Derleme
BibTex RIS Kaynak Göster

Egzersiz ve Kan Glikozu Düzenleme Mekanizmaları

Yıl 2025, Cilt: 8 Sayı: 1, 67 - 75, 18.03.2025

Öz

Egzersiz sırasında iskelet kaslarının glikoz ihtiyacına kas içi glikojen miktarı yeterli olmadığı için, kan glikozu alımı artmaktadır. Bu süreçte kan glukozu homeostazı karaciğerde glikojen yıkımıyla glikoz (glikojenoliz) ve laktat, gliserol ve amino asitlerden glikoz üretimi (glukoneogenez) ile sağlanır. Çeşitli ileri ve geri bildirim mekanizmalarıyla, hormon salınımları (kortizol, epinefrin, büyüme hormonu, norepinefrin ve glukagon salınımı artar, insülin salınımı azalır) düzenlenir ve karaciğerden glikoz çıkışı meydana gelir. Glikoz çıkışıyla orantılı bir şekilde iskelet kasından GLUT4 aracılığıyla kas içine trasnportu gerçekleşir. Böylelikle hem kastaki enerji ihtiyacının karşılanması için gerekli olan glukoz sağlanır hem de kan glukozu homeostazı devam ettirilir.

Kaynakça

  • Dasso MSN NA, Nancy Dasso CA. How is exercise different from physical activity? A concept analysis. Nurs Forum (Auckl) [Internet]. 2019 Jan 1 [cited 2024 Sep 4];54(1):45–52. Available from: https:// onlinelibrary.wiley.com/doi/full/10.1111/ nuf.12296
  • Hargreaves M, Spriet LL. Skeletal muscle energy metabolism during exercise. Nature Metabolism 2020 2:9 [Internet]. 2020 Aug 3 [cited 2024 Sep 4];2(9):817–28. Available from: https://www.nature.com/articles/ s42255-020-0251-4
  • Rose AJ, Richter EA. Skeletal muscle glucose uptake during exercise: How is it regulated? Physiology. American Physiological Society; 2005. p. 260–70.
  • Sigal RJ, Armstrong MJ, Bacon SL, Boulé NG, Dasgupta K, Kenny GP, et al. Physical Activity and Diabetes. Can J Diabetes [Internet]. 2018 Apr 1 [cited 2023 Mar 29];42 Suppl 1:S54–63. Available from: https:// pubmed.ncbi.nlm.nih.gov/29650112/
  • Dimenna FJ, Arad AD. The acute vs. chronic effect of exercise on insulin sensitivity: nothing lasts forever. 2020 [cited 2024 Sep 4]; Available from: www.cardiovascularendocrinology. com.
  • Dhiman C, Kapri BC. Optimizing Athletic Performance and Post-Exercise Recovery: The Significance of Carbohydrates and Nutrition. Montenegrin Journal of Sports Science and Medicine [Internet]. 2023 [cited 2024 Sep 10];19(2):49–56. Available from: http://mjssm.me/?sekcija=article& artid=262
  • Sylow L, Kleinert M, Richter EA, Jensen TE. Exercise-stimulated glucose uptake- regulation and implications for glycaemic control. Vol. 13, Nature Reviews Endocrinology. Nature Publishing Group; 2017. p. 133–48.
  • Bouviere J, Fortunato RS, Dupuy C, Werneck- De-castro JP, Carvalho DP, Louzada RA. Exercise-Stimulated ROS Sensitive Signaling Pathways in Skeletal Muscle. Antioxidants 2021, Vol 10, Page 537 [Internet]. 2021 Mar 30 [cited 2024 Sep 9];10(4):537. Available from: https://www. mdpi.com/2076-3921/10/4/537/htm
  • Calbet JAL, González-Alonso J, Helge JW, Søndergaard H, Munch-Andersen T, Saltin B, et al. Central and peripheral hemodynamics in exercising humans: leg vs arm exercise. Scand J Med Sci Sports [Internet]. 2015 Dec 1 [cited 2023 Mar 29];25 Suppl 4:144–57. Available from: https:// pubmed.ncbi.nlm.nih.gov/26589128/
  • Joyner MJ, Casey DP. Regulation of increased blood flow (hyperemia) to muscles during exercise: a hierarchy of competing physiological needs. Physiol Rev [Internet]. 2015 [cited 2023 Mar 29];95(2):549– 601. Available from: https://pubmed.ncbi. nlm.nih.gov/25834232/
  • Richter EA. Is GLUT4 translocation the answer to exercise-stimulated muscle glucose uptake? Am J Physiol Endocrinol Metab [Internet]. 2021 Feb 1 [cited 2024 Sep 9];320(2):E240–3. Available from: http:// www.ajpendo.org
  • Flores-Opazo M, McGee SL, Hargreaves M. Exercise and GLUT4. Exerc Sport Sci Rev [Internet]. 2020 Jul 1 [cited 2024 Sep 9];48(3):110–8. Available from: https://journals.lww.com/acsm-essr/ fulltext/2020/07000/exercise_and_ glut4.2.aspx
  • Sgrò P, Emerenziani G Pietro, Antinozzi C, Sacchetti M, Di Luigi L. Exercise as a drug for glucose management and prevention in type 2 diabetes mellitus. Curr Opin Pharmacol. 2021 Aug 1;59:95–102.
  • Merz KE, Thurmond DC. Role of Skeletal Muscle in Insulin Resistance and Glucose Uptake. Compr Physiol [Internet]. 2020 Jul 7 [cited 2024 Sep 10];10(3):785. Available from: /pmc/articles/PMC8074531/
  • Katz A. A century of exercise physiology: key concepts in regulation of glycogen metabolism in skeletal muscle. European Journal of Applied Physiology 2022 122:8 [Internet]. 2022 Mar 30 [cited 2024 Sep 9];122(8):1751–72. Available from: https://link.springer.com/article/10.1007/ s00421-022-04935-1
  • Wahren J, Felig P, Hagenfeldt L. Physical exercise and fuel homeostasis in diabetes mellitus. Diabetologia [Internet]. 1978 Apr [cited 2023 Apr 5];14(4):213–22. Available from: https://pubmed.ncbi.nlm.nih. gov/640298/
  • Katz A. Role of reactive oxygen species in regulation of glucose transport in skeletal muscle during exercise. J Physiol [Internet]. 2016 Jun 6 [cited 2023 Apr 5];594(11):2787. Available from: /pmc/articles/ PMC4887699/
  • Ahlborg G, Felig P, Hagenfeldt L, Hendler R, Wahren J. Substrate turnover during prolonged exercise in man. Splanchnic and leg metabolism of glucose, free fatty acids, and amino acids. J Clin Invest [Internet]. 1974 [cited 2023 Apr 5];53(4):1080–90. Available from: https://pubmed.ncbi.nlm. nih.gov/4815076/
  • Koz M, Akgül MŞ, Atıcı E. Egzersizin Ek Sistem Üzerine Etkileri ve Hormonal Regülasyonlar. Türkiye Klinikleri Fizyoterapi Rehabilitasyon - Özel Konular [Internet]. 2016 [cited 2023 Apr 12];2(1):48–56. Available from: https://www.turkiyeklinikri. com/article/tr-egzersizin-endokrin-sistem- uzerine-etkileri-ve-hormonal-regulasyonlar- 75477.html
  • Athanasiou N, Bogdanis GC, Mastorakos G. Endocrine responses of the stress system to different types of exercise. Rev Endocr Metab Disord [Internet]. 2023 Apr [cited 2023 Apr 13];24(2):251–66. Available from: https://pubmed.ncbi.nlm.nih. gov/36242699/
  • Koyunlu A. İnsülin Metabolizması ve Egzersiz İlişkisi. In: Pancar Z, editor. Spor ve Egzersiz Metabolizmasına Güncel Bakış. İstanbul; 2023. p. 73–89.
  • Trefts E, Williams AS, Wasserman DH. Exercise and the Regulation of Hepatic Metabolism. Prog Mol Biol Transl Sci [Internet]. 2015 [cited 2023 Apr 13];135:203. Available from: /pmc/articles/ PMC4826571/
  • Birzniece V. Exercise and the growth hormone– insulin-like growth factor axis. Curr Opin Endocr Metab Res. 2019 Dec 1;9:1– 7.
  • Goldenberg N, Horowitz JF, Gorgey A, Sakharova A, Barkan AL. Role of pulsatile growth hormone (GH) secretion in the regulation of lipolysis in fasting humans. Clinical Diabetes and Endocrinology 2022 8:1 [Internet]. 2022 Feb 1 [cited 2024 Sep 9];8(1):1–8. Available from: https://link. springer.com/articles/10.1186/s40842- 022-00137-y
  • Alghannam AF, Ghaith MM, Alhussain MH. Regulation of Energy Substrate Metabolism in Endurance Exercise. Int J Environ Res Public Health [Internet]. 2021 May 1 [cited 2023 Apr 5];18(9). Available from: https://pubmed.ncbi.nlm.nih. gov/34066984/
  • Scoditti E, Sabatini S, Carli F, Gastaldelli A. Hepatic glucose metabolism in the steatotic liver. Nature Reviews Gastroenterology & Hepatology 2024 21:5 [Internet]. 2024 Feb 2 [cited 2024 Sep 9];21(5):319– 34. Available from: https://www.nature. com/articles/s41575-023-00888-8
  • Ahlborg G, Felig P. Lactate and Glucose Exchange across the Forearm, Legs, and Splanchnic Bed during and after Prolonged Leg Exercise. Journal of Clinical Investigation [Internet]. 1982 [cited 2023 Mar 27];69(1):45. Available from: /pmc/articles/ PMC371167/?report=abstract
  • Brooks GA. The Precious Few Grams of Glucose During Exercise. International Journal of Molecular Sciences 2020, Vol 21, Page 5733 [Internet]. 2020 Aug 10 [cited 2024 Sep 9];21(16):5733. Available from: https://www.mdpi.com/1422- 0067/21/16/5733/htm
  • Nilsson LH, Fürst P, Hultman E. Carbohydrate metabolism of the liver in normal man under varying dietary conditions. Scand J Clin Lab Invest [Internet]. 1973 [cited 2023 Apr 5];32(4):331–7. Available from: https://pubmed.ncbi.nlm.nih.gov/4771103/
  • Sonne B, Mikines KJ, Galbo H. Glucose turnover in 48-hour-fasted running rats. Am J Physiol [Internet]. 1987 [cited 2023 Apr 11];252(3 Pt 2). Available from: https:// pubmed.ncbi.nlm.nih.gov/3103473/
  • Stanley WC, Wisneski JA, Gertz EW, Neese RA, Brooks GA. Glucose and lactate interrelations during moderate-intensity exercise in humans. Metabolism [Internet]. 1988 [cited 2023 Apr 11];37(9):850–8. Available from: https://pubmed.ncbi.nlm. nih.gov/3138512/
  • Raddatz D, Ramadori G. Carbohydrate metabolism and the liver: actual aspects from physiology and disease. Z Gastroenterol [Internet]. 2007 Jan [cited 2023 Apr 11];45(1):51–62. Available from: https:// pubmed.ncbi.nlm.nih.gov/17236121/
  • Wang Y, Kwon H, Su X, Wondisford FE. Glycerol not lactate is the major net carbon source for gluconeogenesis in mice during both short and prolonged fasting. Mol Metab. 2020 Jan 1;31:36–44.
  • Wahren J, Felig P, Ahlborg G, Jorfeldt L. Glucose metabolism during leg exercise in man. J Clin Invest [Internet]. 1971 [cited 2024 Sep 9];50(12):2715–25. Available from: https://pubmed.ncbi.nlm.nih. gov/5129319/
  • Ahlborg G, Felig P. Substrate utilization during prolonged exercise preceded by ingestion of glucose. Am J Physiol [Internet]. 1977 [cited 2023 Apr 11];233(3):188–94. Available from: https://pubmed.ncbi.nlm. nih.gov/910907/
  • Pirnay F, Lacroix M, Mosora F, Luyckx A, Lefebvre P, Provin I, et al. Glucose oxidation during prolon ed exercise evaluated with naturally labeled [13C]glucose. 1978;
  • Jenkins AB, Chisholm DJ, James DE, Ho KY, Kraegen EW. Exercise-induced hepatic glucose output is precisely sensitive to the rate of systemic glucose supply. Metabolism [Internet]. 1985 [cited 2023 Apr 11];34(5):431–6. Available from: https:// pubmed.ncbi.nlm.nih.gov/3887101/
  • Sargsyan A, Herman MA. Regulation of Glucose Production in the Pathogenesis of Type 2 Diabetes. Curr Diab Rep [Internet]. 2019 Sep 1 [cited 2024 Sep 10];19(9):1– 11. Available from: https://link.springer. com/article/10.1007/s11892-019-1195-5
  • Yang X;, Qiu K;, Jiang Y;, Huang Y;, Zhang Y;, Liao Y, et al. Metabolic Crosstalk between Liver and Brain: From Diseases to Mechanisms. International Journal of Molecular Sciences 2024, Vol 25, Page 7621 [Internet]. 2024 Jul 11 [cited 2024 Sep 10];25(14):7621. Available from: https:// www.mdpi.com/1422-0067/25/14/7621/ htm
  • Kjaer M, Kiens B, Hargreaves M, Richter EA. Influence of active muscle mass on glucose homeostasis during exercise in humans. J Appl Physiol (1985) [Internet]. 1991 [cited 2023 Mar 29];71(2):552–7. Available from: https://pubmed.ncbi.nlm. nih.gov/1938728/

EXERCISE AND MECHANISMS OF BLOOD GLUCOSE REGULATION

Yıl 2025, Cilt: 8 Sayı: 1, 67 - 75, 18.03.2025

Öz

During exercise, as the amount of intramuscular glycogen is insufficient to meet the glucose demands of skeletal muscles, the uptake of blood glucose increases. In this process, blood glucose homeostasis is maintained through glycogen breakdown (glycogenolysis) in the liver and the production of glucose from lactate, glycerol, and amino acids (gluconeogenesis). Various feedforward and feedback mechanisms regulate hormone secretions (with increased secretion of cortisol, epinephrine, growth hormone, norepinephrine, and glucagon, and decreased insulin secretion), resulting in glucose release from the liver. This glucose is then transported into skeletal muscle in proportion to its release via GLUT4, ensuring the provision of glucose necessary to meet the energy demands of the muscle while maintaining blood glucose homeostasis.

Kaynakça

  • Dasso MSN NA, Nancy Dasso CA. How is exercise different from physical activity? A concept analysis. Nurs Forum (Auckl) [Internet]. 2019 Jan 1 [cited 2024 Sep 4];54(1):45–52. Available from: https:// onlinelibrary.wiley.com/doi/full/10.1111/ nuf.12296
  • Hargreaves M, Spriet LL. Skeletal muscle energy metabolism during exercise. Nature Metabolism 2020 2:9 [Internet]. 2020 Aug 3 [cited 2024 Sep 4];2(9):817–28. Available from: https://www.nature.com/articles/ s42255-020-0251-4
  • Rose AJ, Richter EA. Skeletal muscle glucose uptake during exercise: How is it regulated? Physiology. American Physiological Society; 2005. p. 260–70.
  • Sigal RJ, Armstrong MJ, Bacon SL, Boulé NG, Dasgupta K, Kenny GP, et al. Physical Activity and Diabetes. Can J Diabetes [Internet]. 2018 Apr 1 [cited 2023 Mar 29];42 Suppl 1:S54–63. Available from: https:// pubmed.ncbi.nlm.nih.gov/29650112/
  • Dimenna FJ, Arad AD. The acute vs. chronic effect of exercise on insulin sensitivity: nothing lasts forever. 2020 [cited 2024 Sep 4]; Available from: www.cardiovascularendocrinology. com.
  • Dhiman C, Kapri BC. Optimizing Athletic Performance and Post-Exercise Recovery: The Significance of Carbohydrates and Nutrition. Montenegrin Journal of Sports Science and Medicine [Internet]. 2023 [cited 2024 Sep 10];19(2):49–56. Available from: http://mjssm.me/?sekcija=article& artid=262
  • Sylow L, Kleinert M, Richter EA, Jensen TE. Exercise-stimulated glucose uptake- regulation and implications for glycaemic control. Vol. 13, Nature Reviews Endocrinology. Nature Publishing Group; 2017. p. 133–48.
  • Bouviere J, Fortunato RS, Dupuy C, Werneck- De-castro JP, Carvalho DP, Louzada RA. Exercise-Stimulated ROS Sensitive Signaling Pathways in Skeletal Muscle. Antioxidants 2021, Vol 10, Page 537 [Internet]. 2021 Mar 30 [cited 2024 Sep 9];10(4):537. Available from: https://www. mdpi.com/2076-3921/10/4/537/htm
  • Calbet JAL, González-Alonso J, Helge JW, Søndergaard H, Munch-Andersen T, Saltin B, et al. Central and peripheral hemodynamics in exercising humans: leg vs arm exercise. Scand J Med Sci Sports [Internet]. 2015 Dec 1 [cited 2023 Mar 29];25 Suppl 4:144–57. Available from: https:// pubmed.ncbi.nlm.nih.gov/26589128/
  • Joyner MJ, Casey DP. Regulation of increased blood flow (hyperemia) to muscles during exercise: a hierarchy of competing physiological needs. Physiol Rev [Internet]. 2015 [cited 2023 Mar 29];95(2):549– 601. Available from: https://pubmed.ncbi. nlm.nih.gov/25834232/
  • Richter EA. Is GLUT4 translocation the answer to exercise-stimulated muscle glucose uptake? Am J Physiol Endocrinol Metab [Internet]. 2021 Feb 1 [cited 2024 Sep 9];320(2):E240–3. Available from: http:// www.ajpendo.org
  • Flores-Opazo M, McGee SL, Hargreaves M. Exercise and GLUT4. Exerc Sport Sci Rev [Internet]. 2020 Jul 1 [cited 2024 Sep 9];48(3):110–8. Available from: https://journals.lww.com/acsm-essr/ fulltext/2020/07000/exercise_and_ glut4.2.aspx
  • Sgrò P, Emerenziani G Pietro, Antinozzi C, Sacchetti M, Di Luigi L. Exercise as a drug for glucose management and prevention in type 2 diabetes mellitus. Curr Opin Pharmacol. 2021 Aug 1;59:95–102.
  • Merz KE, Thurmond DC. Role of Skeletal Muscle in Insulin Resistance and Glucose Uptake. Compr Physiol [Internet]. 2020 Jul 7 [cited 2024 Sep 10];10(3):785. Available from: /pmc/articles/PMC8074531/
  • Katz A. A century of exercise physiology: key concepts in regulation of glycogen metabolism in skeletal muscle. European Journal of Applied Physiology 2022 122:8 [Internet]. 2022 Mar 30 [cited 2024 Sep 9];122(8):1751–72. Available from: https://link.springer.com/article/10.1007/ s00421-022-04935-1
  • Wahren J, Felig P, Hagenfeldt L. Physical exercise and fuel homeostasis in diabetes mellitus. Diabetologia [Internet]. 1978 Apr [cited 2023 Apr 5];14(4):213–22. Available from: https://pubmed.ncbi.nlm.nih. gov/640298/
  • Katz A. Role of reactive oxygen species in regulation of glucose transport in skeletal muscle during exercise. J Physiol [Internet]. 2016 Jun 6 [cited 2023 Apr 5];594(11):2787. Available from: /pmc/articles/ PMC4887699/
  • Ahlborg G, Felig P, Hagenfeldt L, Hendler R, Wahren J. Substrate turnover during prolonged exercise in man. Splanchnic and leg metabolism of glucose, free fatty acids, and amino acids. J Clin Invest [Internet]. 1974 [cited 2023 Apr 5];53(4):1080–90. Available from: https://pubmed.ncbi.nlm. nih.gov/4815076/
  • Koz M, Akgül MŞ, Atıcı E. Egzersizin Ek Sistem Üzerine Etkileri ve Hormonal Regülasyonlar. Türkiye Klinikleri Fizyoterapi Rehabilitasyon - Özel Konular [Internet]. 2016 [cited 2023 Apr 12];2(1):48–56. Available from: https://www.turkiyeklinikri. com/article/tr-egzersizin-endokrin-sistem- uzerine-etkileri-ve-hormonal-regulasyonlar- 75477.html
  • Athanasiou N, Bogdanis GC, Mastorakos G. Endocrine responses of the stress system to different types of exercise. Rev Endocr Metab Disord [Internet]. 2023 Apr [cited 2023 Apr 13];24(2):251–66. Available from: https://pubmed.ncbi.nlm.nih. gov/36242699/
  • Koyunlu A. İnsülin Metabolizması ve Egzersiz İlişkisi. In: Pancar Z, editor. Spor ve Egzersiz Metabolizmasına Güncel Bakış. İstanbul; 2023. p. 73–89.
  • Trefts E, Williams AS, Wasserman DH. Exercise and the Regulation of Hepatic Metabolism. Prog Mol Biol Transl Sci [Internet]. 2015 [cited 2023 Apr 13];135:203. Available from: /pmc/articles/ PMC4826571/
  • Birzniece V. Exercise and the growth hormone– insulin-like growth factor axis. Curr Opin Endocr Metab Res. 2019 Dec 1;9:1– 7.
  • Goldenberg N, Horowitz JF, Gorgey A, Sakharova A, Barkan AL. Role of pulsatile growth hormone (GH) secretion in the regulation of lipolysis in fasting humans. Clinical Diabetes and Endocrinology 2022 8:1 [Internet]. 2022 Feb 1 [cited 2024 Sep 9];8(1):1–8. Available from: https://link. springer.com/articles/10.1186/s40842- 022-00137-y
  • Alghannam AF, Ghaith MM, Alhussain MH. Regulation of Energy Substrate Metabolism in Endurance Exercise. Int J Environ Res Public Health [Internet]. 2021 May 1 [cited 2023 Apr 5];18(9). Available from: https://pubmed.ncbi.nlm.nih. gov/34066984/
  • Scoditti E, Sabatini S, Carli F, Gastaldelli A. Hepatic glucose metabolism in the steatotic liver. Nature Reviews Gastroenterology & Hepatology 2024 21:5 [Internet]. 2024 Feb 2 [cited 2024 Sep 9];21(5):319– 34. Available from: https://www.nature. com/articles/s41575-023-00888-8
  • Ahlborg G, Felig P. Lactate and Glucose Exchange across the Forearm, Legs, and Splanchnic Bed during and after Prolonged Leg Exercise. Journal of Clinical Investigation [Internet]. 1982 [cited 2023 Mar 27];69(1):45. Available from: /pmc/articles/ PMC371167/?report=abstract
  • Brooks GA. The Precious Few Grams of Glucose During Exercise. International Journal of Molecular Sciences 2020, Vol 21, Page 5733 [Internet]. 2020 Aug 10 [cited 2024 Sep 9];21(16):5733. Available from: https://www.mdpi.com/1422- 0067/21/16/5733/htm
  • Nilsson LH, Fürst P, Hultman E. Carbohydrate metabolism of the liver in normal man under varying dietary conditions. Scand J Clin Lab Invest [Internet]. 1973 [cited 2023 Apr 5];32(4):331–7. Available from: https://pubmed.ncbi.nlm.nih.gov/4771103/
  • Sonne B, Mikines KJ, Galbo H. Glucose turnover in 48-hour-fasted running rats. Am J Physiol [Internet]. 1987 [cited 2023 Apr 11];252(3 Pt 2). Available from: https:// pubmed.ncbi.nlm.nih.gov/3103473/
  • Stanley WC, Wisneski JA, Gertz EW, Neese RA, Brooks GA. Glucose and lactate interrelations during moderate-intensity exercise in humans. Metabolism [Internet]. 1988 [cited 2023 Apr 11];37(9):850–8. Available from: https://pubmed.ncbi.nlm. nih.gov/3138512/
  • Raddatz D, Ramadori G. Carbohydrate metabolism and the liver: actual aspects from physiology and disease. Z Gastroenterol [Internet]. 2007 Jan [cited 2023 Apr 11];45(1):51–62. Available from: https:// pubmed.ncbi.nlm.nih.gov/17236121/
  • Wang Y, Kwon H, Su X, Wondisford FE. Glycerol not lactate is the major net carbon source for gluconeogenesis in mice during both short and prolonged fasting. Mol Metab. 2020 Jan 1;31:36–44.
  • Wahren J, Felig P, Ahlborg G, Jorfeldt L. Glucose metabolism during leg exercise in man. J Clin Invest [Internet]. 1971 [cited 2024 Sep 9];50(12):2715–25. Available from: https://pubmed.ncbi.nlm.nih. gov/5129319/
  • Ahlborg G, Felig P. Substrate utilization during prolonged exercise preceded by ingestion of glucose. Am J Physiol [Internet]. 1977 [cited 2023 Apr 11];233(3):188–94. Available from: https://pubmed.ncbi.nlm. nih.gov/910907/
  • Pirnay F, Lacroix M, Mosora F, Luyckx A, Lefebvre P, Provin I, et al. Glucose oxidation during prolon ed exercise evaluated with naturally labeled [13C]glucose. 1978;
  • Jenkins AB, Chisholm DJ, James DE, Ho KY, Kraegen EW. Exercise-induced hepatic glucose output is precisely sensitive to the rate of systemic glucose supply. Metabolism [Internet]. 1985 [cited 2023 Apr 11];34(5):431–6. Available from: https:// pubmed.ncbi.nlm.nih.gov/3887101/
  • Sargsyan A, Herman MA. Regulation of Glucose Production in the Pathogenesis of Type 2 Diabetes. Curr Diab Rep [Internet]. 2019 Sep 1 [cited 2024 Sep 10];19(9):1– 11. Available from: https://link.springer. com/article/10.1007/s11892-019-1195-5
  • Yang X;, Qiu K;, Jiang Y;, Huang Y;, Zhang Y;, Liao Y, et al. Metabolic Crosstalk between Liver and Brain: From Diseases to Mechanisms. International Journal of Molecular Sciences 2024, Vol 25, Page 7621 [Internet]. 2024 Jul 11 [cited 2024 Sep 10];25(14):7621. Available from: https:// www.mdpi.com/1422-0067/25/14/7621/ htm
  • Kjaer M, Kiens B, Hargreaves M, Richter EA. Influence of active muscle mass on glucose homeostasis during exercise in humans. J Appl Physiol (1985) [Internet]. 1991 [cited 2023 Mar 29];71(2):552–7. Available from: https://pubmed.ncbi.nlm. nih.gov/1938728/
Toplam 40 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Sağlık Bilimleri Eğitimi ve Program Geliştirme: Tıp, Hemşirelik ve Sağlık Bilimleri
Bölüm Derleme
Yazarlar

Mehtap Kılıçöz Bakar 0000-0001-6189-4421

Özge Mine Yılmaz 0000-0002-6451-2414

Yayımlanma Tarihi 18 Mart 2025
Gönderilme Tarihi 11 Eylül 2024
Kabul Tarihi 6 Kasım 2024
Yayımlandığı Sayı Yıl 2025 Cilt: 8 Sayı: 1

Kaynak Göster

APA Kılıçöz Bakar, M., & Yılmaz, Ö. M. (2025). Egzersiz ve Kan Glikozu Düzenleme Mekanizmaları. Tıp Fakültesi Klinikleri Dergisi, 8(1), 67-75.


All site content, except where otherwise noted, is licensed under a Creative Common Attribution Licence. (CC-BY-NC 4.0)

by-nc.png