Araştırma Makalesi
BibTex RIS Kaynak Göster

Suzuki - $F(\psi-\phi)-\alpha$ type fixed point theorem on quasi metric spaces

Yıl 2020, , 43 - 50, 31.03.2020
https://doi.org/10.31197/atnaa.643140

Öz

In this paper, we obtain a $\alpha$-Suzuki  fixed point theorem by using $C$ - class function on  quasi metric spaces. Also we give an example which supports our main theorem.

Kaynakça

  • [1] A.H. Ansari, Note on phi-psi--contractive type mappings and related fixed point, The 2nd Regional Conference on Math.Appl.PNU, Sept.(2014), 377–380.
  • [2] S. Banach, Sur les operations dans les ensembles abstraits et leur application aux equation integrals, Fund. Math.,3(1922),133–181.
  • [3] E. Karapinar, B. Samet, Generalized ( alpha-psi)-contractive type mappings and related fixed point theorems with applications. Abstr. Appl. Anal , 2012 (2012) Article id: 793486
  • [4] E. Karapinar, P. Kumam, Salimi, On alpha-psi - Meir-Keeler contractive mappings, Fixed Point Theory Appl.2013, Article ID94(2013).
  • [5] O. Popescu, Two generalizations of some fixed point theorems, Comp. Math. Appl., 62, 3912–3919, (2011).
  • [6] B. Samet, C. Vetro, P. Vetro, Fixed point theorems for alpha-psi-contractive mappings, Nonlinear Anal. 75(2012), 2154–2165.
  • [7] T. Suzuki, A generalized Banach contraction principle which characterizes metric completeness, Proc. Amer. Math. Soc. 2008. vol. 136, pp. 1861–1869.
Yıl 2020, , 43 - 50, 31.03.2020
https://doi.org/10.31197/atnaa.643140

Öz

Kaynakça

  • [1] A.H. Ansari, Note on phi-psi--contractive type mappings and related fixed point, The 2nd Regional Conference on Math.Appl.PNU, Sept.(2014), 377–380.
  • [2] S. Banach, Sur les operations dans les ensembles abstraits et leur application aux equation integrals, Fund. Math.,3(1922),133–181.
  • [3] E. Karapinar, B. Samet, Generalized ( alpha-psi)-contractive type mappings and related fixed point theorems with applications. Abstr. Appl. Anal , 2012 (2012) Article id: 793486
  • [4] E. Karapinar, P. Kumam, Salimi, On alpha-psi - Meir-Keeler contractive mappings, Fixed Point Theory Appl.2013, Article ID94(2013).
  • [5] O. Popescu, Two generalizations of some fixed point theorems, Comp. Math. Appl., 62, 3912–3919, (2011).
  • [6] B. Samet, C. Vetro, P. Vetro, Fixed point theorems for alpha-psi-contractive mappings, Nonlinear Anal. 75(2012), 2154–2165.
  • [7] T. Suzuki, A generalized Banach contraction principle which characterizes metric completeness, Proc. Amer. Math. Soc. 2008. vol. 136, pp. 1861–1869.
Toplam 7 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Articles
Yazarlar

Venigalla Madhulatha Himabindu

Yayımlanma Tarihi 31 Mart 2020
Yayımlandığı Sayı Yıl 2020

Kaynak Göster

Cited By

Hu's characterization of metric completeness revisited
Advances in the Theory of Nonlinear Analysis and its Application
https://doi.org/10.31197/atnaa.1090077