Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2022, , 547 - 564, 30.12.2022
https://doi.org/10.31197/atnaa.998275

Öz

Kaynakça

  • [1] K.E. Atkinson, The numerical solution of integral equations of the second kind, Cambridge University Press, Cambridge. (1997).
  • [2] M.C. Bounaya, S. Lemita, M. Ghiat and M.Z. Aissaoui, On a nonlinear integro-di?erential equation of Fredholm type, Int. J. Comput. Sci. Math. 13 (2021) 194-205.
  • [3] Z.K. Eshkuvatov, A. Akhmedov, N.N. Long and O. Sha?q, Approximate solutionn of a nonllinear system of integral equations using modi?ed Newton-Kantorovich method, J. Fund. Appl. Sci. 6:2 (2010) 154-159.
  • [4] Z.K. Eshkuvatov, H.H. Hameed and N.N. Long, One dimensional nonlinear integral operator with Newton-Kantorovich method, J. King. Saud. Univ. Sci. 28 (2016) 172-177.
  • [5] L. Grammont, Nonlinear integral equations of the second kind: a new version of Nyström method. Numer. Funct. Anal. Optim. 34 (2013) 496-515.
  • [6] H.H. Hameed, Z.K. Eshkuvatov, Z. Muminov and A. Kilicman, Solving system of nonlinear integral equations by Newton- Kantorovich method, AIP. Conf. Proc. 1605 (2014) 518-523.
  • [7] A. Hamoud, N.M. Mohammed and K. Ghadle, Existence and uniqueness results for Volterra-Fredholm integro-Differential equations, Adv. Theory Nonlinear Anal. Appl. 4 (2020) 361-372.
  • [8] I.A. Rus, Some variants of contraction principle in the case of operators with Volterra property: step by step contraction principle, Adv. Theory Nonlinear Anal. Appl. 3 (2019) 111-120.
  • [9] J. Saberi-Nadjafi and M. Heidari, Solving nonlinear integral equations in the Urysohn form by Newton-Kantorovich- quadrature method, Comput. Math. Appl. 60 (2010) 2058-2065.
  • [10] J. Stoer and R. Bulirsch, Introduction to numerical analysis, Springer Science and Business Media. (2013).
  • [11] H.R. Thieme, A model for the spatial spread of an epidemic, J. Math. Biol. 4 (1977) 337-351.
  • [12] A.N. Tynda, D.N. Sidorov and N.A. Sidorov, Numeric solution of systems of nonlinear Volterra integral equations of the first kind with discontinuous kernels, arXiv preprint arXiv:1910.08941. (2019).

Linearization-Discretization process to solve systems of nonlinear Fredholm integral equations in an infinite-dimensional context

Yıl 2022, , 547 - 564, 30.12.2022
https://doi.org/10.31197/atnaa.998275

Öz

In this paper, we propose a different way for solving systems of nonlinear Fredholm integral equations of the second kind. We construct our new strategy in two steps, through beginning with the linearization phase of the system of Fredholm integral equations by applying Newton method, then we pass to the discretization phase for some involved integral operator using Nystr\"{o}m method. The convergence analysis of our new method is proved under some necessary conditions. At last, a numerical application to approach a nonlinear Fredholm integro-differential equation by using this new process is taken to confirm its advantage.

Kaynakça

  • [1] K.E. Atkinson, The numerical solution of integral equations of the second kind, Cambridge University Press, Cambridge. (1997).
  • [2] M.C. Bounaya, S. Lemita, M. Ghiat and M.Z. Aissaoui, On a nonlinear integro-di?erential equation of Fredholm type, Int. J. Comput. Sci. Math. 13 (2021) 194-205.
  • [3] Z.K. Eshkuvatov, A. Akhmedov, N.N. Long and O. Sha?q, Approximate solutionn of a nonllinear system of integral equations using modi?ed Newton-Kantorovich method, J. Fund. Appl. Sci. 6:2 (2010) 154-159.
  • [4] Z.K. Eshkuvatov, H.H. Hameed and N.N. Long, One dimensional nonlinear integral operator with Newton-Kantorovich method, J. King. Saud. Univ. Sci. 28 (2016) 172-177.
  • [5] L. Grammont, Nonlinear integral equations of the second kind: a new version of Nyström method. Numer. Funct. Anal. Optim. 34 (2013) 496-515.
  • [6] H.H. Hameed, Z.K. Eshkuvatov, Z. Muminov and A. Kilicman, Solving system of nonlinear integral equations by Newton- Kantorovich method, AIP. Conf. Proc. 1605 (2014) 518-523.
  • [7] A. Hamoud, N.M. Mohammed and K. Ghadle, Existence and uniqueness results for Volterra-Fredholm integro-Differential equations, Adv. Theory Nonlinear Anal. Appl. 4 (2020) 361-372.
  • [8] I.A. Rus, Some variants of contraction principle in the case of operators with Volterra property: step by step contraction principle, Adv. Theory Nonlinear Anal. Appl. 3 (2019) 111-120.
  • [9] J. Saberi-Nadjafi and M. Heidari, Solving nonlinear integral equations in the Urysohn form by Newton-Kantorovich- quadrature method, Comput. Math. Appl. 60 (2010) 2058-2065.
  • [10] J. Stoer and R. Bulirsch, Introduction to numerical analysis, Springer Science and Business Media. (2013).
  • [11] H.R. Thieme, A model for the spatial spread of an epidemic, J. Math. Biol. 4 (1977) 337-351.
  • [12] A.N. Tynda, D.N. Sidorov and N.A. Sidorov, Numeric solution of systems of nonlinear Volterra integral equations of the first kind with discontinuous kernels, arXiv preprint arXiv:1910.08941. (2019).
Toplam 12 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Articles
Yazarlar

Ilyes Sedka 0000-0002-2838-9121

Samir Lemıta 0000-0003-2568-2493

Mohamed Zine Aıssaouı 0000-0001-5253-9671

Yayımlanma Tarihi 30 Aralık 2022
Yayımlandığı Sayı Yıl 2022

Kaynak Göster