Not
BibTex RIS Kaynak Göster

Comment on Strongly Preirresolute Topological Vector Spaces

Yıl 2021, , 229 - 231, 30.06.2021
https://doi.org/10.31197/atnaa.831128

Öz

Let (X, =) be a topological space. A subset A of X is called
pre-open if A ⊆ Int(Cl(A)). Let P O(X) denote the family of all pre-open
sets in X. In general, P O(X) does not form a topology on X. Furthermore, in topological vector spaces, it is not always true that P O(L) forms
a topology on L where L is a topological vector space. In this note, we
prove that the class of strongly preirresolute topological vector spaces is
that subclass of topological vector spaces in which P O(L) forms a topology and thereby we see that all proved results in [5] concerning strongly
preirresolute topological vector spaces are obvious.

Kaynakça

  • [1] P. Bandyopadhyay, Topological Vector Spaces, Lecture Notes.
  • [2] M. Infusino, Topological Vector Spaces, Monograph, University of Konstanz, 2015.
  • [3] A. Kar and P. Bhattacharyya, Some weak separation axioms, Bull. Calcutta Math. Soc., 82 (1990), 415-422.
  • [4] A.S. Mashhour, M.E. Abd El-Monsef, I.A. Hasanein and T. Noiri, Strongly compact spaces, Delta J. Sci., 8 (1984), 30-46.
  • [5] N. Rajesh and V. Vijayabharathi, On strongly preirresolute topological vector spaces, Mathematica Bohemica, 38 (1) (2013), 37-42.
  • [6] W. Rudin, Functional Analysis, McGraw-Hill, 2nd edition, 1991.
  • [7] H.H. Schaefer, Topological Vector Spaces, Springer-Verlag New York, 1971.
Yıl 2021, , 229 - 231, 30.06.2021
https://doi.org/10.31197/atnaa.831128

Öz

Kaynakça

  • [1] P. Bandyopadhyay, Topological Vector Spaces, Lecture Notes.
  • [2] M. Infusino, Topological Vector Spaces, Monograph, University of Konstanz, 2015.
  • [3] A. Kar and P. Bhattacharyya, Some weak separation axioms, Bull. Calcutta Math. Soc., 82 (1990), 415-422.
  • [4] A.S. Mashhour, M.E. Abd El-Monsef, I.A. Hasanein and T. Noiri, Strongly compact spaces, Delta J. Sci., 8 (1984), 30-46.
  • [5] N. Rajesh and V. Vijayabharathi, On strongly preirresolute topological vector spaces, Mathematica Bohemica, 38 (1) (2013), 37-42.
  • [6] W. Rudin, Functional Analysis, McGraw-Hill, 2nd edition, 1991.
  • [7] H.H. Schaefer, Topological Vector Spaces, Springer-Verlag New York, 1971.
Toplam 7 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Articles
Yazarlar

Madhu Ram 0000-0001-6583-0978

Sayed K Elagan Bu kişi benim

Yayımlanma Tarihi 30 Haziran 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster