Araştırma Makalesi
BibTex RIS Kaynak Göster

Meyve renk özelliklerini tahmin etmek için veri madenciliği yaklaşımı

Yıl 2018, , 37 - 43, 10.01.2018
https://doi.org/10.17097/ataunizfd.365231

Öz



Renk, birçok taze meyve ve sebzenin kalitesini ve tüketici tercihlerini belirleyen önemli bir özelliktir. Meyvelerin renk
ölçümünde, uniform renk ölçeği nedeniyle CIE L*a*b* en çok kullanılan renk uzayıdır. Bu çalışmada elma çeşitlerinin renk
özelliklerine ait ham veriler ilk aşamada test ve eğitim verileri olarak iki kısma ayrılmış, eğitim verileri üzerinde analizler
yapılmış ve test verileri ise testlerde kullanılmıştır. Find laws algoritması uygulanarak elde edilen kurallar Color index (CI), hue
angle (h*) and Chroma (C*) değerlerini tahmin etmek için kullanılmıştır. İkinci aşamada ise ham veriler cluster analizine tabi
tutularak Strict ve Liberal seçenekleri ile sınıflandırılmıştır. Find laws algoritması her bir sınıfa tek tek uygulanıp, her bir CI, h*,
C* parametreleri için elde edilen 7 farklı tahmin kuralı R2 değerlerine göre karşılaştırılarak en yüksek doğruluğa sahip kurallar
tespit edilmiştir. 

Kaynakça

  • Amir Ahmad, Sarosh Hashmi, K-Harmonic means type clustering algorithm for mixed datasets, Applied Soft Computing 48 (2016) 39–49.
  • A.K. Jain, R.C. Dubes, Algorithms for Clustering Data, Prentice-Hall, Inc., 1988.
  • Giuliano Armano, Mohammad Reza Farmani, Multiobjective clustering analysis using particle swarm optimization, Expert Systems With Applications 55 (2016) 184–193.
  • Han, J., Kamber, M. (2000). Data mining: concepts and techniques, the Morgan Kaufmann Series in data management systems. Morgan Kaufmann.
  • Cheng, H. , Yang, S. , & Cao, J. (2013). Dynamic genetic algorithms for the dynamic load balanced clustering problem in mobile ad hoc networks. Expert Systems with Applications, 40 (4), 1381–1392.
  • Kao, Y.-T., Zahara, E., Kao, I.W. (2008). A hybridized approach to data clustering. Expert Systems with Applications, 34 (3), 1754–1762. doi: 10.1016/j.eswa.2007. 01.028.
  • Leung, Y., Zhang, J. S., Xu, Z. B. (2000). Clustering by scale-space filtering. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22 (12), 1396–1410. doi: 10.1109/34.895974 .
  • Nguyen, C. D., Cios, K. J. (2008). Gakrem: a novel hybrid clustering algorithm. Information Sciences, 178 (22), 4205–4227. doi: 10.1016/j.ins.2008.07.016.
  • Qiu, H., Xu, Y., Gao, L., Li, X., Chi, L. (2016). Multi-stage design space reduction and metamodeling optimization method based on self-organizing maps and fuzzy clustering. Expert Systems with Applications, 46, 180–195.
  • Saha, S., Alok, A. K., Ekbal, A. (2016). Brain image segmentation using semi- supervised clustering. Expert Systems with Applications, 52, 50–63.
  • Sahoo, A. K., Zuo, M. J., & Tiwari, M. (2012). A data clustering algorithm for stratified data partitioning in artificial neural network. Expert Systems with Applications, 39 (8), 7004–7014.
  • Thong, N. T., et al. (2015). HIFCF: An effective hybrid model between picture fuzzy clustering and intuitionistic fuzzy recommender systems for medical diagnosis. Expert Systems With Applications, 42 (7), 3682–3701.
  • Feyza Gürbüz, Lale Özbakır, Hüseyin Yapıcı, 2011. Data mining and preprocessing application on component reports of an airline company in Turkey. Expert Systems with Applications, 38, 6618–6626.
  • User Manuel of PolyAnalyst 6.5, April 2007.

Data mining aproach for prediction of fruit color properties

Yıl 2018, , 37 - 43, 10.01.2018
https://doi.org/10.17097/ataunizfd.365231

Öz



Color is an important feature that dictates the quality and consumer preferences of many fresh fruits and
vegetables. In color measurement of fruits, the CIE L*a*b* color space is widely used since it is a uniform color scale. In this
study, raw data for the color features of apple varieties were divided into two parts as test and train data in the first stage, analyses
were performed on train data and tests were performed on test data. The rules obtained by applying the Find laws algorithm were
used to estimate the color index (CI), hue angle (h *) and Chroma (C *) values. In the second stage, raw data were classified by
Strict and Liberal options of cluster analysis. Find Laws algorithm was applied to each cluster and 7 different prediction rules
were obtained for CI, h*and C* parameters. R2
values of the rules were compared and the rules with the most accurate outcomes
were identified. 


Kaynakça

  • Amir Ahmad, Sarosh Hashmi, K-Harmonic means type clustering algorithm for mixed datasets, Applied Soft Computing 48 (2016) 39–49.
  • A.K. Jain, R.C. Dubes, Algorithms for Clustering Data, Prentice-Hall, Inc., 1988.
  • Giuliano Armano, Mohammad Reza Farmani, Multiobjective clustering analysis using particle swarm optimization, Expert Systems With Applications 55 (2016) 184–193.
  • Han, J., Kamber, M. (2000). Data mining: concepts and techniques, the Morgan Kaufmann Series in data management systems. Morgan Kaufmann.
  • Cheng, H. , Yang, S. , & Cao, J. (2013). Dynamic genetic algorithms for the dynamic load balanced clustering problem in mobile ad hoc networks. Expert Systems with Applications, 40 (4), 1381–1392.
  • Kao, Y.-T., Zahara, E., Kao, I.W. (2008). A hybridized approach to data clustering. Expert Systems with Applications, 34 (3), 1754–1762. doi: 10.1016/j.eswa.2007. 01.028.
  • Leung, Y., Zhang, J. S., Xu, Z. B. (2000). Clustering by scale-space filtering. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22 (12), 1396–1410. doi: 10.1109/34.895974 .
  • Nguyen, C. D., Cios, K. J. (2008). Gakrem: a novel hybrid clustering algorithm. Information Sciences, 178 (22), 4205–4227. doi: 10.1016/j.ins.2008.07.016.
  • Qiu, H., Xu, Y., Gao, L., Li, X., Chi, L. (2016). Multi-stage design space reduction and metamodeling optimization method based on self-organizing maps and fuzzy clustering. Expert Systems with Applications, 46, 180–195.
  • Saha, S., Alok, A. K., Ekbal, A. (2016). Brain image segmentation using semi- supervised clustering. Expert Systems with Applications, 52, 50–63.
  • Sahoo, A. K., Zuo, M. J., & Tiwari, M. (2012). A data clustering algorithm for stratified data partitioning in artificial neural network. Expert Systems with Applications, 39 (8), 7004–7014.
  • Thong, N. T., et al. (2015). HIFCF: An effective hybrid model between picture fuzzy clustering and intuitionistic fuzzy recommender systems for medical diagnosis. Expert Systems With Applications, 42 (7), 3682–3701.
  • Feyza Gürbüz, Lale Özbakır, Hüseyin Yapıcı, 2011. Data mining and preprocessing application on component reports of an airline company in Turkey. Expert Systems with Applications, 38, 6618–6626.
  • User Manuel of PolyAnalyst 6.5, April 2007.
Toplam 14 adet kaynakça vardır.

Ayrıntılar

Bölüm ARAŞTIRMALAR
Yazarlar

Bünyamin Demir

Feyza Gürbüz

İkbal Eski

Zeynel Abidin Kuş

Yayımlanma Tarihi 10 Ocak 2018
Yayımlandığı Sayı Yıl 2018

Kaynak Göster

APA Demir, B., Gürbüz, F., Eski, İ., Kuş, Z. A. (2018). Meyve renk özelliklerini tahmin etmek için veri madenciliği yaklaşımı. Atatürk Üniversitesi Ziraat Fakültesi Dergisi, 49(1), 37-43. https://doi.org/10.17097/ataunizfd.365231
AMA Demir B, Gürbüz F, Eski İ, Kuş ZA. Meyve renk özelliklerini tahmin etmek için veri madenciliği yaklaşımı. Atatürk Üniversitesi Ziraat Fakültesi Dergisi. Ocak 2018;49(1):37-43. doi:10.17097/ataunizfd.365231
Chicago Demir, Bünyamin, Feyza Gürbüz, İkbal Eski, ve Zeynel Abidin Kuş. “Meyve Renk özelliklerini Tahmin Etmek için Veri madenciliği yaklaşımı”. Atatürk Üniversitesi Ziraat Fakültesi Dergisi 49, sy. 1 (Ocak 2018): 37-43. https://doi.org/10.17097/ataunizfd.365231.
EndNote Demir B, Gürbüz F, Eski İ, Kuş ZA (01 Ocak 2018) Meyve renk özelliklerini tahmin etmek için veri madenciliği yaklaşımı. Atatürk Üniversitesi Ziraat Fakültesi Dergisi 49 1 37–43.
IEEE B. Demir, F. Gürbüz, İ. Eski, ve Z. A. Kuş, “Meyve renk özelliklerini tahmin etmek için veri madenciliği yaklaşımı”, Atatürk Üniversitesi Ziraat Fakültesi Dergisi, c. 49, sy. 1, ss. 37–43, 2018, doi: 10.17097/ataunizfd.365231.
ISNAD Demir, Bünyamin vd. “Meyve Renk özelliklerini Tahmin Etmek için Veri madenciliği yaklaşımı”. Atatürk Üniversitesi Ziraat Fakültesi Dergisi 49/1 (Ocak 2018), 37-43. https://doi.org/10.17097/ataunizfd.365231.
JAMA Demir B, Gürbüz F, Eski İ, Kuş ZA. Meyve renk özelliklerini tahmin etmek için veri madenciliği yaklaşımı. Atatürk Üniversitesi Ziraat Fakültesi Dergisi. 2018;49:37–43.
MLA Demir, Bünyamin vd. “Meyve Renk özelliklerini Tahmin Etmek için Veri madenciliği yaklaşımı”. Atatürk Üniversitesi Ziraat Fakültesi Dergisi, c. 49, sy. 1, 2018, ss. 37-43, doi:10.17097/ataunizfd.365231.
Vancouver Demir B, Gürbüz F, Eski İ, Kuş ZA. Meyve renk özelliklerini tahmin etmek için veri madenciliği yaklaşımı. Atatürk Üniversitesi Ziraat Fakültesi Dergisi. 2018;49(1):37-43.

Bu dergide yayınlanan makaleler Creative Commons Uluslararası Lisansı (https://creativecommons.org/licenses/by-nc/4.0/) kapsamında yayınlanmaktadır. Bu, orijinal makaleye uygun şekilde atıf yapılması şartıyla, eserin herhangi bir ortam veya formatta kopyalanmasını ve dağıtılmasını sağlar. Ancak, eserler ticari amaçlar için kullanılamaz.

https://creativecommons.org/licenses/by-nc/4.0/