Araştırma Makalesi
BibTex RIS Kaynak Göster

Toprak Termal Özellileri, Toprak Tekstürü ve Agregat Büyüklüğü Arasındaki Çoklu Etkileşimlerin Değerlendirilmesi

Yıl 2018, , 157 - 162, 12.07.2018
https://doi.org/10.17097/ataunizfd.335531

Öz

Toprakların
termal özellikleri oldukça değişken olup, birçok faktör tarafından etkilenir.
Ayrıca toprak termal özellikleri, toprak sıcaklığı ve sıcaklık rejimleri
üzerinde de etkilidir. Toprağın termal özellikleri toprak su içeriği, toprağın
yapısal bileşenleri ve agregasyon durumu tarafından önemli ölçüde etkilenir. Bu
çalışmanın amacı, toprak tekstürüve agregat büyüklüğünün toprak ısısal
özellikleri üzerindeki etkilerinin de Vries modeli ile değerlendirmektir. Bu
çalışmada kaba, orta, ince tekstürlü ve farklı agregat büyüklüğüne (<4 mm,
<2 mm ve <1 mm) sahip toprak örnekleri kullanılmıştır. Bu özelliklere
sahip toprak örneklerinin, tarla kapasitesi koşullarında, termal iletkenlik, hacımsal
ısı ve termal difüzivite gibi termal özellikleri hesaplanmıştır. Elde edilen
sonuçlara göre, ısısal iletkenlik, hacımsal ısı ve ısısal yayınım açısından en
yüksek değerler, toprak tekstürleri arasında, sırasıyla orta, ince ve kaba
bünyeli topraklarda ortaya çıkmıştır. Termal iletkenlik ve termal difüzivite
için en düşük değerler ise ince bünyeli toprakta tespit edilmiştir. Ayrıca, her
bir toprak için en küçük agregatların (<1 mm) oluşturduğu örneklerde en
düşük termal iletkenlik ve ısısal yayınım değerleri belirlenmiştir.
Elde edilen sonuçlara göre,
toprak tekstürü ve agregat büyüklüğünün toprağın ısısal özellikleri üzerinde önemli
bir etkiye sahip olduğu belirlenmiştir. 

Kaynakça

  • Abu-Hamdeh, N.H., Reeder, R.C., 2000. Soil thermal conductivity: effects of density, moisture, salt concentration, and organic matter, Soil Sci. Soc. Amer. J., 64: 1285–1290.
  • Abu-Hamdeh, N.H., 2001. Measurement of the thermal conductivity of sandy loam and clay loam soils using single and dual probes. J. agric. Engng Res., 80 (2): 209-216.
  • Abu-Hamdeh, N.H., 2003. Thermal properties of soils as affected by density and water content. Biosystems Engineering, 86 (1): 97–102.
  • Alrtimi, A., Rouaini, M., Haigh, S., 2016. Thermal conductivity of a sandy soil. Appl. Therm. Eng., 106: 551-560.
  • Bremner, J.M., Mulvaney, C.S., 1982. Nitrogen-Total. In: Page, A.L., Ed., Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties, American Society of Agronomy, Soil Science Society of America, 595-624.
  • Busby, J., 2015. Determination of thermal properties for horizontal ground collector loops. Proceedings World Geothermal Congress, Melbourne, Australia, 19-25 April.
  • Campbell, G.S., Jungbauer, J.D., Bidlake, W.R., Hungerford, R.D., 1994. Prediction the effect of temperature on soil thermal conductivity. Soil Sci., 158: 307-313.
  • Clarke, B.G., Agab, A., Nicholson, D., 2008. Model specification to determine thermal conductivity of soils. Proceedings of the Institution of Civil Engineers Geotechnical Engineering, 161: 161-168.
  • Cote, J., Konrad, J.M., 2005. Thermal conductivity of base-course materials. Can. Geotech. J., 42: 61-78.
  • Davarzani, H., Marcoux, M., Quintard, M., 2011. Effect of solid thermal conductivity and particle-particle contact on effective thermo-diffusion coefficient in porous media. Int. J. Therm. Sci., 50:b2328-39.
  • de Vries, D.A., 1963. Thermal properties of soils. In: Van Wijk WR, editor. Physics of the plant environment. New York: John Wiley & Sons, 210-235.
  • de Vries, D.A., 1964. Thermal properties of soils. In: van Wijk WR, editor. Physics of plant environment. Amsterdam: North-Holland Publishing Co., 210–35.
  • Demiralay, İ., 1993. Toprak Fiziksel Analizleri. Atatürk University Agriculture Faculty Publication, No 143.
  • Farouki, O.T., 1986. Thermal Properties of Soil, Series on Rock and Soil Mechanics. Trans. Tech. Publication., Germany.
  • Ghuman, B.S., Lal, R., 1985. Thermal conductivity, thermal diffusivity, and thermal capacity of some Nigerian soils. Soil Science, 139: 74–80.
  • Gori, F., Corasaniti, S., 2004. Theoretical prediction of the thermal conductivity and temperature variation inside mars soil analogues. Planet. Space Sci., 52: 91–99.
  • Heitman, J.L., Horton, R., Ren, T., Nassar, I.N., Davis, D., 2008.Test of coupled soil heat and water transfer prediction under transient boundary conditions. Soil Sci. Soc. Am. J., 72:1197–1207.
  • Horton, R., Weirenga, P.J., Nielsen, D.R., 1983. Evaluation of methods for determining the apparent thermal diffusivity of soil near the soil surface. Soil Sci. Soc. Am. J., 47: 25-32.
  • Ju, Z., Ren, T., Hu, C., 2011. Soil thermal conductivity as influenced by aggregation at intermediate water contents, Soil Sci. Soc. Am. J., 75: 26-29.
  • Kersten, M.S., 1949. Laboratory Research for the Determination of the Thermal Properties of Soils, Bulletin 28, Engineering Experiment Station, University of Minnesota, Minneapoli.
  • Kimura, S.D., Melling, L., Goh, K.J., 2012. Influence of soil aggregate size on greenhouse gas emission and uptake rate from tropical peat soil in forest and different oil palm development years, Geoderma, (185-186): 1–5.
  • Lipiec, J.,Hajnos, M., wieboda, R.S., 2012. Estimating effects of compaction on pore size distribution of soil aggregates by mercury porosimeter. Geoderma, (179–180): 20–27.
  • Luikov, A.V., Shashkov, A.G., Vasiliev, L.L., Fraiman, Y.U.E., 1968. Thermal conductivity of porous systems. Int. J. Heat Mass Transf., 11:117- 40.
  • McLean, E.O., 1982. Soil pH and lime requirement. p.199-224. In A.L. Page et al.(ed.) Methods of soil analysis. Part2.2nd ed. Agron.Monogr.9.ASA, Madison, WI. M. Smiths. K., Kirby, E.J., Massman, W., Baggett, L.S., 2016. Experimental and modeling study of forest fire effect on soil thermal conductivity. Pedosphere, 26(4): 462-473.
  • Nelson, D.W., Sommers, L.E., 1982. Total carbon, organic carbon and organic matter: In: A.L. Page, R.H. Miller and D.R. Keeney) Methods of soil analysis. Part 2 Chemical and Microbiological Properties, pp: 539-579.
  • Nusier, O.K., Abu-Hamdeh, N.H., 2003. Laboratory techniques to evaluate thermal conductivity for some soils. Heat Mass Transf., 39 (2): 119–123.
  • Olsen, S.R., Sommers, L.E., 1982. Determination of available phosphorus. In “Method of Soil Analysis”, vol. 2, ed. A. L. Page, R. H. Miller, and D. R. Keeney, 403. Madison, WI: American Society of Agronomy.
  • Park, E.J., Sul, W.J., Smucker, A.J.M., 2007. Glucose additions to aggregates subjected to drying and wetting cycles promote carbon sequestration and aggregate stability, Soil Biol. Biochem. J., 39: 2758–2768.
  • Rhoades, J.D., 1982a. Reclamation and management of salt-affected soils after drainage. Pages 125-197 in Proc. First Ann. Western Provincial Conf., Soil Salinity, Lethbridge, Alberta. 29 Nov. - 2 Dec. 1982.
  • Richards, L.A., 1954. Diagnosis and improvement of saline and alkali soils. Agricultural hand book 60. U.S. Dept. of Agriculture, Washington D.C., 160 p.
  • Shein, E.V., Mady, A.Y., 2016. Soil thermal parameters assessment by direct method and mathematical models. J. Soil Sci. Environ. Manage., 7(10): 166-172.
  • Slawin ski, C., Witkowska-Walczak, B., Lipiec, J., Nosalewicz, A., 2001. Effect of aggregate size on water movement in soils, Int. Agrophys., 25: 53–58.
  • Smits, K.M., Sakaki, T., Limsuwat, A., Illangasekare, T.H., 2010. Thermal conductivity of sands under varying moisture and porosity in drainage–wetting cycles. Vadose Zone J., 9: 1–9.
  • Thomas, G.W., 1982. Exchangeable cations. In A.L. Page et al., Eds., Methods of Soil Analysis. Agronomy 9, 2nd ed. American Society of Agronomy, Madison, WI, pp. 159–165.
  • van Wijk, W.R., de Vries, D.A., 1963. Periodic temperature variation in a homogeneous soil. P. 102-143. In: van Wijk, W.R., (ed.). Physics of plant environment. North-Holland Publ. Co., Amesterdam, the Netherlands.
  • Wiermann, C., Horn, R., 2000. Effect of different tillage systems on the recovery of soil structure following a single compaction event, In: Horn, R., van den Akker, J.J.H., Arvidsson, J., (Eds.), Subsoil Compaction - Distribution, Processes and Consequences. Advances in GeoEcology, Catena, Reiskirchen, vol. 32, Germany, 2000, pp. 339–350.
  • Yadav, M.R., Saxena, G.S., 1973. Effect of compaction and moisture content on specific heat and thermal capacity of soils. Journal Indian Society of Soil Science, 21: 129–132.

Assessment of Multiple Interactions between Soil Texture, Aggregate Size and Soil Thermal Properties

Yıl 2018, , 157 - 162, 12.07.2018
https://doi.org/10.17097/ataunizfd.335531

Öz

Soil
thermal properties are highly dynamics and is influenced by a multitude of
factors. Soil thermal properties affect soil temperature and its thermal regime.
Soil water content, soil contribution and state of aggregation affect significantly
soil thermal properties. T
he aim
of this study was to determine and evaluate the effects of soil texture and
aggregate size on soil thermal properties using the de Vries model. Soil
samples with different textures, separated into different aggregate size groups
(<4 mm, <2 mm and <1 mm), were used. Thermal properties of soil
samples including thermal conductivity, volumetric heat capacity and thermal
diffusivity were estimated at field capacity.
The results showed that
the maximum values for the thermal conductivity, volumetric heat capacity, and
thermal diffusivity occurred
medium
(MTS)>fine, (FTS)>coarse, (CTS)
textured soils. In all textural groups thermal conductivity
and thermal diffusivity were the smallest in aggregate size <1 mm. Results indicated
that soil texture and aggregate size distribution have great effect on the soil
thermal properties.

Kaynakça

  • Abu-Hamdeh, N.H., Reeder, R.C., 2000. Soil thermal conductivity: effects of density, moisture, salt concentration, and organic matter, Soil Sci. Soc. Amer. J., 64: 1285–1290.
  • Abu-Hamdeh, N.H., 2001. Measurement of the thermal conductivity of sandy loam and clay loam soils using single and dual probes. J. agric. Engng Res., 80 (2): 209-216.
  • Abu-Hamdeh, N.H., 2003. Thermal properties of soils as affected by density and water content. Biosystems Engineering, 86 (1): 97–102.
  • Alrtimi, A., Rouaini, M., Haigh, S., 2016. Thermal conductivity of a sandy soil. Appl. Therm. Eng., 106: 551-560.
  • Bremner, J.M., Mulvaney, C.S., 1982. Nitrogen-Total. In: Page, A.L., Ed., Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties, American Society of Agronomy, Soil Science Society of America, 595-624.
  • Busby, J., 2015. Determination of thermal properties for horizontal ground collector loops. Proceedings World Geothermal Congress, Melbourne, Australia, 19-25 April.
  • Campbell, G.S., Jungbauer, J.D., Bidlake, W.R., Hungerford, R.D., 1994. Prediction the effect of temperature on soil thermal conductivity. Soil Sci., 158: 307-313.
  • Clarke, B.G., Agab, A., Nicholson, D., 2008. Model specification to determine thermal conductivity of soils. Proceedings of the Institution of Civil Engineers Geotechnical Engineering, 161: 161-168.
  • Cote, J., Konrad, J.M., 2005. Thermal conductivity of base-course materials. Can. Geotech. J., 42: 61-78.
  • Davarzani, H., Marcoux, M., Quintard, M., 2011. Effect of solid thermal conductivity and particle-particle contact on effective thermo-diffusion coefficient in porous media. Int. J. Therm. Sci., 50:b2328-39.
  • de Vries, D.A., 1963. Thermal properties of soils. In: Van Wijk WR, editor. Physics of the plant environment. New York: John Wiley & Sons, 210-235.
  • de Vries, D.A., 1964. Thermal properties of soils. In: van Wijk WR, editor. Physics of plant environment. Amsterdam: North-Holland Publishing Co., 210–35.
  • Demiralay, İ., 1993. Toprak Fiziksel Analizleri. Atatürk University Agriculture Faculty Publication, No 143.
  • Farouki, O.T., 1986. Thermal Properties of Soil, Series on Rock and Soil Mechanics. Trans. Tech. Publication., Germany.
  • Ghuman, B.S., Lal, R., 1985. Thermal conductivity, thermal diffusivity, and thermal capacity of some Nigerian soils. Soil Science, 139: 74–80.
  • Gori, F., Corasaniti, S., 2004. Theoretical prediction of the thermal conductivity and temperature variation inside mars soil analogues. Planet. Space Sci., 52: 91–99.
  • Heitman, J.L., Horton, R., Ren, T., Nassar, I.N., Davis, D., 2008.Test of coupled soil heat and water transfer prediction under transient boundary conditions. Soil Sci. Soc. Am. J., 72:1197–1207.
  • Horton, R., Weirenga, P.J., Nielsen, D.R., 1983. Evaluation of methods for determining the apparent thermal diffusivity of soil near the soil surface. Soil Sci. Soc. Am. J., 47: 25-32.
  • Ju, Z., Ren, T., Hu, C., 2011. Soil thermal conductivity as influenced by aggregation at intermediate water contents, Soil Sci. Soc. Am. J., 75: 26-29.
  • Kersten, M.S., 1949. Laboratory Research for the Determination of the Thermal Properties of Soils, Bulletin 28, Engineering Experiment Station, University of Minnesota, Minneapoli.
  • Kimura, S.D., Melling, L., Goh, K.J., 2012. Influence of soil aggregate size on greenhouse gas emission and uptake rate from tropical peat soil in forest and different oil palm development years, Geoderma, (185-186): 1–5.
  • Lipiec, J.,Hajnos, M., wieboda, R.S., 2012. Estimating effects of compaction on pore size distribution of soil aggregates by mercury porosimeter. Geoderma, (179–180): 20–27.
  • Luikov, A.V., Shashkov, A.G., Vasiliev, L.L., Fraiman, Y.U.E., 1968. Thermal conductivity of porous systems. Int. J. Heat Mass Transf., 11:117- 40.
  • McLean, E.O., 1982. Soil pH and lime requirement. p.199-224. In A.L. Page et al.(ed.) Methods of soil analysis. Part2.2nd ed. Agron.Monogr.9.ASA, Madison, WI. M. Smiths. K., Kirby, E.J., Massman, W., Baggett, L.S., 2016. Experimental and modeling study of forest fire effect on soil thermal conductivity. Pedosphere, 26(4): 462-473.
  • Nelson, D.W., Sommers, L.E., 1982. Total carbon, organic carbon and organic matter: In: A.L. Page, R.H. Miller and D.R. Keeney) Methods of soil analysis. Part 2 Chemical and Microbiological Properties, pp: 539-579.
  • Nusier, O.K., Abu-Hamdeh, N.H., 2003. Laboratory techniques to evaluate thermal conductivity for some soils. Heat Mass Transf., 39 (2): 119–123.
  • Olsen, S.R., Sommers, L.E., 1982. Determination of available phosphorus. In “Method of Soil Analysis”, vol. 2, ed. A. L. Page, R. H. Miller, and D. R. Keeney, 403. Madison, WI: American Society of Agronomy.
  • Park, E.J., Sul, W.J., Smucker, A.J.M., 2007. Glucose additions to aggregates subjected to drying and wetting cycles promote carbon sequestration and aggregate stability, Soil Biol. Biochem. J., 39: 2758–2768.
  • Rhoades, J.D., 1982a. Reclamation and management of salt-affected soils after drainage. Pages 125-197 in Proc. First Ann. Western Provincial Conf., Soil Salinity, Lethbridge, Alberta. 29 Nov. - 2 Dec. 1982.
  • Richards, L.A., 1954. Diagnosis and improvement of saline and alkali soils. Agricultural hand book 60. U.S. Dept. of Agriculture, Washington D.C., 160 p.
  • Shein, E.V., Mady, A.Y., 2016. Soil thermal parameters assessment by direct method and mathematical models. J. Soil Sci. Environ. Manage., 7(10): 166-172.
  • Slawin ski, C., Witkowska-Walczak, B., Lipiec, J., Nosalewicz, A., 2001. Effect of aggregate size on water movement in soils, Int. Agrophys., 25: 53–58.
  • Smits, K.M., Sakaki, T., Limsuwat, A., Illangasekare, T.H., 2010. Thermal conductivity of sands under varying moisture and porosity in drainage–wetting cycles. Vadose Zone J., 9: 1–9.
  • Thomas, G.W., 1982. Exchangeable cations. In A.L. Page et al., Eds., Methods of Soil Analysis. Agronomy 9, 2nd ed. American Society of Agronomy, Madison, WI, pp. 159–165.
  • van Wijk, W.R., de Vries, D.A., 1963. Periodic temperature variation in a homogeneous soil. P. 102-143. In: van Wijk, W.R., (ed.). Physics of plant environment. North-Holland Publ. Co., Amesterdam, the Netherlands.
  • Wiermann, C., Horn, R., 2000. Effect of different tillage systems on the recovery of soil structure following a single compaction event, In: Horn, R., van den Akker, J.J.H., Arvidsson, J., (Eds.), Subsoil Compaction - Distribution, Processes and Consequences. Advances in GeoEcology, Catena, Reiskirchen, vol. 32, Germany, 2000, pp. 339–350.
  • Yadav, M.R., Saxena, G.S., 1973. Effect of compaction and moisture content on specific heat and thermal capacity of soils. Journal Indian Society of Soil Science, 21: 129–132.
Toplam 37 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm ARAŞTIRMALAR
Yazarlar

Leila Imanparast

Mustafa Yıldırım Canbolat

Yayımlanma Tarihi 12 Temmuz 2018
Yayımlandığı Sayı Yıl 2018

Kaynak Göster

APA Imanparast, L., & Canbolat, M. Y. (2018). Assessment of Multiple Interactions between Soil Texture, Aggregate Size and Soil Thermal Properties. Atatürk Üniversitesi Ziraat Fakültesi Dergisi, 49(2), 157-162. https://doi.org/10.17097/ataunizfd.335531
AMA Imanparast L, Canbolat MY. Assessment of Multiple Interactions between Soil Texture, Aggregate Size and Soil Thermal Properties. Atatürk Üniversitesi Ziraat Fakültesi Dergisi. Temmuz 2018;49(2):157-162. doi:10.17097/ataunizfd.335531
Chicago Imanparast, Leila, ve Mustafa Yıldırım Canbolat. “Assessment of Multiple Interactions Between Soil Texture, Aggregate Size and Soil Thermal Properties”. Atatürk Üniversitesi Ziraat Fakültesi Dergisi 49, sy. 2 (Temmuz 2018): 157-62. https://doi.org/10.17097/ataunizfd.335531.
EndNote Imanparast L, Canbolat MY (01 Temmuz 2018) Assessment of Multiple Interactions between Soil Texture, Aggregate Size and Soil Thermal Properties. Atatürk Üniversitesi Ziraat Fakültesi Dergisi 49 2 157–162.
IEEE L. Imanparast ve M. Y. Canbolat, “Assessment of Multiple Interactions between Soil Texture, Aggregate Size and Soil Thermal Properties”, Atatürk Üniversitesi Ziraat Fakültesi Dergisi, c. 49, sy. 2, ss. 157–162, 2018, doi: 10.17097/ataunizfd.335531.
ISNAD Imanparast, Leila - Canbolat, Mustafa Yıldırım. “Assessment of Multiple Interactions Between Soil Texture, Aggregate Size and Soil Thermal Properties”. Atatürk Üniversitesi Ziraat Fakültesi Dergisi 49/2 (Temmuz 2018), 157-162. https://doi.org/10.17097/ataunizfd.335531.
JAMA Imanparast L, Canbolat MY. Assessment of Multiple Interactions between Soil Texture, Aggregate Size and Soil Thermal Properties. Atatürk Üniversitesi Ziraat Fakültesi Dergisi. 2018;49:157–162.
MLA Imanparast, Leila ve Mustafa Yıldırım Canbolat. “Assessment of Multiple Interactions Between Soil Texture, Aggregate Size and Soil Thermal Properties”. Atatürk Üniversitesi Ziraat Fakültesi Dergisi, c. 49, sy. 2, 2018, ss. 157-62, doi:10.17097/ataunizfd.335531.
Vancouver Imanparast L, Canbolat MY. Assessment of Multiple Interactions between Soil Texture, Aggregate Size and Soil Thermal Properties. Atatürk Üniversitesi Ziraat Fakültesi Dergisi. 2018;49(2):157-62.

Bu dergide yayınlanan makaleler Creative Commons Uluslararası Lisansı (https://creativecommons.org/licenses/by-nc/4.0/) kapsamında yayınlanmaktadır. Bu, orijinal makaleye uygun şekilde atıf yapılması şartıyla, eserin herhangi bir ortam veya formatta kopyalanmasını ve dağıtılmasını sağlar. Ancak, eserler ticari amaçlar için kullanılamaz.

https://creativecommons.org/licenses/by-nc/4.0/