This article aims to use Bohnenblust Karlin’s fixed point theorem to obtain new results for the impulsive
inclusions with infinite delay in Banah space given by the form
(P)
8><
>:
cD®
t x(t )¡ Ax(t ) 2 F(t ,xt ), t 2 J , t 6Æ ti ,
¢x(ti ) Æ Ii (x(t¡
i )), i Æ 1, ...,m,
x(t ) ƪ(t ), t 2 (¡1,0].
where cD® is theCaputo derivative. We examine the casewhen themultivalued function F is an upperCarathéodory
and the linear part is sectorial operator defined on Banach space. Also, we provide an example to elaborate the
outcomes.
Fractional impulsive differential inclusions Nonlocal conditions Fixed point theorems
Birincil Dil | İngilizce |
---|---|
Konular | Matematik |
Bölüm | Articles |
Yazarlar | |
Yayımlanma Tarihi | 30 Eylül 2021 |
Yayımlandığı Sayı | Yıl 2021 |