Derleme
BibTex RIS Kaynak Göster

Kanserde Beslenme/Beslenme Metabolizmasının Sirkadiyen Ritim ve DNA Onarımına Etkisi Üzerine Kısa Bir İnceleme

Yıl 2021, Cilt: 4 Sayı: 3, 105 - 115, 01.11.2021

Öz

Sirkadiyen ritim, metabolizma, uyku, nörodavranış, epigenetik ve hormon salgılanması gibi birçok fizyolojik süreci düzenleyen bir saat gibi çalışır, böylece sirkadiyen ritmin bozulması insan sağlığı üzerinde olumsuz etkilere neden olur. DNA'daki mutasyonlar, kanserin (genom hasarının neden olduğu genetik bir hastalık) geliştirme riskini artırır. Kanser oluşumu sirkadiyen ritmin bozulmasından da kaynaklanır. Bu nedenle, bir hücrenin DNA hasarına uygun şekilde yanıt verme ve DNA'yı onarma yeteneği, kanser oluşumunu önlemede kritik öneme sahiptir. DNA hasarının önlenmesi kanserin ortaya çıkması için önemlidir. Epidemiyolojik ve deneysel kanıtlar, kanser prevalansında diyet alımı etkilerinin değişkenliğini açıklamaktadır. Diyet faktörleri, DNA onarımının etkinliğini, epigenetik mekanizmalar üzerindeki etkinliğini ve ayrıca sirkadiyen ritmi etkileyebilir ve kanser oluşumunu engelleyebilir. Bu derlemenin amacı beslenmenin sirkadiyen ritim ve DNA onarımı üzerindeki etkilerini ortaya koymak, mevcut çalışmaların azlığını vurgulamak ve olası deneysel çalışmaların önünü açmaktır. Bu alanda çok az çalışma vardır ve sirkadiyen ritmi etkileyen besinlerle ilgili gelecekte yapılacak çalışmalar kanser tedavisine yeni çözümler bulmak için çok değerlidir. Beslenmenin sirkadiyen sistem ve DNA onarımının için birçok etkisi ve nihayetinde kronik hastalıkların yükünü azaltmada yardımcı rolü olabilir.

Kaynakça

  • 1.Roser M, Ritchie H. Cancer. Published online at OurWorldInData.org. 2015. https://ourworldindata.org/cancer.
  • 2.World Health Organization. Cancer Fact Sheet. https://www.who.int/news-room/fact-sheets/detail/cancer (Erişim: Kasım 2020).
  • 3.World Health Organization. Global Cancer Profile 2020. https: //www.paho.org/hq/index.php?option=com_docman&view=download&category_slug=4-cancer-country-profiles-2020&alias=51561-global-cancer-profile-2020&Itemid=270&lang=fr
  • 4.Forman D, Bray F. The burden of cancer. In The Cancer Atlas, 2nd ed., Pp. 36–37 [A Jemal, P Vineis, F Bray, L Torre and D Forman, editors]. Atlanta, GA: American Cancer Society. 2014.
  • 5.Pavlopoulou A, Spandidos DA, Michalopoulos I. Human cancer databases. Oncol Rep 2015 33:3–18. doi:10.3892/or.2014.3579.
  • 6.Shewach DS, Kuchta RD. Introduction to cancer chemotherapeutics. Chem Rev 2009 109;2859–2861. doi:10.1021/cr900208x.
  • 7.Ou HL, Schumacher B. DNA damage responses and p53 in the aging process. Blood 2018 131: 488-495. doi:10.1182/blood-2017-07-746396.
  • 8.Brown JS, O'Carrigan B, Jackson SP, et al. Targeting DNA Repair in Cancer: Beyond PARP Inhibitors. Cancer Discov 2017 7;20–37. doi:10.1158/2159-8290.CD-16-0860.
  • 9.Onur E, Tuğrul B, Bozyiğit F. DNA Damage and Repair Mechanisms. J Turk Clin Biochem 2009 7:061-070. 10.Kurtoğlu E, Tekedereli I. DNA Onarım Mekanizmaları. Balıkesir Health Sci J 2015 4;169-177.
  • 11.Abugable AA, Morris JLM, Palminha NM, et al. repair and neurological disease: From molecular understanding to the development of diagnostics and model organisms. DNA Repair (Amst) 2019 81;102669. doi:10.1016/j.dnarep.2019.102669.
  • 12.Sancar A, Lindsey-Boltz LA, Gaddameedhi S, et al. Circadian clock, cancer, and chemotherapy. Biochemistry. 2015 54;2:110-123. doi:10.1021/bi5007354.
  • 13.Canakis A, Qazi T. Sleep and Fatigue in IBD: an Unrecognized but Important Extra-intestinal Manifestation. Curr Gastroenterol Rep 2020 22;2:8. doi:10.1007/s11894-020-0746-x.
  • 14.Sancar A. Mechanisms of DNA Repair by Photolyase and Excision Nuclease, Nobel Lecture. The Nobel Prizes. 2015. https://www.nobelprize.org/uploads/2018/06/sancar-lecture.pdf
  • 15.Gaddameedhi S, Selby CP, Kaufmann WK, et al. Control of skin cancer by the circadian rhythm. PNAS USA 2011 108;18790–18795.
  • 16.Gaddameedhi S, Selby CP, Kemp MG, et al. The circadian clock controls sunburn apoptosis and erythema in mouse skin. J Invest Dermatol 2015 135;1119–1127. doi:10.1038/jid.2014.508.
  • 17.Potter GD, Cade JE, Grant PJ, et al. Nutrition and the circadian system. Br J Nutr 2016 116;3:434-442. doi:10.1017/S0007114516002117.
  • 18.Burke TM, Markwald RR, McHill AW, Chinoy ED, Snider JA, Bessman SC, Jung CM, O'Neill JS, Wright KP Jr. Effects of caffeine on the human circadian clock in vivo and in vitro. Sci Transl Med 2015 7;305: 305ra146-305ra146. doi: 10.1126/scitranslmed.aac5125.
  • 19.Fenech MF. Dietary reference values of individual micronutrients and nutriomes for genome damage prevention: current status and a road map to the future. Am J Clin Nutr 2010 91. doi:10.3945/ajcn.2010.28674d.
  • 20.Tyson J, Mathers JC. Dietary and genetic modulation of DNA repair in healthy human adults. Proc Nutr Soc 2007 66;42–51. doi:10.1017/s0029665107005289.
  • 21.Shostak A. Circadian Clock, Cell Division, and Cancer: From Molecules to Organism. Int J Mol Sci 2017 18;873. doi:10.3390/ijms18040873.
  • 22.Feng D, Lazar MA. Clocks, metabolism, and the epigenome. Mol Cell 2012 47;2:158-167. doi:10.1016/j.molcel.2012.06.026.
  • 23.Sherman H, Gutman R, Chapnik N, et al. Caffeine alters circadian rhythms and expression of disease and metabolic markers. Int J Biochem Cell Biol 2011 43;5:829-838. doi:10.1016/j.biocel.2011.02.008.
  • 24.Acosta J, Bussi IL, Esquivel M, et al. Circadian modulation of motivation in mice. Behav Brain Res 2020 382:112471. doi:10.1016/j.bbr.2020.112471.
  • 25.Alamoudi AA. Why do cancer cells break from host circadian rhythm? Insights from unicellular organisms. Bioessays. 2021;43(4):e2000205. doi:10.1002/bies.202000205.
  • 26.Wang Z, Su G, Dai Z, et al. Circadian clock genes promote glioma progression by affecting tumour immune infiltration and tumour cell proliferation. Cell Prolif. 2021;54(3):e12988. doi:10.1111/cpr.12988.
  • 27.Burchett JB, Knudsen-Clark AM, Altman BJ. MYC Ran Up the Clock: The Complex Interplay between MYC and the Molecular Circadian Clock in Cancer. Int J Mol Sci. 2021;22(14):7761. Published 2021 Jul 20. doi:10.3390/ijms22147761.
  • 28.Nascimento RAS, Özel RE, Mak WH, et al. Single Cell Glucose Nanosensor Verifies Elevated Glucose Levels in Individual Cancer Cells. Nano Lett 2016 16:1194–1200. doi:10.1021/acs.nanolett.5b04495.
  • 29.Elstrom RL, Bauer DE, Buzzai M, Karnauskas R, Harris MH, Plas DR, et al. Akt Stimulates Aerobic Glycolysis in Cancer Cells. Cancer Res 2004 64:3892–9. doi:10.1158/0008-5472.can-03-2904.
  • 30.Mızrak D, Akbulut H. Cancer patient and hunger. Turkish Journal of Oncology 2015.
  • 31.Akıncı E, Orhan F. Circadian Rhythm Sleep Disorders. Curr Approaches Psychiatry 2016 8:178-189 doi: 10.18863 / pgy.81775.
  • 31.Gillies RJ, Robey I, Gatenby RA. Causes and consequences of increased glucose metabolism of cancers. J Nucl Med 2008 49;Suppl: 224S-42S. doi:10.2967/jnumed.107.047258.
  • 33.Chang J-L, Chen G, Ulrich CM, et al. DNA Damage and Repair: Fruit and Vegetable Effects in a Feeding Trial. Nutr. Cancer 2010 62;329–35. doi:10.1080/01635580903407106.
  • 34.Bieging KT. Unraveling mechanisms of p53-mediated tumor suppression. Nat Rev Cancer 2014 14;359-370. doi: 10.1038/nrc3711.
  • 35.Chasapis, C.T., Ntoupa, PS.A., Spiliopoulou, C.A. et al. Recent aspects of the effects of zinc on human health. Arch Toxicol 2020 94;1443–1460. doi:10.1007/s00204-020-02702-9.
  • 36.Qin JJ, Li X, Hunt C, Wang W, Wang H, Zhang R. Natural products targeting the p53-MDM2 pathway and mutant p53: Recent advances and implications in cancer medicine. Genes Dis. 2018;5(3):204-219. doi:10.1016/j.gendis.2018.07.002.
  • 37.Collins AR. Carotenoids and genomic stability. Mutat Res 2001 475;1-2:21-28. doi:10.1016/s0027-5107(01)00071-9.
  • 38.Zapisek WF, Cronin GM, Lyn-Cook BD, Poirier LA. The onset of oncogene hypomethylation in the livers of rats fed methyl-deficient, amino acid-defined diets. Carcinogenesis 1992 13;10:1869-1872. doi:10.1093/carcin/13.10.1869.
  • 39.Dizik M, Christman JK, Wainfan E. Alterations in expression and methylation of specific genes in livers of rats fed a cancer promoting methyl-deficient diet. Carcinogenesis. 1991 12;7:1307-1312. doi:10.1093/carcin/12.7.1307.
  • 40.Friso S, Choi SW. Gene-nutrient interactions and DNA methylation. J Nutr 2002 132;8 Suppl:2382S-2387S. doi:10.1093/jn/132.8.2382S.
  • 41.Sanderson SM, Gao X, Dai Z, et al. Methionine metabolism in health and cancer: a nexus of diet and precision medicine. Nat Rev Cancer 2019 19;625–37. doi:10.1038/s41568-019-0187-8.
  • 42.Hastings MH, Maywood ES, Reddy AB. Two decades of circadian time. J Neuroendocrinol. 2008 20;6:812-819. doi:10.1111/j.1365-2826.2008.01715.x.
  • 43.Sözlü S, Nevin Ş. Circadian Rhythm, Health and Nutrition Relationship: Review. Turkiye Klinikleri J Health Sci 2017 2;100-109. doi: 10.5336/healthsci.2015-48902.
  • 44.Jagannath A, Taylor L, Wakaf Z, Vasudevan SR, Foster RG. The genetics of circadian rhythms, sleep and health. Hum Mol Genet 2017 26; R2:R128-R138. doi:10.1093/hmg/ddx240.
  • 45.Evans JA. Collective timekeeping among cells of the master circadian clock. J Endocrinol 2016 230;1:R27-R49. doi:10.1530/JOE-16-0054.
  • 46.Pierard C, Beaumont M, Enslen M, et al. Resynchronization of hormonalrhythmsafter an eastboundflight in humans: Effects of slow-releasecaffeineand melatonin. Eur J ApplPhysiol 2001 85;144-150.
  • 47.Beaumont M, Batejat D, Pierard C, et al. Caffeineor melatonin effects on sleepandsleepinessafterrapideastwardtransmeridiantravel. J ApplPhysiol 2004 96:50-58.
  • 48.Mindikoglu AL, Abdulsada MM, Jain A, et al. Intermittent fasting from dawn to sunset for 30 consecutive days is associated with anticancer proteomic signature and upregulates key regulatory proteins of glucose and lipid metabolism, circadian clock, DNA repair, cytoskeleton remodeling, immune system and cognitive function in healthy subjects. J Proteom 2020 217;103645. doi:10.1016/j.jprot.2020.103645.
  • 49.Wang H, van Spyk E, Liu Q, Geyfman M, Salmans ML, Kumar V, et al. Time-Restricted Feeding Shifts the Skin Circadian Clock and Alters UVB-Induced DNA Damage. Cell Rep 2017 20;1061–72. doi:10.1016/j.celrep.2017.07.022.
  • 50.Azqueta A, Langie SAS, Boutet-Robinet E, et al. DNA repair as a human biomonitoring tool: Comet assay approaches. Mutat Res Rev Mutat Res 2019 781;71–87. doi:10.1016/j.mrrev.2019.03.002.
  • 51.Oishi K, Okauchi H, Yamamoto S, et al. Dietary natural cocoa ameliorates disrupted circadian rhythms in locomotor activity and sleep-wake cycles in mice with chronic sleep disorders caused by psychophysiological stress. Nutrition 2020 75-76;110751. doi:10.1016/j.nut.2020.110751.
  • 52.Yoshida I, Kumagai M, Ide M, et al. Polymethoxyflavones in black ginger (Kaempferia parviflora) regulate the expression of circadian clock genes. J Funct Foods 2020 68;103900. doi:10.1016/j.jff.2020.103900.
  • 53.Bishop K, Ferguson L. The Interaction between Epigenetics Nutrition and the Development of Cancer. Nutrients 2015 7;922–47. doi:10.3390/nu7020922.
  • 54.Paparo L, Nocerino R, Bruno C, et al. Randomized controlled trial on the influence of dietary intervention on epigenetic mechanisms in children with cow's milk allergy: the EPICMA study [published correction appears in Sci Rep. 2019 Jun 26;9(1):9504]. Sci Rep. 2019;9(1):2828. Published 2019 Feb 26. doi:10.1038/s41598-019-38738-w.
  • 55.do Amaral CL, Milagro FI, Curi R, Martínez JA. DNA methylation pattern in overweight women under an energy-restricted diet supplemented with fish oil. Biomed Res Int. 2014;2014:675021. doi:10.1155/2014/675021.
  • 56.Chaix A, Lin T, Le HD, Chang MW, Panda S. Time-Restricted Feeding Prevents Obesity and Metabolic Syndrome in Mice Lacking a Circadian Clock. Cell Metab. 2019;29(2):303-319.e4. doi:10.1016/j.cmet.2018.08.004.
  • 57.Helleday T, Petermann E, Lundin C, et al. DNA repair pathways as targets for cancer therapy. Nat Rev Cancer 2008 8;193–204. doi:10.1038/nrc2342.
  • 58.Kiwerska K, Szyfter K. DNA repair in cancer initiation, progression, and therapy—a double-edged sword. J Appl Genet 2019 60;329–34. doi:10.1007/s13353-019-00516-9.
  • 59.Jackson SP, Bartek J. The DNA-damage response in human biology and disease. Nature 2009 461;7267:1071-1078. doi:10.1038/nature08467.
  • 60.Ciccia A, Elledge SJ. The DNA Damage Response: Making It Safe to Play with Knives. Mol Cell 2010 40;179–204. doi:10.1016/j.molcel.2010.09.019.

A Brief Review on The Effect of Nutrition/Nutritional Metabolism on Circadian Rhythm and DNA Repair in Cancer

Yıl 2021, Cilt: 4 Sayı: 3, 105 - 115, 01.11.2021

Öz

The circadian rhythm works as a clock that regulates many physiological processes including metabolism, sleep, neurobehavior, epigenetic and hormone secretion so that disruption of the circadian rhythm causes adverse effects on human health. The mutations in DNA increases the risk of developing cancer (a genetic disease caused by genome damage). Cancer formation is also caused by disruption of the circadian rhythm. Therefore, a cell's ability to properly respond to DNA damage and repair DNA is critical in preventing cancer formation. Prevention of DNA damage is important for the occurrence of cancer. Epidemiological and experimental evidence explain the variation of dietary intake effects in cancer prevalence. Dietary factors may affect the efficiency of DNA repair, their effectiveness on epigenetic mechanisms, as well as circadian rhythm and inhibit cancer formation. The purpose of this review is to reveal the effects of nutrition on circadian rhythm and DNA repair, emphasize the scarcity of existing studies, and pave the way for possible experimental studies. There are very few studies in this field, and the future studies of nutrients that effects circadian rhythm are very valuable in order to find new solutions in cancer treatment. Nutrition may have many effects on the circadian system and DNA repair, and ultimately help reduce the burden of chronic diseases.

Kaynakça

  • 1.Roser M, Ritchie H. Cancer. Published online at OurWorldInData.org. 2015. https://ourworldindata.org/cancer.
  • 2.World Health Organization. Cancer Fact Sheet. https://www.who.int/news-room/fact-sheets/detail/cancer (Erişim: Kasım 2020).
  • 3.World Health Organization. Global Cancer Profile 2020. https: //www.paho.org/hq/index.php?option=com_docman&view=download&category_slug=4-cancer-country-profiles-2020&alias=51561-global-cancer-profile-2020&Itemid=270&lang=fr
  • 4.Forman D, Bray F. The burden of cancer. In The Cancer Atlas, 2nd ed., Pp. 36–37 [A Jemal, P Vineis, F Bray, L Torre and D Forman, editors]. Atlanta, GA: American Cancer Society. 2014.
  • 5.Pavlopoulou A, Spandidos DA, Michalopoulos I. Human cancer databases. Oncol Rep 2015 33:3–18. doi:10.3892/or.2014.3579.
  • 6.Shewach DS, Kuchta RD. Introduction to cancer chemotherapeutics. Chem Rev 2009 109;2859–2861. doi:10.1021/cr900208x.
  • 7.Ou HL, Schumacher B. DNA damage responses and p53 in the aging process. Blood 2018 131: 488-495. doi:10.1182/blood-2017-07-746396.
  • 8.Brown JS, O'Carrigan B, Jackson SP, et al. Targeting DNA Repair in Cancer: Beyond PARP Inhibitors. Cancer Discov 2017 7;20–37. doi:10.1158/2159-8290.CD-16-0860.
  • 9.Onur E, Tuğrul B, Bozyiğit F. DNA Damage and Repair Mechanisms. J Turk Clin Biochem 2009 7:061-070. 10.Kurtoğlu E, Tekedereli I. DNA Onarım Mekanizmaları. Balıkesir Health Sci J 2015 4;169-177.
  • 11.Abugable AA, Morris JLM, Palminha NM, et al. repair and neurological disease: From molecular understanding to the development of diagnostics and model organisms. DNA Repair (Amst) 2019 81;102669. doi:10.1016/j.dnarep.2019.102669.
  • 12.Sancar A, Lindsey-Boltz LA, Gaddameedhi S, et al. Circadian clock, cancer, and chemotherapy. Biochemistry. 2015 54;2:110-123. doi:10.1021/bi5007354.
  • 13.Canakis A, Qazi T. Sleep and Fatigue in IBD: an Unrecognized but Important Extra-intestinal Manifestation. Curr Gastroenterol Rep 2020 22;2:8. doi:10.1007/s11894-020-0746-x.
  • 14.Sancar A. Mechanisms of DNA Repair by Photolyase and Excision Nuclease, Nobel Lecture. The Nobel Prizes. 2015. https://www.nobelprize.org/uploads/2018/06/sancar-lecture.pdf
  • 15.Gaddameedhi S, Selby CP, Kaufmann WK, et al. Control of skin cancer by the circadian rhythm. PNAS USA 2011 108;18790–18795.
  • 16.Gaddameedhi S, Selby CP, Kemp MG, et al. The circadian clock controls sunburn apoptosis and erythema in mouse skin. J Invest Dermatol 2015 135;1119–1127. doi:10.1038/jid.2014.508.
  • 17.Potter GD, Cade JE, Grant PJ, et al. Nutrition and the circadian system. Br J Nutr 2016 116;3:434-442. doi:10.1017/S0007114516002117.
  • 18.Burke TM, Markwald RR, McHill AW, Chinoy ED, Snider JA, Bessman SC, Jung CM, O'Neill JS, Wright KP Jr. Effects of caffeine on the human circadian clock in vivo and in vitro. Sci Transl Med 2015 7;305: 305ra146-305ra146. doi: 10.1126/scitranslmed.aac5125.
  • 19.Fenech MF. Dietary reference values of individual micronutrients and nutriomes for genome damage prevention: current status and a road map to the future. Am J Clin Nutr 2010 91. doi:10.3945/ajcn.2010.28674d.
  • 20.Tyson J, Mathers JC. Dietary and genetic modulation of DNA repair in healthy human adults. Proc Nutr Soc 2007 66;42–51. doi:10.1017/s0029665107005289.
  • 21.Shostak A. Circadian Clock, Cell Division, and Cancer: From Molecules to Organism. Int J Mol Sci 2017 18;873. doi:10.3390/ijms18040873.
  • 22.Feng D, Lazar MA. Clocks, metabolism, and the epigenome. Mol Cell 2012 47;2:158-167. doi:10.1016/j.molcel.2012.06.026.
  • 23.Sherman H, Gutman R, Chapnik N, et al. Caffeine alters circadian rhythms and expression of disease and metabolic markers. Int J Biochem Cell Biol 2011 43;5:829-838. doi:10.1016/j.biocel.2011.02.008.
  • 24.Acosta J, Bussi IL, Esquivel M, et al. Circadian modulation of motivation in mice. Behav Brain Res 2020 382:112471. doi:10.1016/j.bbr.2020.112471.
  • 25.Alamoudi AA. Why do cancer cells break from host circadian rhythm? Insights from unicellular organisms. Bioessays. 2021;43(4):e2000205. doi:10.1002/bies.202000205.
  • 26.Wang Z, Su G, Dai Z, et al. Circadian clock genes promote glioma progression by affecting tumour immune infiltration and tumour cell proliferation. Cell Prolif. 2021;54(3):e12988. doi:10.1111/cpr.12988.
  • 27.Burchett JB, Knudsen-Clark AM, Altman BJ. MYC Ran Up the Clock: The Complex Interplay between MYC and the Molecular Circadian Clock in Cancer. Int J Mol Sci. 2021;22(14):7761. Published 2021 Jul 20. doi:10.3390/ijms22147761.
  • 28.Nascimento RAS, Özel RE, Mak WH, et al. Single Cell Glucose Nanosensor Verifies Elevated Glucose Levels in Individual Cancer Cells. Nano Lett 2016 16:1194–1200. doi:10.1021/acs.nanolett.5b04495.
  • 29.Elstrom RL, Bauer DE, Buzzai M, Karnauskas R, Harris MH, Plas DR, et al. Akt Stimulates Aerobic Glycolysis in Cancer Cells. Cancer Res 2004 64:3892–9. doi:10.1158/0008-5472.can-03-2904.
  • 30.Mızrak D, Akbulut H. Cancer patient and hunger. Turkish Journal of Oncology 2015.
  • 31.Akıncı E, Orhan F. Circadian Rhythm Sleep Disorders. Curr Approaches Psychiatry 2016 8:178-189 doi: 10.18863 / pgy.81775.
  • 31.Gillies RJ, Robey I, Gatenby RA. Causes and consequences of increased glucose metabolism of cancers. J Nucl Med 2008 49;Suppl: 224S-42S. doi:10.2967/jnumed.107.047258.
  • 33.Chang J-L, Chen G, Ulrich CM, et al. DNA Damage and Repair: Fruit and Vegetable Effects in a Feeding Trial. Nutr. Cancer 2010 62;329–35. doi:10.1080/01635580903407106.
  • 34.Bieging KT. Unraveling mechanisms of p53-mediated tumor suppression. Nat Rev Cancer 2014 14;359-370. doi: 10.1038/nrc3711.
  • 35.Chasapis, C.T., Ntoupa, PS.A., Spiliopoulou, C.A. et al. Recent aspects of the effects of zinc on human health. Arch Toxicol 2020 94;1443–1460. doi:10.1007/s00204-020-02702-9.
  • 36.Qin JJ, Li X, Hunt C, Wang W, Wang H, Zhang R. Natural products targeting the p53-MDM2 pathway and mutant p53: Recent advances and implications in cancer medicine. Genes Dis. 2018;5(3):204-219. doi:10.1016/j.gendis.2018.07.002.
  • 37.Collins AR. Carotenoids and genomic stability. Mutat Res 2001 475;1-2:21-28. doi:10.1016/s0027-5107(01)00071-9.
  • 38.Zapisek WF, Cronin GM, Lyn-Cook BD, Poirier LA. The onset of oncogene hypomethylation in the livers of rats fed methyl-deficient, amino acid-defined diets. Carcinogenesis 1992 13;10:1869-1872. doi:10.1093/carcin/13.10.1869.
  • 39.Dizik M, Christman JK, Wainfan E. Alterations in expression and methylation of specific genes in livers of rats fed a cancer promoting methyl-deficient diet. Carcinogenesis. 1991 12;7:1307-1312. doi:10.1093/carcin/12.7.1307.
  • 40.Friso S, Choi SW. Gene-nutrient interactions and DNA methylation. J Nutr 2002 132;8 Suppl:2382S-2387S. doi:10.1093/jn/132.8.2382S.
  • 41.Sanderson SM, Gao X, Dai Z, et al. Methionine metabolism in health and cancer: a nexus of diet and precision medicine. Nat Rev Cancer 2019 19;625–37. doi:10.1038/s41568-019-0187-8.
  • 42.Hastings MH, Maywood ES, Reddy AB. Two decades of circadian time. J Neuroendocrinol. 2008 20;6:812-819. doi:10.1111/j.1365-2826.2008.01715.x.
  • 43.Sözlü S, Nevin Ş. Circadian Rhythm, Health and Nutrition Relationship: Review. Turkiye Klinikleri J Health Sci 2017 2;100-109. doi: 10.5336/healthsci.2015-48902.
  • 44.Jagannath A, Taylor L, Wakaf Z, Vasudevan SR, Foster RG. The genetics of circadian rhythms, sleep and health. Hum Mol Genet 2017 26; R2:R128-R138. doi:10.1093/hmg/ddx240.
  • 45.Evans JA. Collective timekeeping among cells of the master circadian clock. J Endocrinol 2016 230;1:R27-R49. doi:10.1530/JOE-16-0054.
  • 46.Pierard C, Beaumont M, Enslen M, et al. Resynchronization of hormonalrhythmsafter an eastboundflight in humans: Effects of slow-releasecaffeineand melatonin. Eur J ApplPhysiol 2001 85;144-150.
  • 47.Beaumont M, Batejat D, Pierard C, et al. Caffeineor melatonin effects on sleepandsleepinessafterrapideastwardtransmeridiantravel. J ApplPhysiol 2004 96:50-58.
  • 48.Mindikoglu AL, Abdulsada MM, Jain A, et al. Intermittent fasting from dawn to sunset for 30 consecutive days is associated with anticancer proteomic signature and upregulates key regulatory proteins of glucose and lipid metabolism, circadian clock, DNA repair, cytoskeleton remodeling, immune system and cognitive function in healthy subjects. J Proteom 2020 217;103645. doi:10.1016/j.jprot.2020.103645.
  • 49.Wang H, van Spyk E, Liu Q, Geyfman M, Salmans ML, Kumar V, et al. Time-Restricted Feeding Shifts the Skin Circadian Clock and Alters UVB-Induced DNA Damage. Cell Rep 2017 20;1061–72. doi:10.1016/j.celrep.2017.07.022.
  • 50.Azqueta A, Langie SAS, Boutet-Robinet E, et al. DNA repair as a human biomonitoring tool: Comet assay approaches. Mutat Res Rev Mutat Res 2019 781;71–87. doi:10.1016/j.mrrev.2019.03.002.
  • 51.Oishi K, Okauchi H, Yamamoto S, et al. Dietary natural cocoa ameliorates disrupted circadian rhythms in locomotor activity and sleep-wake cycles in mice with chronic sleep disorders caused by psychophysiological stress. Nutrition 2020 75-76;110751. doi:10.1016/j.nut.2020.110751.
  • 52.Yoshida I, Kumagai M, Ide M, et al. Polymethoxyflavones in black ginger (Kaempferia parviflora) regulate the expression of circadian clock genes. J Funct Foods 2020 68;103900. doi:10.1016/j.jff.2020.103900.
  • 53.Bishop K, Ferguson L. The Interaction between Epigenetics Nutrition and the Development of Cancer. Nutrients 2015 7;922–47. doi:10.3390/nu7020922.
  • 54.Paparo L, Nocerino R, Bruno C, et al. Randomized controlled trial on the influence of dietary intervention on epigenetic mechanisms in children with cow's milk allergy: the EPICMA study [published correction appears in Sci Rep. 2019 Jun 26;9(1):9504]. Sci Rep. 2019;9(1):2828. Published 2019 Feb 26. doi:10.1038/s41598-019-38738-w.
  • 55.do Amaral CL, Milagro FI, Curi R, Martínez JA. DNA methylation pattern in overweight women under an energy-restricted diet supplemented with fish oil. Biomed Res Int. 2014;2014:675021. doi:10.1155/2014/675021.
  • 56.Chaix A, Lin T, Le HD, Chang MW, Panda S. Time-Restricted Feeding Prevents Obesity and Metabolic Syndrome in Mice Lacking a Circadian Clock. Cell Metab. 2019;29(2):303-319.e4. doi:10.1016/j.cmet.2018.08.004.
  • 57.Helleday T, Petermann E, Lundin C, et al. DNA repair pathways as targets for cancer therapy. Nat Rev Cancer 2008 8;193–204. doi:10.1038/nrc2342.
  • 58.Kiwerska K, Szyfter K. DNA repair in cancer initiation, progression, and therapy—a double-edged sword. J Appl Genet 2019 60;329–34. doi:10.1007/s13353-019-00516-9.
  • 59.Jackson SP, Bartek J. The DNA-damage response in human biology and disease. Nature 2009 461;7267:1071-1078. doi:10.1038/nature08467.
  • 60.Ciccia A, Elledge SJ. The DNA Damage Response: Making It Safe to Play with Knives. Mol Cell 2010 40;179–204. doi:10.1016/j.molcel.2010.09.019.
Toplam 59 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Klinik Tıp Bilimleri
Bölüm Derleme
Yazarlar

Rümeysa Rabia Kocatürk Bu kişi benim 0000-0001-6769-3057

Öznur Özge Özcan Bu kişi benim 0000-0001-8992-0556

Mesut Karahan 0000-0002-8971-678X

Yayımlanma Tarihi 1 Kasım 2021
Kabul Tarihi 13 Ekim 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 4 Sayı: 3

Kaynak Göster

APA Kocatürk, R. R., Özcan, Ö. Ö., & Karahan, M. (2021). A Brief Review on The Effect of Nutrition/Nutritional Metabolism on Circadian Rhythm and DNA Repair in Cancer. Tıp Fakültesi Klinikleri Dergisi, 4(3), 105-115.


All site content, except where otherwise noted, is licensed under a Creative Common Attribution Licence. (CC-BY-NC 4.0)

by-nc.png