Araştırma Makalesi
BibTex RIS Kaynak Göster

The relationships of Glucose-6-Phosphate Dehydrogenase, Glutathione Peroxidase, Nicotinamide Adenine Dinucleotide Phosphate and Glutathione with Milk Quality Parameters

Yıl 2019, Cilt: 14 Sayı: 2, 193 - 200, 25.10.2019

Öz

In this study, it was aimed to determine the relationship between with G6PD, GPx, NADPH, rGSH and milk yield and milk quality, to evaluate the effect of these parameters on milk quality, in Holstein cattle. Milk samples were collected from 20 healthy Holstein cattle. Milk yield was obtained from routine farm datum. The analyses of milk fat %, protein %, lactose %, non-fat dry matter %, urea % and casein % were held by “milk components measuring instrument”, and G6PD and GPx activities in milk cell supernatants along with NADPH, rGSH and the total protein levels were assessed by spectrophotometric methods. Milk lactose levels (%) were negatively correlated with milk cell G6PD activity (r=-0.574, P<0.05) and NADPH levels (r=-0.485, P<0.05). Milk cell G6PD activity (r=0.708, P<0.01) and milk cell NADPH levels (r=0.609, P<0.01) were positively correlated with somatic cell count. A positive correlation (r=0.630, P<0.01) was determined between the somatic cell count and milk cell NADPH levels. In conclusion, there was no correlation between milk yield and milk quality parameters with the related parameters, except for lactose levels, in healthy cattle milk. It is suggested to investigate the relationship between lactose and G6PD with further studies.

Kaynakça

  • 1. Gürsoy A., 2015. Süt teknolojisi ve süt biyokimyası. Ankara Üniversitesi, Ziraat Fakültesi, Ankara, Türkiye. 2. Suriyasathaporn W., Vinitketkumnuen U., Chewonarin T., Boonyayatras S., Kreausukon K., Schukkenc YH., 2006. Higher somatic cell counts resulted in higher malondialdehyde concentrations in raw cows’ milk. Int Dairy J, 16, 1088-1091. 3. Taghdiri M., Karim Guiti., Safi S., Foroushani AR., Motalebi A., 2018. Study on the accuracy of milk amyloid A test and other diagnostic methods for identification of milk quality. Vet Res Forum, 9, 179-185. 4. Li L., Liu X., Guo H., 2018. The nutritional ingredients and antioxidant activity of donkey milk and donkey milk powder. Food Sci Biotechnol, 27, 393-400. 5. Hanus O., Samkova E., Krizova L., Hasonova L., Kala R., 2018. Role of fatty acids in milk fat and the influence of selected factors on their variability-a review. Molecules, 4, 23. 6. Demirci M., 2011. Laktozun insan beslenmesindeki önemi. Atatürk Üniv Ziraat Fak Derg, 15, 109-116. 7. Alhussien MN., Dang AK., 2018. Milk somatic cells, factors influencing their release, future prospects, and practical utility in dairy animals: An overview. Vet World, 11, 562-577. 8. Andrei S., Matei S., Rugina D., Bogdan L., C. Ştefanut C., 2016. Interrelationships between the content of oxidative markers, antioxidative status, and somatic cell count in cow’s milk. Czech J Anim Sci, 61, 407-413. 9. Persigo MG., Viglietto G., Martini G., 1986. Isolation of human glucose-6-phosphate dehydrogenase (G6PD) cDNA clones, primary structure of the protein and unusual 5 noncoding region. Nucleic Acids Res, 14, 2511-2522. 10. Rovira A., De Angioletti M., Camacho-Vanegas O., 2000. Stable in vivo expression of glucose-6-phosphate dehydrogenase (G6PD) and rescue of G6PD deficiency in stem cells by gene transfer. Blood, 96, 4111-4117. 11. Ramos VA., Ramos PA., Dominguez MC., 2000. The role of oxidative stress in inflammation in patients with juvenil rheumatoid arthritis. J Pediatr, 76, 125-132. 12. Akkuş İ., 1995. Serbest radikaller ve fizyopatolojik etkileri. Mimoza Yayınları, Konya, Türkiye. 13. Beutler E., 1994. Glucose-6-phosphate dehydrogenase deficiency. Blood, 84, 3613-3636. 14. Akalin PP., Bucak MN., Gungor S., Baspınar N., Coyan K., Ili P., Dursun S., Aksoy A., Karasor ÖF., Bilgili A., Sarıözkan S., Yeni D., 2016. Infuence of lycopene and cysteamine on sperm and oxidative stress parameters during liquid storage of ram semen at 5 oC. Small Rum Res, 137, 117-123. 15. Ellman G., 1959. Tissue sulphydryl groups. Arch Biochem Biophys, 82, 70-77. 16. Beutler E., 1984. Red Cell Metabolism, Manual of Biochemical Methods, 3rd Ed., 3, 257-363, Grune Stratton, Incs., Orlando. 17. Bradford MM., 1976. A rapid and sensitive method quantitation or microgram quantities of protcin utilizing the principle of protein die binding. Analytical Biochemistry, 72, 248-254. 18. Kandeel SA., Megahed AA., Ebeid MH., Constable PD., 2019. Ability of milk pH to predict subclinical mastitis and intramammary infection in quarters from lactating dairy cattle. J Dairy Sci, 102, 1417-1427. 19. Kandeel SA., Megahed AA., Ebeid MH., Constable PD., 2019. Evaluation of 3 esterase tests for the diagnosis of subclinical mastitis at dry-off and freshening in dairy cattle. J Dairy Sci, 102, 1402-1416. 20. Weiss WPJ., Hogan S., Smith KL., 2004. Changes in vitamin C concentrations in plasma and milk from dairy cows after an intramammary infusion of Escherichia coli. J Dairy Sci, 87, 32-37. 21. Pang M., Xie X., Bao H., Sun L., He T., Zhao H., Zhou Y., Zhang L., Zhang H., Wei R., Xie K., Wang R., 2018. Insights into the bovine milk microbiota in dairy farms with different incidence rates of subclinical mastitis. Front Microbiol, 9, 1-13. 22. Erişir M., Kandemir FM., Yüksel M., 2011. The effect of subclinical mastitis on MDA, GSH levels and GSH-Px, CAT activities in milk of cows. Fırat Uni Sagl Bil Vet Derg, 25, 67-70. 23. Szczubial M., Dabrowski R., Kankofer M., Komar MM., 2012. Concentration of serum amyloid A and ceruloplasmin activity in milk from cows with subclinical mastitis caused by different pathogens. Pol J Vet Sci, 15, 291-296. 24. Fox PF., McSweeney PLH., 2003. Advanced Dairy Chemistry. Vol 1, In Chapter 1: Milk Proteins: General and Historical Aspects, Third Edition, Part A, Springer Verlag Publish, New York. 25. Gehardt SE., Thomas RG., 2006. Nutritive Value of Foods, United States Department of Agriculture (USDA), Agricultural Research Service, Home and Garden Bulletin, 72. 26. Fox PF., McSweeney PLH., 1998. Dairy Chemistry and Biochemistry, Blackie Academic & Professional, an imprint of Chapman & Hall, London. 27. Heine RG., AlRefaee F., Bachina P., De Leon JC., Geng L., Gong S., Madrazo JA., Ngamphaiboon J., Ong C., Rogacion JM., 2017. Lactose intolerance and gastrointestinal cow's milk allergy in infants and children- common misconceptions revisited. World Allergy Organ J, 10,41. 28. Kasımoğlu A., Akgün S., 1998. Laktasyon periyodu boyunca inek sütünün miktar ve bazı bileşimlerinde görülen değişimler. Ankara Üniv Vet Fak Derg, 45, 295-304. 29. Sharma N., Maiti SK., Sharma KK., 2007. Prevalence, etiology and antibiogram of microorganisms associated with Sub-clinical mastitis in buffaloes in Durg Chhattisgarh State (India). Int J Dairy Sci, 2, 145-151. 30. Baştan A., Kaymaz M., Fındık M., Erünal N., 1997. İneklerde subklinik mastitislerin elektriksel iletkenlik, somatik hücre sayısı ve California mastitis test ile saptanması. Ankara Üniv Vet Fak Derg, 44, 1-6. 31. Alaçam E., 1998. Meme Hastalıkları. Sığır Hastalıkları. Ed: E Alaçam, M Şahal, 389-425, Medisan yayınları, Ankara, Türkiye. 32. Baştan A., 2010. Düve mastitisleri ineklerde meme sağlığı ve sorunları. Kardelen Ofset Matbaacılık, Ankara, Türkiye. 28-231. 33. Ritter C., Conti A., Morse GE., 1977. Hexose shunt dehydrogenase activity in leukocytes İsolated from bovine milk. J Dairy Sci, 60, 1987-1990. 34. Krebs HA., Eggleston LV., 1978. The regulation of the pentose phosphate cycle in rat liver. In: Adv enzyme regul. Ed: G Weber, 12: 421-33, Permagon Press Ltd, Oxford. 35. Reuter R., Naumann M., Metz P., Kopperschlager G., 1990. Purification and characterization of glocose-6-phophate dehydrogenase from Pseudomonas W6, Biomed Biochem Acta, 7, 539-546. 36. Keha E., Kührevioğlu Öİ., 1997. Biyokimya. Şafak Yayınevi, Erzurum, Türkiye. 37. Forman HJ., Thomas MJ., 1986. Oxidant production and bactericidal activity of phagocytes. Annu Rev Physiol, 48, 669-680. 38. Vignais PV., 2002. The superoxide-generating NADPH oxidase: structural aspects and activation mechanism. Cell Mol Life Sci, 59, 1428-1459. 39. Ralat LA., Manevich Y., Fisher AB., Colman RF., 2006. Direct evidence for the formation of a complex between 1-cysteine peroxiredoxin and glutathione S-transferase pi with activity changes in both enzymes. Biochem, 45, 360-372. 40. Carlberg I., Mannervik B., 1985. Glutathione reductase. Meth Enzymol, 113, 485-490. 41. Sugiyama M., Tsuzuki K., Ogura R., 1991. Effect of ascorbic acid on DNA damage, cytotoxicity, glutathione reductase, and formation of paramagnetic chromium in Chinese Hamster V-79 Cells treated with sodium chromate (VI). J Biol Chem, 266, 3383-3366. 42. Foyer CH., Halliwell B., 1976. The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism. Planta, 133, 21-25. 43. Ehrhart J., Zeevalk GD., 2003. Cooperative interaction between ascorbate and glutathione during mitochondrial impairment in mesencephalic cultures. J Neurochem, 86, 1487-1497.

Glukoz-6-Fosfat Dehidrogenaz, Glutatyon Peroksidaz, Nikotinamid Adenin Dinükleotid Fosfat ve Glutatyon ile Süt Kalite Parametreleri Arasındaki İlişkiler

Yıl 2019, Cilt: 14 Sayı: 2, 193 - 200, 25.10.2019

Öz

Bu çalışmada; Holstein ırkı sığırlarda süt G6PD, GPx, redükte NADPH ve rGSH düzeyleri ile süt verimi ve süt kalitesi ile arasındaki ilişkilerin belirlenmesi, böylelikle ilgili parametrelerin süt kalitesi üzerindeki etkilerinin araştırılması amaçlanmıştır. Klinik olarak sağlıklı 20 adet Holstein ırkı sığırdan süt örnekleri toplanmıştır. Süt verimi çiftlikte tutulan rutin kayıtlardan tespit edilmiştir. Sütlerde kalite parametreleri olan süt yağı %, protein %, laktoz %, kuru madde %, yağsız kuru madde %, üre % ve kazein % analizleri süt komponentleri ölçüm cihazı ile, süt hücre süpernatantlarında G6PD ve GPx aktiviteleri ile NADPH, rGSH ve total protein düzeyleri ise spektrofotometrik yöntemlerle belirlenmiştir. Süt laktoz düzeyleri ile süt hücre G6PD aktivitesi (r=-0.574, p<0.05) ve NADPH düzeyleri (r=-0.485, P<0.05) arasında negatif korelasyonlar belirlenmiştir. Süt somatik hücre sayısı ile süt hücre G6PD aktivitesi (r=0.708, P<0.01) ve süt hücre NADPH düzeyleri (r=0.609, P<0.01) arasında pozitif korelasyonlar belirlenmiştir. Süt somatik hücre sayısı ile süt hücre NADPH düzeyleri arasında pozitif bir korelasyon (r=0.630, P<0.01) belirlenmiştir. Sonuç olarak sağlıklı inek sütünde, anılan parametreler ile süt verimi ve süt kalite parametreleri arasında, laktoz ve G6PD dışında, belirgin bir korelasyon belirlenmemiştir. Laktoz ile G6PD arasındaki bu ilişkinin yapılacak çalışmalar ile detaylandırılması önerilmektedir.

Kaynakça

  • 1. Gürsoy A., 2015. Süt teknolojisi ve süt biyokimyası. Ankara Üniversitesi, Ziraat Fakültesi, Ankara, Türkiye. 2. Suriyasathaporn W., Vinitketkumnuen U., Chewonarin T., Boonyayatras S., Kreausukon K., Schukkenc YH., 2006. Higher somatic cell counts resulted in higher malondialdehyde concentrations in raw cows’ milk. Int Dairy J, 16, 1088-1091. 3. Taghdiri M., Karim Guiti., Safi S., Foroushani AR., Motalebi A., 2018. Study on the accuracy of milk amyloid A test and other diagnostic methods for identification of milk quality. Vet Res Forum, 9, 179-185. 4. Li L., Liu X., Guo H., 2018. The nutritional ingredients and antioxidant activity of donkey milk and donkey milk powder. Food Sci Biotechnol, 27, 393-400. 5. Hanus O., Samkova E., Krizova L., Hasonova L., Kala R., 2018. Role of fatty acids in milk fat and the influence of selected factors on their variability-a review. Molecules, 4, 23. 6. Demirci M., 2011. Laktozun insan beslenmesindeki önemi. Atatürk Üniv Ziraat Fak Derg, 15, 109-116. 7. Alhussien MN., Dang AK., 2018. Milk somatic cells, factors influencing their release, future prospects, and practical utility in dairy animals: An overview. Vet World, 11, 562-577. 8. Andrei S., Matei S., Rugina D., Bogdan L., C. Ştefanut C., 2016. Interrelationships between the content of oxidative markers, antioxidative status, and somatic cell count in cow’s milk. Czech J Anim Sci, 61, 407-413. 9. Persigo MG., Viglietto G., Martini G., 1986. Isolation of human glucose-6-phosphate dehydrogenase (G6PD) cDNA clones, primary structure of the protein and unusual 5 noncoding region. Nucleic Acids Res, 14, 2511-2522. 10. Rovira A., De Angioletti M., Camacho-Vanegas O., 2000. Stable in vivo expression of glucose-6-phosphate dehydrogenase (G6PD) and rescue of G6PD deficiency in stem cells by gene transfer. Blood, 96, 4111-4117. 11. Ramos VA., Ramos PA., Dominguez MC., 2000. The role of oxidative stress in inflammation in patients with juvenil rheumatoid arthritis. J Pediatr, 76, 125-132. 12. Akkuş İ., 1995. Serbest radikaller ve fizyopatolojik etkileri. Mimoza Yayınları, Konya, Türkiye. 13. Beutler E., 1994. Glucose-6-phosphate dehydrogenase deficiency. Blood, 84, 3613-3636. 14. Akalin PP., Bucak MN., Gungor S., Baspınar N., Coyan K., Ili P., Dursun S., Aksoy A., Karasor ÖF., Bilgili A., Sarıözkan S., Yeni D., 2016. Infuence of lycopene and cysteamine on sperm and oxidative stress parameters during liquid storage of ram semen at 5 oC. Small Rum Res, 137, 117-123. 15. Ellman G., 1959. Tissue sulphydryl groups. Arch Biochem Biophys, 82, 70-77. 16. Beutler E., 1984. Red Cell Metabolism, Manual of Biochemical Methods, 3rd Ed., 3, 257-363, Grune Stratton, Incs., Orlando. 17. Bradford MM., 1976. A rapid and sensitive method quantitation or microgram quantities of protcin utilizing the principle of protein die binding. Analytical Biochemistry, 72, 248-254. 18. Kandeel SA., Megahed AA., Ebeid MH., Constable PD., 2019. Ability of milk pH to predict subclinical mastitis and intramammary infection in quarters from lactating dairy cattle. J Dairy Sci, 102, 1417-1427. 19. Kandeel SA., Megahed AA., Ebeid MH., Constable PD., 2019. Evaluation of 3 esterase tests for the diagnosis of subclinical mastitis at dry-off and freshening in dairy cattle. J Dairy Sci, 102, 1402-1416. 20. Weiss WPJ., Hogan S., Smith KL., 2004. Changes in vitamin C concentrations in plasma and milk from dairy cows after an intramammary infusion of Escherichia coli. J Dairy Sci, 87, 32-37. 21. Pang M., Xie X., Bao H., Sun L., He T., Zhao H., Zhou Y., Zhang L., Zhang H., Wei R., Xie K., Wang R., 2018. Insights into the bovine milk microbiota in dairy farms with different incidence rates of subclinical mastitis. Front Microbiol, 9, 1-13. 22. Erişir M., Kandemir FM., Yüksel M., 2011. The effect of subclinical mastitis on MDA, GSH levels and GSH-Px, CAT activities in milk of cows. Fırat Uni Sagl Bil Vet Derg, 25, 67-70. 23. Szczubial M., Dabrowski R., Kankofer M., Komar MM., 2012. Concentration of serum amyloid A and ceruloplasmin activity in milk from cows with subclinical mastitis caused by different pathogens. Pol J Vet Sci, 15, 291-296. 24. Fox PF., McSweeney PLH., 2003. Advanced Dairy Chemistry. Vol 1, In Chapter 1: Milk Proteins: General and Historical Aspects, Third Edition, Part A, Springer Verlag Publish, New York. 25. Gehardt SE., Thomas RG., 2006. Nutritive Value of Foods, United States Department of Agriculture (USDA), Agricultural Research Service, Home and Garden Bulletin, 72. 26. Fox PF., McSweeney PLH., 1998. Dairy Chemistry and Biochemistry, Blackie Academic & Professional, an imprint of Chapman & Hall, London. 27. Heine RG., AlRefaee F., Bachina P., De Leon JC., Geng L., Gong S., Madrazo JA., Ngamphaiboon J., Ong C., Rogacion JM., 2017. Lactose intolerance and gastrointestinal cow's milk allergy in infants and children- common misconceptions revisited. World Allergy Organ J, 10,41. 28. Kasımoğlu A., Akgün S., 1998. Laktasyon periyodu boyunca inek sütünün miktar ve bazı bileşimlerinde görülen değişimler. Ankara Üniv Vet Fak Derg, 45, 295-304. 29. Sharma N., Maiti SK., Sharma KK., 2007. Prevalence, etiology and antibiogram of microorganisms associated with Sub-clinical mastitis in buffaloes in Durg Chhattisgarh State (India). Int J Dairy Sci, 2, 145-151. 30. Baştan A., Kaymaz M., Fındık M., Erünal N., 1997. İneklerde subklinik mastitislerin elektriksel iletkenlik, somatik hücre sayısı ve California mastitis test ile saptanması. Ankara Üniv Vet Fak Derg, 44, 1-6. 31. Alaçam E., 1998. Meme Hastalıkları. Sığır Hastalıkları. Ed: E Alaçam, M Şahal, 389-425, Medisan yayınları, Ankara, Türkiye. 32. Baştan A., 2010. Düve mastitisleri ineklerde meme sağlığı ve sorunları. Kardelen Ofset Matbaacılık, Ankara, Türkiye. 28-231. 33. Ritter C., Conti A., Morse GE., 1977. Hexose shunt dehydrogenase activity in leukocytes İsolated from bovine milk. J Dairy Sci, 60, 1987-1990. 34. Krebs HA., Eggleston LV., 1978. The regulation of the pentose phosphate cycle in rat liver. In: Adv enzyme regul. Ed: G Weber, 12: 421-33, Permagon Press Ltd, Oxford. 35. Reuter R., Naumann M., Metz P., Kopperschlager G., 1990. Purification and characterization of glocose-6-phophate dehydrogenase from Pseudomonas W6, Biomed Biochem Acta, 7, 539-546. 36. Keha E., Kührevioğlu Öİ., 1997. Biyokimya. Şafak Yayınevi, Erzurum, Türkiye. 37. Forman HJ., Thomas MJ., 1986. Oxidant production and bactericidal activity of phagocytes. Annu Rev Physiol, 48, 669-680. 38. Vignais PV., 2002. The superoxide-generating NADPH oxidase: structural aspects and activation mechanism. Cell Mol Life Sci, 59, 1428-1459. 39. Ralat LA., Manevich Y., Fisher AB., Colman RF., 2006. Direct evidence for the formation of a complex between 1-cysteine peroxiredoxin and glutathione S-transferase pi with activity changes in both enzymes. Biochem, 45, 360-372. 40. Carlberg I., Mannervik B., 1985. Glutathione reductase. Meth Enzymol, 113, 485-490. 41. Sugiyama M., Tsuzuki K., Ogura R., 1991. Effect of ascorbic acid on DNA damage, cytotoxicity, glutathione reductase, and formation of paramagnetic chromium in Chinese Hamster V-79 Cells treated with sodium chromate (VI). J Biol Chem, 266, 3383-3366. 42. Foyer CH., Halliwell B., 1976. The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism. Planta, 133, 21-25. 43. Ehrhart J., Zeevalk GD., 2003. Cooperative interaction between ascorbate and glutathione during mitochondrial impairment in mesencephalic cultures. J Neurochem, 86, 1487-1497.
Toplam 1 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Sağlık Kurumları Yönetimi
Bölüm Araştırma Makaleleri
Yazarlar

Zeynep Akın Bu kişi benim

Pınar Peker Akalın Bu kişi benim

Filiz Kazak 0000-0002-9065-394X

Yaşar Ergün Bu kişi benim

Nuri Başpınar Bu kişi benim

Yayımlanma Tarihi 25 Ekim 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 14 Sayı: 2

Kaynak Göster

APA Akın, Z., Peker Akalın, P., Kazak, F., Ergün, Y., vd. (2019). Glukoz-6-Fosfat Dehidrogenaz, Glutatyon Peroksidaz, Nikotinamid Adenin Dinükleotid Fosfat ve Glutatyon ile Süt Kalite Parametreleri Arasındaki İlişkiler. Atatürk Üniversitesi Veteriner Bilimleri Dergisi, 14(2), 193-200.
AMA Akın Z, Peker Akalın P, Kazak F, Ergün Y, Başpınar N. Glukoz-6-Fosfat Dehidrogenaz, Glutatyon Peroksidaz, Nikotinamid Adenin Dinükleotid Fosfat ve Glutatyon ile Süt Kalite Parametreleri Arasındaki İlişkiler. Atatürk Üniversitesi Veteriner Bilimleri Dergisi. Ekim 2019;14(2):193-200.
Chicago Akın, Zeynep, Pınar Peker Akalın, Filiz Kazak, Yaşar Ergün, ve Nuri Başpınar. “Glukoz-6-Fosfat Dehidrogenaz, Glutatyon Peroksidaz, Nikotinamid Adenin Dinükleotid Fosfat Ve Glutatyon Ile Süt Kalite Parametreleri Arasındaki İlişkiler”. Atatürk Üniversitesi Veteriner Bilimleri Dergisi 14, sy. 2 (Ekim 2019): 193-200.
EndNote Akın Z, Peker Akalın P, Kazak F, Ergün Y, Başpınar N (01 Ekim 2019) Glukoz-6-Fosfat Dehidrogenaz, Glutatyon Peroksidaz, Nikotinamid Adenin Dinükleotid Fosfat ve Glutatyon ile Süt Kalite Parametreleri Arasındaki İlişkiler. Atatürk Üniversitesi Veteriner Bilimleri Dergisi 14 2 193–200.
IEEE Z. Akın, P. Peker Akalın, F. Kazak, Y. Ergün, ve N. Başpınar, “Glukoz-6-Fosfat Dehidrogenaz, Glutatyon Peroksidaz, Nikotinamid Adenin Dinükleotid Fosfat ve Glutatyon ile Süt Kalite Parametreleri Arasındaki İlişkiler”, Atatürk Üniversitesi Veteriner Bilimleri Dergisi, c. 14, sy. 2, ss. 193–200, 2019.
ISNAD Akın, Zeynep vd. “Glukoz-6-Fosfat Dehidrogenaz, Glutatyon Peroksidaz, Nikotinamid Adenin Dinükleotid Fosfat Ve Glutatyon Ile Süt Kalite Parametreleri Arasındaki İlişkiler”. Atatürk Üniversitesi Veteriner Bilimleri Dergisi 14/2 (Ekim 2019), 193-200.
JAMA Akın Z, Peker Akalın P, Kazak F, Ergün Y, Başpınar N. Glukoz-6-Fosfat Dehidrogenaz, Glutatyon Peroksidaz, Nikotinamid Adenin Dinükleotid Fosfat ve Glutatyon ile Süt Kalite Parametreleri Arasındaki İlişkiler. Atatürk Üniversitesi Veteriner Bilimleri Dergisi. 2019;14:193–200.
MLA Akın, Zeynep vd. “Glukoz-6-Fosfat Dehidrogenaz, Glutatyon Peroksidaz, Nikotinamid Adenin Dinükleotid Fosfat Ve Glutatyon Ile Süt Kalite Parametreleri Arasındaki İlişkiler”. Atatürk Üniversitesi Veteriner Bilimleri Dergisi, c. 14, sy. 2, 2019, ss. 193-00.
Vancouver Akın Z, Peker Akalın P, Kazak F, Ergün Y, Başpınar N. Glukoz-6-Fosfat Dehidrogenaz, Glutatyon Peroksidaz, Nikotinamid Adenin Dinükleotid Fosfat ve Glutatyon ile Süt Kalite Parametreleri Arasındaki İlişkiler. Atatürk Üniversitesi Veteriner Bilimleri Dergisi. 2019;14(2):193-200.