Yıl 2021,
, 454 - 466, 30.12.2021
Harikrishnan Panackal
,
Bernardo Guillen
Ravi Agarwal
,
Hamid Moradi
Kaynakça
- [1] C. Alsina, B. Schweizer and A. Sklar, On the definition of a probabilistic normed space, Aequationes Math., 46, (1993)
91-98.
- [2] C. Alsina, B. Schweizer and A. Sklar, Continuity properties of probabilistic norms, J. Math. Anal. Appl., 208, (1997)
446-452.
- [3] N. Eghbali, Frechet differentiation between Menger probabilistic normed spaces, Proyecciones Journal of Mathematics,
33(4), (2014) 415-435.
- [4] L. Fatemeh and N. Kourosh, Compact operators defined on 2-normed and 2- probabilistic normed spaces, Mathematical
Problems in Engineering, (2009).
- [5] I. Golet, On probabilistic 2-normed spaces, Novi Sad J. Math, vol. 35, no. 1,(2005) 95-102.
- [6] R. Haloi and M. Sen, µ-statistically convergent multiple sequences in probabilistic normed spaces, in Advances in Algebra
and Analysis, Springer, (2018) 353-360.
- [7] P.K. Harikrishnan, B. Lafuerza-Guillen, K.T. Ravindran.: Compactness and D− boundedness in Menger's 2-Probabilistic
Normed Spaces, FILOMAT, 30(5), 1263-1272 (2016).
- [8] P.K. Harikrishnan K. T. Ravindran.: Some Results Of Accretive Operators and Convex Sets in 2-Probabilistic Normed
Space, Journal of Prime Research in Mathematics, 8, 76-84 (2012).
- [9] P.K. Harikrishnan, B. Lafuerza-Guillén,Yeol Je Cho, K. T. Ravindran, New classes of generalized PN Spaces and their
Normability, Acta Mathematica Vietnamica, 42 (3) (2017), 727-746.
- [10] P.K. Harikrishnan Bernardo Lafuerza - Guillen, K. T. Ravindran Accretive operators and Banach Alogolu Theorem in
Linear 2-normed spaces, Proyeccions Journal of Mathematics, Vol 30, No.3, (2011) 319-327.
- [11] B. Lafuerza-Guillén, A. Rodríguez Lallena and C. Sempi,A study of boundedness in probabilistic normed spaces, J. Math.
Anal. Appl., 232, 183-196 (1999).
- [12] B. Lafuerza-Guillén.: D-bounded sets in probabilistic normed spaces and their products, Rend. Mat., Serie VII, 21, 17-28
(2001).
- [13] B. Lafuerza-Guillen, Carlo Sempi, Gaoxun Zhang.: A Study of Boundedness in Probabilistic Normed Spaces, Nonlinear
Analysis, 73 , 1127-1135 (2010).
- [14] B. Lafuerza-Guillén, Panackal Harikrishnan.: Probabilistic Normed Spaces, Imperial College Press, World Scientific, UK,
London (2014).
- 15] A. Pourmoslemi, M. Ferrara, B. A. Pansera, and M. Salimi, Probabilistic norms on the homeomorphisms of a group, Soft
Computing, (2020) 1-8.
- [16] Raymond W. Freese,Yeol Je Cho, Geometry of linear 2-normed spaces, Nova Science publishers, Inc, Newyork,(2001).
[17] M. Sen, S. Nath, and B.C. Tripathy, Best approximation in quotient probabilistic normed space, Journal of Applied
Analysis, vol. 23, no. 1, (2017) 5-57.
- [18] B.C. Tripathy, M. Sen, and S. Nath, I-convergence in probabilistic n-normed space, Soft computing, 16 (6) (2012) 1021-1027.
- [19] B. Tripathy and R. Goswami, Statistically convergent multiple sequences in probabilistic normed spaces, Scientific Bulletin-
Politehnica University of Bucharest Series A, Applied mathematics and physics, 78 (4), (2016) 83-94.
Strong and weak convergences in 2-probabilistic normed spaces
Yıl 2021,
, 454 - 466, 30.12.2021
Harikrishnan Panackal
,
Bernardo Guillen
Ravi Agarwal
,
Hamid Moradi
Öz
In this paper, we have introduced the notions of strong and weak convergences in 2-probabilistic normed spaces (2-PN spaces) and established some of its properties. Later, we have defined the strong and weak boundedness of a linear map between two 2-PN spaces and proved a necessary and sufficient condition for the linear map between two 2-PN spaces to be strongly and weakly bounded.
Kaynakça
- [1] C. Alsina, B. Schweizer and A. Sklar, On the definition of a probabilistic normed space, Aequationes Math., 46, (1993)
91-98.
- [2] C. Alsina, B. Schweizer and A. Sklar, Continuity properties of probabilistic norms, J. Math. Anal. Appl., 208, (1997)
446-452.
- [3] N. Eghbali, Frechet differentiation between Menger probabilistic normed spaces, Proyecciones Journal of Mathematics,
33(4), (2014) 415-435.
- [4] L. Fatemeh and N. Kourosh, Compact operators defined on 2-normed and 2- probabilistic normed spaces, Mathematical
Problems in Engineering, (2009).
- [5] I. Golet, On probabilistic 2-normed spaces, Novi Sad J. Math, vol. 35, no. 1,(2005) 95-102.
- [6] R. Haloi and M. Sen, µ-statistically convergent multiple sequences in probabilistic normed spaces, in Advances in Algebra
and Analysis, Springer, (2018) 353-360.
- [7] P.K. Harikrishnan, B. Lafuerza-Guillen, K.T. Ravindran.: Compactness and D− boundedness in Menger's 2-Probabilistic
Normed Spaces, FILOMAT, 30(5), 1263-1272 (2016).
- [8] P.K. Harikrishnan K. T. Ravindran.: Some Results Of Accretive Operators and Convex Sets in 2-Probabilistic Normed
Space, Journal of Prime Research in Mathematics, 8, 76-84 (2012).
- [9] P.K. Harikrishnan, B. Lafuerza-Guillén,Yeol Je Cho, K. T. Ravindran, New classes of generalized PN Spaces and their
Normability, Acta Mathematica Vietnamica, 42 (3) (2017), 727-746.
- [10] P.K. Harikrishnan Bernardo Lafuerza - Guillen, K. T. Ravindran Accretive operators and Banach Alogolu Theorem in
Linear 2-normed spaces, Proyeccions Journal of Mathematics, Vol 30, No.3, (2011) 319-327.
- [11] B. Lafuerza-Guillén, A. Rodríguez Lallena and C. Sempi,A study of boundedness in probabilistic normed spaces, J. Math.
Anal. Appl., 232, 183-196 (1999).
- [12] B. Lafuerza-Guillén.: D-bounded sets in probabilistic normed spaces and their products, Rend. Mat., Serie VII, 21, 17-28
(2001).
- [13] B. Lafuerza-Guillen, Carlo Sempi, Gaoxun Zhang.: A Study of Boundedness in Probabilistic Normed Spaces, Nonlinear
Analysis, 73 , 1127-1135 (2010).
- [14] B. Lafuerza-Guillén, Panackal Harikrishnan.: Probabilistic Normed Spaces, Imperial College Press, World Scientific, UK,
London (2014).
- 15] A. Pourmoslemi, M. Ferrara, B. A. Pansera, and M. Salimi, Probabilistic norms on the homeomorphisms of a group, Soft
Computing, (2020) 1-8.
- [16] Raymond W. Freese,Yeol Je Cho, Geometry of linear 2-normed spaces, Nova Science publishers, Inc, Newyork,(2001).
[17] M. Sen, S. Nath, and B.C. Tripathy, Best approximation in quotient probabilistic normed space, Journal of Applied
Analysis, vol. 23, no. 1, (2017) 5-57.
- [18] B.C. Tripathy, M. Sen, and S. Nath, I-convergence in probabilistic n-normed space, Soft computing, 16 (6) (2012) 1021-1027.
- [19] B. Tripathy and R. Goswami, Statistically convergent multiple sequences in probabilistic normed spaces, Scientific Bulletin-
Politehnica University of Bucharest Series A, Applied mathematics and physics, 78 (4), (2016) 83-94.