‐C, Zack DJ, 2016. Ocular stem cell research from basic science to clinical application: A report from zhongshan ophthalmic center ocular stem cell symposium. Int J Mol Sci, 17, 415. 39. Zheng J., Wang Q., Leng W., Sun X., Peng J., 2018. Bone marrow‐derived mesenchymal stem cell‐conditioned medium attenuates tubulointerstitial fibrosis by inhibiting monocyte mobilization in an irreversible model of unilateral ureteral obstruction. Mol Med Reports, 17, 7701‐ 7707. 40. Fang Y., Gao T., Zhang B., Pu J., 2018. Recent advances: Decoding Alzheimer's disease with stem cells. Front Aging Neurosci, 10, 77. 41. Spaas JH., Broeckx S., Van De Walle GR., Polettini M., 2013. The effects of equine peripheral blood stem cells on cutaneous wound healing: A clinical evaluation in four horses, Clin Exp Dermatol, 38, 280‐284. 42. Guercio A., Di Marco P., Casella S., Russotto L., Puglisi F., Majolino C., Giudice SD., Purpari G., Cannella V., Piccione G., 2015. Mesenchymal stem cells derived from subcutaneous fat and platelet‐rich plasma used in athletic horses with lameness of the superficial digital flexor tendon. J Equine Vet Sci, 35, 19‐26. 43. Morcos MW., Al‐Jallad H., Hamdy R., 2015. Comprehensive review of adipose stem cells and their implication in distraction osteogenesis and bone regeneration. Biomed Res Int,1‐20. 44. Vilar JM., Batista M., Morales M., Santana A., Cuervo B., Rubio M., Cugat R., Sopena J., Carrillo JM., 2014. Assessment of the effect of intraarticular injection of autologous adiposederived mesenchymal stem cells in osteoarthritic dogs using a double blinded force platform analysis. BMC Vet Res, 10, 1‐7. 45. Kirkby KA., Lewis DD., 2012. Canine hip dysplasia: Reviewing the evidence for nonsurgical management. Vet Surg, 41, 2‐9.
Toplam 1 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Sağlık Kurumları Yönetimi
Bölüm Derlemeler
Yazarlar

Ece Çerci

Hatice Erdost

Yayımlanma Tarihi 25 Ekim 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 14 Sayı: 2

Kaynak Göster

APA Çerci, E., & Erdost, H. (2019). Kök Hücre. Atatürk Üniversitesi Veteriner Bilimleri Dergisi, 14(2), 221-228.
AMA Çerci E, Erdost H. Kök Hücre. Atatürk Üniversitesi Veteriner Bilimleri Dergisi. Ekim 2019;14(2):221-228.
Chicago Çerci, Ece, ve Hatice Erdost. “Kök Hücre”. Atatürk Üniversitesi Veteriner Bilimleri Dergisi 14, sy. 2 (Ekim 2019): 221-28.
EndNote Çerci E, Erdost H (01 Ekim 2019) Kök Hücre. Atatürk Üniversitesi Veteriner Bilimleri Dergisi 14 2 221–228.
IEEE E. Çerci ve H. Erdost, “Kök Hücre”, Atatürk Üniversitesi Veteriner Bilimleri Dergisi, c. 14, sy. 2, ss. 221–228, 2019.
ISNAD Çerci, Ece - Erdost, Hatice. “Kök Hücre”. Atatürk Üniversitesi Veteriner Bilimleri Dergisi 14/2 (Ekim 2019), 221-228.
JAMA Çerci E, Erdost H. Kök Hücre. Atatürk Üniversitesi Veteriner Bilimleri Dergisi. 2019;14:221–228.
MLA Çerci, Ece ve Hatice Erdost. “Kök Hücre”. Atatürk Üniversitesi Veteriner Bilimleri Dergisi, c. 14, sy. 2, 2019, ss. 221-8.
Vancouver Çerci E, Erdost H. Kök Hücre. Atatürk Üniversitesi Veteriner Bilimleri Dergisi. 2019;14(2):221-8.