Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2018, Cilt: 2 Sayı: 2, 106 - 112, 30.06.2018
https://doi.org/10.31197/atnaa.402721

Öz

Kaynakça

  • [1] G.L. Forti, Hyers-Ulam stability of functional equations in several variables, Aequationes Mathematicae,50(1995), 143-190.[2] D.H. Hyers, G. Isac, Th.M. Rassias, Stability of Functional Equations in Several Variables,Birkhäuser, Boston, 1998.[3] S.M. Jung, H. Şevli, Power series method and approximate linear differential equations of secondorder, Adv. Difference Equ., (2013), 1-9.[4] B. Kim, S.M. Jung, Bessel’s differential equation and its Hyers-Ulam stability, J. Ineq. Appl.,(2007), 8 pages.[5] T. Miura, S. Miyajima, S. E. Takahasi, A characterization of Hyers-Ulam stability of first orderlinear differential operators, J. Math. Anal. Appl., 286(2003), 136-146.[6] M. Obłoza, Hyers-Ulam stability of the linear differential equation, Rocznik Nauk.-Dydakt.Prace Mat., 13(1993), 259-270.[7] M. Obłoza, Connections between Hyers and Lyapunov stability of the ordinary differential equations,Rocznik Nauk.-Dydakt. Prace Mat., 14(1997), 141-146.[8] D. Popa, I. Raşa, On the Hyers-Ulam stability of the linear differential equation, J. Math. Anal.Appl., 381(2011), 530-537.[9] D. Popa, I. Raşa, Hyers-Ulam stability of the linear differential operator with nonconstantcoefficients, Appl. Math. Comput., 219(2012), 1562-1568.[10] D. Popa, G. Pugna, I. Raşa, Bounds of solutions of some differential equations and Ulamstability, submitted.[11] I. Raşa, Entropies and Heun functions associated with positive linear operators, Appl. Math.Comput., 268 (2015), 422-431.[12] S.M. Ulam, Problems in Modern Mathematics, Wiley, New York, 1960.

On Ulam stability of the second order linear differential equation

Yıl 2018, Cilt: 2 Sayı: 2, 106 - 112, 30.06.2018
https://doi.org/10.31197/atnaa.402721

Öz

We obtain a result on Ulam stability for a linear differential equation
in Banach spaces. As application we give a result on the stability of Heun’s
differential equation.

Kaynakça

  • [1] G.L. Forti, Hyers-Ulam stability of functional equations in several variables, Aequationes Mathematicae,50(1995), 143-190.[2] D.H. Hyers, G. Isac, Th.M. Rassias, Stability of Functional Equations in Several Variables,Birkhäuser, Boston, 1998.[3] S.M. Jung, H. Şevli, Power series method and approximate linear differential equations of secondorder, Adv. Difference Equ., (2013), 1-9.[4] B. Kim, S.M. Jung, Bessel’s differential equation and its Hyers-Ulam stability, J. Ineq. Appl.,(2007), 8 pages.[5] T. Miura, S. Miyajima, S. E. Takahasi, A characterization of Hyers-Ulam stability of first orderlinear differential operators, J. Math. Anal. Appl., 286(2003), 136-146.[6] M. Obłoza, Hyers-Ulam stability of the linear differential equation, Rocznik Nauk.-Dydakt.Prace Mat., 13(1993), 259-270.[7] M. Obłoza, Connections between Hyers and Lyapunov stability of the ordinary differential equations,Rocznik Nauk.-Dydakt. Prace Mat., 14(1997), 141-146.[8] D. Popa, I. Raşa, On the Hyers-Ulam stability of the linear differential equation, J. Math. Anal.Appl., 381(2011), 530-537.[9] D. Popa, I. Raşa, Hyers-Ulam stability of the linear differential operator with nonconstantcoefficients, Appl. Math. Comput., 219(2012), 1562-1568.[10] D. Popa, G. Pugna, I. Raşa, Bounds of solutions of some differential equations and Ulamstability, submitted.[11] I. Raşa, Entropies and Heun functions associated with positive linear operators, Appl. Math.Comput., 268 (2015), 422-431.[12] S.M. Ulam, Problems in Modern Mathematics, Wiley, New York, 1960.
Toplam 1 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Articles
Yazarlar

Dorian Popa

Georgiana Pugna Bu kişi benim

Ioan Rasa Bu kişi benim

Yayımlanma Tarihi 30 Haziran 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 2 Sayı: 2

Kaynak Göster