Araştırma Makalesi
BibTex RIS Kaynak Göster

Kuraklık Stresi Altında Dışarıdan Nitrik Oksit Uygulanan Pazıda (Beta vulgaris var. cicla L.) Besin Alımının İzlenmesi

Yıl 2021, Cilt: 52 Sayı: 2, 160 - 166, 29.05.2021
https://doi.org/10.17097/ataunizfd.797890

Öz

Bu araştırmada farklı NO uygulamaları altında tam sulanmış ve kurak koşullarda yetiştirilmiş pazı bitkisinin besin maddesi alımı incelenmiştir. Uygulamalar, bitki kök bölgesinde tarla kapasitesine ulaşmak için gerekli suyun %100 (kontrol), %67 ve %33'ünün sağlandığı kuraklık seviyelerinde, nitrik oksit donörü olarak dört doz (0, 50, 100, 150 ve 200 µM) sodyum nitroprussid ile NO çözeltilerinin kullanıldığı çözeltilerle sadece tohum (s) veya tohum ve yapraklara (sf) olmak üzere dışarıdan uygulanmıştır. Kuraklık stresi altında besin alımı önemli ölçüde azalmıştır. Bununla birlikte, NO uygulamalarının besin alımı üzerindeki geliştirici etkileri hem tam sulanan koşullar hem de kurak koşullar altında gözlemlenmiştir. Bitkinin N ve P alımındaki artış, özellikle hem s hem de sf uygulamaları için 100 ve 150 µM'lik dozlarda önemli olmuştur. % 67 sulama seviyesinde en yüksek Fe, Cu ve Zn içeriği 150 µM sf NO uygulamasında olurken, en yüksek Mn ve B ise 150 µM s ve 200 µM sf NO uygulamasından elde edilmiştir. Ancak %33 seviyesinde en yüksek Cu ve B içeriği 150 µM sf NO uygulamasından elde edilirken, en yüksek Mn ve Zn 100 µM sf'den, en yüksek Fe ise 200 µM s NO uygulamasından elde edilmiştir.

Destekleyen Kurum

Atatürk Üniversitesi

Proje Numarası

BAP-169

Kaynakça

  • Abd El-Mageed, T.A., Semida, W.M., 2015. Organo mineral fertilizer can mitigate water stress for cucumber production (Cucumis sativus L.). Agric. Water Manag., 159: 1-10.
  • Anyia, A.O., Herzog, H., 2004. Water use efficiency, leaf area and leaf gas exchange of cowpeas under mid-season drought. Eur. J. Agron., 20: 327-339.
  • Arasimowicz, M., Floryszak-Wieczorek, J., 2007. Nitric oxide as a bioactive signaling molecule in plant stress responses. Plant Sci., 172: 876-887.
  • Aslam, M., Zamir, M.S.I., Afzal, I., Yaseen, M., Mubeen, M., Shoai, A., 2013. Drought stress, its effect on maize production and development of drought tolerance through potassium application. Agro. Res. Moldavia, 2: 99-114.
  • Bray, E.A., Bailey-Serres, J., Weretilnyk, E., 2000. Responses to abiotic stress. In: Buchanan B, Gruissem W, Jones R (eds) Biochemistry and molecular biology of plants, American Society of Plant Physiology, Rockville, MD, pp. 1158- 1203.
  • Bremner, J.M., 1996. Nitrogen Total. In: Sparks DL (ed.) Methods of soil analysis. Part III. Chemical Methods, 2nd edn. Madison, WI, USA, Soil Science Society of America, pp. 1085-1122.
  • Ekinci, M., Ors, S., Sahin, U., Yildirim, E., Dursun, A., 2015. Responses to the irrigation water amount of spinach supplemented with organic amendment in greenhouse conditions. Commun. Soil Sci. Plant Anal., 46: 327-342.
  • Ekinci, M., Ors, S., Yildirim, E., Turan, M., Sahin, U., Dursun, A., Kul, R., 2020. Determination of physiological indices and some antioxidant enzymes of chard exposed to nitric oxide under drought stress. Russ. J. Plant Physiol., 67 (4): 740-749.
  • Farooq, M., Basra, S.M.A., Wahid, A., Rehman, H., 2009. Exogenously applied nitric oxide enhances the drought tolerance in fine grain aromatic rice (Oryza sativa L.). J. Agron. Crop Sci., 95: 254-261.
  • He, M., Dijkstra, F.A., 2014. Drought effect on plant nitrogen and phosphorus: A meta-analysis. New Phytol., 204: 924-931.
  • Heidari, M., Karami, K., 2014. Effects of different mycorrhiza species on grain yield, nutrient uptake and oil content of sunflower under water stress. J. Saudi Soc. Agr. Sci., 13: 9-13.
  • Kopyra, M., Gwóźdź, E.A., 2004. The role of nitric oxide in plant growth regulation and responses to abiotic stresses. Acta Physiol. Plant, 26: 459-473.
  • Kramer, P.J., Boyer, J.S., 1995. Water relations of plants and soils. San Diego: Academic Press.
  • Liu, E.K., Mei, X.R., Yan, C.R., Gong, D.Z., Zhang, Y.Q., 2016. Effects of water stress on photosynthetic characteristics, dry matter translocation and WUE in two winter wheat genotypes. Agric. Water Manag., 167: 75-85.
  • Manoli, A., Begheldo, M., Genre, A., Lanfranco, L., Trevisan, S., Quaggiotti, S., 2014. NO homeostasis is a key regulator of early nitrate perception and root elongation in maize. J. Exp. Bot., 65: 185-200.
  • McWilliams, D., 2003. Drought strategies for cotton, cooperative extension service circular 582: College of Agriculture and Home Economics, New Mexico State University, USA.
  • Meng, Z., Chen, L., Suo, D., Li, G., Tang, C., Zheng, S., 2012. Nitric oxide is the shared signaling molecule in phosphorus- and iron-deficiency induced formation of cluster roots in white lupin (Lupinus albus). Ann. Bot., 109: 1055-1064.
  • Mertens, D., 2005a. AOAC Official Method 922.02. In: Horwitz W, Latimer GW (eds) Plants preparation of laboratory sample. Official Methods of Analysis, 18th edn. Chapter 3, AOAC-International Suite 500, 481. North Frederick Avenue, Gaitherburg, Maryland 20877-2417, USA, pp. 1-2.
  • Mertens, D., 2005b. AOAC Official Method 975.03. In: Horwitz W, Latimer GW (eds) Metal in plants and pet foods. Official Methods of Analysis, 18th edn. Chapter 3, AOAC-International Suite 500, 481. North Frederick Avenue, Gaitherburg, Maryland 20877-2417, USA, pp. 3-4.
  • Ors, S., Ekinci, M., Yildirim, E., Sahin, U., 2016. Changes in gas exchange capacity and selected physiological properties of squash seedlings (Cucurbita pepo L.) under well-watered and drought stress conditions. Arch. Agron. Soil Sci., 62 (12): 1700-1710.
  • Pazzagli, P.T., Weiner, J., Liu, F., 2016. Effects of CO2 elevation and irrigation regimes on leaf gas exchange, plant water relations, and water use efficiency of two tomato cultivars. Agric. Water Manag., 169: 26-33.
  • Pinkerton, A., Simpson, J.W., 1986. Interactions of surface drying and subsurface nutrients affecting plant-growth on acidic soil profiles from an old pasture. Aust. J. Exp. Agric., 26: 681-689.
  • Qiu, G.Y., Wang, L.M., He, X.H., Zhang, X.Y., Chen, S.Y., Chen, J., Yang, Y.H., 2008. Water use efficiency and evapotranspiration of winter wheat and its response to irrigation regime in the north China plain. Agr. Forest Meteorol., 148: 1848-1859.
  • Sahin, U., Ekinci, M., Kiziloglu, M.F., Yildirim, E., Turan, M., Kotan, R., Ors, S., 2015. Ameliorative effects of plant growth promoting bacteria on water-yield relationships, growth, and nutrient uptake of lettuce plants under different irrigation levels. Hortscience, 50: 1379-1386.
  • Sahin, U., Ekinci, M., Ors, S., Turan, M., Yildiz, S., Yildirim, E., 2018. Effects of individual and combined effects of salinity and drought on physiological, nutritional and biochemical properties of cabbage (Brassica oleracea var. capitata). Sci. Hortic., 240: 196-204.
  • Siddiqui, M.H., Al-Whaibi, M.H., Basalah, M.O., 2011. Role of nitric oxide in tolerance of plants to abiotic stress. Protoplasma, 248: 447-455. SPSS Inc., 2010. 18.0 Base user’s guide. Chicago (IL), Prentice Hall, USA.
  • Sun, H., Tao, J., Zhao, Q., Xua, G., Zhang, Y., 2017. Multiple roles of nitric oxide in root development and nitrogen uptake. Plant Signal. Behav., 12 (1) e1274480.
  • Trevisan, S., Manoli, A., Quaggiotti, S., 2014. NO signaling is a key component of the root growth response to nitrate in Zea mays L. Plant Signal. Behav., 9 (6) e28290.
  • Wania, S.H., Kumar, V., Shriram, V., Sah, S.K., 2016. Phytohormones and their metabolic engineering for abiotic stress tolerance in crop plants. Crop J., 4: 162-176.
  • Waraich, E.A., Rashid, A., Ashraf, M.Y., 2011. Role of mineral nutrition in alleviation of drought stress in plants. Aust. J. Crop Sci., 5: 764-777.
  • Wu, Y.L., Guo, Q.F., Luo, Y., Tian, F.X., Wang, W., 2014. Differences in physiological characteristics between two wheat cultivars exposed to field water deficit conditions. Russ. J. Plant Physiol., 61: 451-459.
  • Xue, Q.W., Zhu, Z.X., Music, J.T., Stewart, B.A., Dusek, D.A., 2006. Physiological mechanisms contributing to the increased water-use efficiency in winter wheat under deficit irrigation. J. Plant Physiol., 163: 154-164.
  • Yang, J.C., Zhang, J.H., Huang, Z.L., Zhu, Q.S., Wang, L., 2000. Remobilization of carbon reserves is improved by controlled soil-drying during grain filling of wheat. Crop Sci., 40: 1645-1655.
  • Zhao, D., Tian, Q., Li, L., Zhang, W., 2007. Nitric oxide is involved in nitrate-induced inhibition of root elongation in Zea mays. Ann. Bot., 100: 497-503.

Monitoring Nutrient Uptake of Chard (Beta vulgaris var. cicla L.) Exposed to Exogenously Applied Nitric Oxide under Drought Stress

Yıl 2021, Cilt: 52 Sayı: 2, 160 - 166, 29.05.2021
https://doi.org/10.17097/ataunizfd.797890

Öz

Nutrient uptake of chard under well-watered and drought conditions with different NO applications were investigated in this research. NO solutions were prepared with four doses (0, 50, 100, 150 and 200 µM) of sodium nitroprusside as a nitric oxide source and exogenously applied on only seeds (s) or together with seed and foliar (sf) of chard under different levels of drought according to 100% (control), 67% and 33% of the water required to reach field capacity. Nutrient uptake drastically decreased under drought stress. However, progressive effects of NO applications on nutrient uptake have been observed under both well-watered conditions and under drought. The increase in N and P uptake of plant were significant especially for doses of 100 and 150 µM for both s and sf applications. The highest Fe, Cu and Zn content were obtained from 150 µM sf NO application, while the highest Mn and B were obtained from 150 µM s and 200 µM sf NO application in 67% level. However, in 33% level the highest Cu and B content were obtained from 150 µM sf NO application, while the highest Mn and Zn obtained from 100 µM sf and the highest Fe obtained from the 200 µM s NO application.

Proje Numarası

BAP-169

Kaynakça

  • Abd El-Mageed, T.A., Semida, W.M., 2015. Organo mineral fertilizer can mitigate water stress for cucumber production (Cucumis sativus L.). Agric. Water Manag., 159: 1-10.
  • Anyia, A.O., Herzog, H., 2004. Water use efficiency, leaf area and leaf gas exchange of cowpeas under mid-season drought. Eur. J. Agron., 20: 327-339.
  • Arasimowicz, M., Floryszak-Wieczorek, J., 2007. Nitric oxide as a bioactive signaling molecule in plant stress responses. Plant Sci., 172: 876-887.
  • Aslam, M., Zamir, M.S.I., Afzal, I., Yaseen, M., Mubeen, M., Shoai, A., 2013. Drought stress, its effect on maize production and development of drought tolerance through potassium application. Agro. Res. Moldavia, 2: 99-114.
  • Bray, E.A., Bailey-Serres, J., Weretilnyk, E., 2000. Responses to abiotic stress. In: Buchanan B, Gruissem W, Jones R (eds) Biochemistry and molecular biology of plants, American Society of Plant Physiology, Rockville, MD, pp. 1158- 1203.
  • Bremner, J.M., 1996. Nitrogen Total. In: Sparks DL (ed.) Methods of soil analysis. Part III. Chemical Methods, 2nd edn. Madison, WI, USA, Soil Science Society of America, pp. 1085-1122.
  • Ekinci, M., Ors, S., Sahin, U., Yildirim, E., Dursun, A., 2015. Responses to the irrigation water amount of spinach supplemented with organic amendment in greenhouse conditions. Commun. Soil Sci. Plant Anal., 46: 327-342.
  • Ekinci, M., Ors, S., Yildirim, E., Turan, M., Sahin, U., Dursun, A., Kul, R., 2020. Determination of physiological indices and some antioxidant enzymes of chard exposed to nitric oxide under drought stress. Russ. J. Plant Physiol., 67 (4): 740-749.
  • Farooq, M., Basra, S.M.A., Wahid, A., Rehman, H., 2009. Exogenously applied nitric oxide enhances the drought tolerance in fine grain aromatic rice (Oryza sativa L.). J. Agron. Crop Sci., 95: 254-261.
  • He, M., Dijkstra, F.A., 2014. Drought effect on plant nitrogen and phosphorus: A meta-analysis. New Phytol., 204: 924-931.
  • Heidari, M., Karami, K., 2014. Effects of different mycorrhiza species on grain yield, nutrient uptake and oil content of sunflower under water stress. J. Saudi Soc. Agr. Sci., 13: 9-13.
  • Kopyra, M., Gwóźdź, E.A., 2004. The role of nitric oxide in plant growth regulation and responses to abiotic stresses. Acta Physiol. Plant, 26: 459-473.
  • Kramer, P.J., Boyer, J.S., 1995. Water relations of plants and soils. San Diego: Academic Press.
  • Liu, E.K., Mei, X.R., Yan, C.R., Gong, D.Z., Zhang, Y.Q., 2016. Effects of water stress on photosynthetic characteristics, dry matter translocation and WUE in two winter wheat genotypes. Agric. Water Manag., 167: 75-85.
  • Manoli, A., Begheldo, M., Genre, A., Lanfranco, L., Trevisan, S., Quaggiotti, S., 2014. NO homeostasis is a key regulator of early nitrate perception and root elongation in maize. J. Exp. Bot., 65: 185-200.
  • McWilliams, D., 2003. Drought strategies for cotton, cooperative extension service circular 582: College of Agriculture and Home Economics, New Mexico State University, USA.
  • Meng, Z., Chen, L., Suo, D., Li, G., Tang, C., Zheng, S., 2012. Nitric oxide is the shared signaling molecule in phosphorus- and iron-deficiency induced formation of cluster roots in white lupin (Lupinus albus). Ann. Bot., 109: 1055-1064.
  • Mertens, D., 2005a. AOAC Official Method 922.02. In: Horwitz W, Latimer GW (eds) Plants preparation of laboratory sample. Official Methods of Analysis, 18th edn. Chapter 3, AOAC-International Suite 500, 481. North Frederick Avenue, Gaitherburg, Maryland 20877-2417, USA, pp. 1-2.
  • Mertens, D., 2005b. AOAC Official Method 975.03. In: Horwitz W, Latimer GW (eds) Metal in plants and pet foods. Official Methods of Analysis, 18th edn. Chapter 3, AOAC-International Suite 500, 481. North Frederick Avenue, Gaitherburg, Maryland 20877-2417, USA, pp. 3-4.
  • Ors, S., Ekinci, M., Yildirim, E., Sahin, U., 2016. Changes in gas exchange capacity and selected physiological properties of squash seedlings (Cucurbita pepo L.) under well-watered and drought stress conditions. Arch. Agron. Soil Sci., 62 (12): 1700-1710.
  • Pazzagli, P.T., Weiner, J., Liu, F., 2016. Effects of CO2 elevation and irrigation regimes on leaf gas exchange, plant water relations, and water use efficiency of two tomato cultivars. Agric. Water Manag., 169: 26-33.
  • Pinkerton, A., Simpson, J.W., 1986. Interactions of surface drying and subsurface nutrients affecting plant-growth on acidic soil profiles from an old pasture. Aust. J. Exp. Agric., 26: 681-689.
  • Qiu, G.Y., Wang, L.M., He, X.H., Zhang, X.Y., Chen, S.Y., Chen, J., Yang, Y.H., 2008. Water use efficiency and evapotranspiration of winter wheat and its response to irrigation regime in the north China plain. Agr. Forest Meteorol., 148: 1848-1859.
  • Sahin, U., Ekinci, M., Kiziloglu, M.F., Yildirim, E., Turan, M., Kotan, R., Ors, S., 2015. Ameliorative effects of plant growth promoting bacteria on water-yield relationships, growth, and nutrient uptake of lettuce plants under different irrigation levels. Hortscience, 50: 1379-1386.
  • Sahin, U., Ekinci, M., Ors, S., Turan, M., Yildiz, S., Yildirim, E., 2018. Effects of individual and combined effects of salinity and drought on physiological, nutritional and biochemical properties of cabbage (Brassica oleracea var. capitata). Sci. Hortic., 240: 196-204.
  • Siddiqui, M.H., Al-Whaibi, M.H., Basalah, M.O., 2011. Role of nitric oxide in tolerance of plants to abiotic stress. Protoplasma, 248: 447-455. SPSS Inc., 2010. 18.0 Base user’s guide. Chicago (IL), Prentice Hall, USA.
  • Sun, H., Tao, J., Zhao, Q., Xua, G., Zhang, Y., 2017. Multiple roles of nitric oxide in root development and nitrogen uptake. Plant Signal. Behav., 12 (1) e1274480.
  • Trevisan, S., Manoli, A., Quaggiotti, S., 2014. NO signaling is a key component of the root growth response to nitrate in Zea mays L. Plant Signal. Behav., 9 (6) e28290.
  • Wania, S.H., Kumar, V., Shriram, V., Sah, S.K., 2016. Phytohormones and their metabolic engineering for abiotic stress tolerance in crop plants. Crop J., 4: 162-176.
  • Waraich, E.A., Rashid, A., Ashraf, M.Y., 2011. Role of mineral nutrition in alleviation of drought stress in plants. Aust. J. Crop Sci., 5: 764-777.
  • Wu, Y.L., Guo, Q.F., Luo, Y., Tian, F.X., Wang, W., 2014. Differences in physiological characteristics between two wheat cultivars exposed to field water deficit conditions. Russ. J. Plant Physiol., 61: 451-459.
  • Xue, Q.W., Zhu, Z.X., Music, J.T., Stewart, B.A., Dusek, D.A., 2006. Physiological mechanisms contributing to the increased water-use efficiency in winter wheat under deficit irrigation. J. Plant Physiol., 163: 154-164.
  • Yang, J.C., Zhang, J.H., Huang, Z.L., Zhu, Q.S., Wang, L., 2000. Remobilization of carbon reserves is improved by controlled soil-drying during grain filling of wheat. Crop Sci., 40: 1645-1655.
  • Zhao, D., Tian, Q., Li, L., Zhang, W., 2007. Nitric oxide is involved in nitrate-induced inhibition of root elongation in Zea mays. Ann. Bot., 100: 497-503.
Toplam 34 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm ARAŞTIRMALAR
Yazarlar

Selda Örs 0000-0001-6789-8642

Ertan Yıldırım 0000-0003-3369-0645

Melek Ekinci 0000-0002-7604-3803

Metin Turan 0000-0002-4849-7680

Atilla Dursun 0000-0002-8475-8534

Ustun Sahin 0000-0002-1924-1715

Proje Numarası BAP-169
Yayımlanma Tarihi 29 Mayıs 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 52 Sayı: 2

Kaynak Göster

APA Örs, S., Yıldırım, E., Ekinci, M., Turan, M., vd. (2021). Monitoring Nutrient Uptake of Chard (Beta vulgaris var. cicla L.) Exposed to Exogenously Applied Nitric Oxide under Drought Stress. Atatürk Üniversitesi Ziraat Fakültesi Dergisi, 52(2), 160-166. https://doi.org/10.17097/ataunizfd.797890
AMA Örs S, Yıldırım E, Ekinci M, Turan M, Dursun A, Sahin U. Monitoring Nutrient Uptake of Chard (Beta vulgaris var. cicla L.) Exposed to Exogenously Applied Nitric Oxide under Drought Stress. Atatürk Üniversitesi Ziraat Fakültesi Dergisi. Mayıs 2021;52(2):160-166. doi:10.17097/ataunizfd.797890
Chicago Örs, Selda, Ertan Yıldırım, Melek Ekinci, Metin Turan, Atilla Dursun, ve Ustun Sahin. “Monitoring Nutrient Uptake of Chard (Beta Vulgaris Var. Cicla L.) Exposed to Exogenously Applied Nitric Oxide under Drought Stress”. Atatürk Üniversitesi Ziraat Fakültesi Dergisi 52, sy. 2 (Mayıs 2021): 160-66. https://doi.org/10.17097/ataunizfd.797890.
EndNote Örs S, Yıldırım E, Ekinci M, Turan M, Dursun A, Sahin U (01 Mayıs 2021) Monitoring Nutrient Uptake of Chard (Beta vulgaris var. cicla L.) Exposed to Exogenously Applied Nitric Oxide under Drought Stress. Atatürk Üniversitesi Ziraat Fakültesi Dergisi 52 2 160–166.
IEEE S. Örs, E. Yıldırım, M. Ekinci, M. Turan, A. Dursun, ve U. Sahin, “Monitoring Nutrient Uptake of Chard (Beta vulgaris var. cicla L.) Exposed to Exogenously Applied Nitric Oxide under Drought Stress”, Atatürk Üniversitesi Ziraat Fakültesi Dergisi, c. 52, sy. 2, ss. 160–166, 2021, doi: 10.17097/ataunizfd.797890.
ISNAD Örs, Selda vd. “Monitoring Nutrient Uptake of Chard (Beta Vulgaris Var. Cicla L.) Exposed to Exogenously Applied Nitric Oxide under Drought Stress”. Atatürk Üniversitesi Ziraat Fakültesi Dergisi 52/2 (Mayıs 2021), 160-166. https://doi.org/10.17097/ataunizfd.797890.
JAMA Örs S, Yıldırım E, Ekinci M, Turan M, Dursun A, Sahin U. Monitoring Nutrient Uptake of Chard (Beta vulgaris var. cicla L.) Exposed to Exogenously Applied Nitric Oxide under Drought Stress. Atatürk Üniversitesi Ziraat Fakültesi Dergisi. 2021;52:160–166.
MLA Örs, Selda vd. “Monitoring Nutrient Uptake of Chard (Beta Vulgaris Var. Cicla L.) Exposed to Exogenously Applied Nitric Oxide under Drought Stress”. Atatürk Üniversitesi Ziraat Fakültesi Dergisi, c. 52, sy. 2, 2021, ss. 160-6, doi:10.17097/ataunizfd.797890.
Vancouver Örs S, Yıldırım E, Ekinci M, Turan M, Dursun A, Sahin U. Monitoring Nutrient Uptake of Chard (Beta vulgaris var. cicla L.) Exposed to Exogenously Applied Nitric Oxide under Drought Stress. Atatürk Üniversitesi Ziraat Fakültesi Dergisi. 2021;52(2):160-6.

Bu dergide yayınlanan makaleler Creative Commons Uluslararası Lisansı (https://creativecommons.org/licenses/by-nc/4.0/) kapsamında yayınlanmaktadır. Bu, orijinal makaleye uygun şekilde atıf yapılması şartıyla, eserin herhangi bir ortam veya formatta kopyalanmasını ve dağıtılmasını sağlar. Ancak, eserler ticari amaçlar için kullanılamaz.

https://creativecommons.org/licenses/by-nc/4.0/