[1] Agrawal S. and Sahoo S. K., A generalization of starlike functions of order. Hokkaido Math. J.,
46(1) (2017), 15-27.
[2] Duren P. L., Univalent Functions. Grundlehren der Mathematischen Wissenschaften, Band 259,
Springer-Verlag, New York, Berlin, Heidelberg and Tokyo, 1983.
[3] Hille E., Hypergeometric functions and conformal mappings. J. Differential Equations, 34
(1979) 147–152.
[4] Ismail M. E. H., Merkes E. and Styer D., A generalization of starlike functions. Complex
Variables Theory Appl., 14 (1990), 77-84.
[5] Janowski W., Some extremal problems for certain families of analytic functions. Ann. Polon.
Math., 28 (1973), 297-326.
[6] Lehto O., and Virtanen K. I., Quasiconformal mappings in the plane (Grundlehren Math. Wiss.
vol. 126), 2nd ed., Springer, Berlin, 1973.
[7] Owa S. and Srivastava H. M. (Eds.), Current Topics in Analytic Function Theory. World
Scientific Publishing Company, Singapore, New Jersey, London, Hong Kong, 1992.
[8] Ponnusamy S., Close-to-convexity properties of Gaussian hypergeometric functions. J. Comput.
Appl. Math., 88 (1997), 327-337.
[9] Ponnusamy S. and Ronning F., Starlikeness properties for convolutions involving hypergeometric series, Ann. Univ. Mariae Curie-Sk lodowska Sect., L.II. 1 (16) (1998), 141–155.
Suficient condition for q-starlike and q-convex functions associated with generalized confluent hypergeometric function
The main object of this paper is to investigate and determine a sufficient condition for q-starlike and q-convex functions which are associated with generalized confluent hypergeometric function. The main object of this paper is to investigate and determine a sufficient condition for q-starlike and q-convex functions which are associated with
generalized confluent hypergeometric function.The main object of this paper is to investigate and determine a sufficient condition for q-starlike and q-convex functions which are associated with
generalized confluent hypergeometric function.
[1] Agrawal S. and Sahoo S. K., A generalization of starlike functions of order. Hokkaido Math. J.,
46(1) (2017), 15-27.
[2] Duren P. L., Univalent Functions. Grundlehren der Mathematischen Wissenschaften, Band 259,
Springer-Verlag, New York, Berlin, Heidelberg and Tokyo, 1983.
[3] Hille E., Hypergeometric functions and conformal mappings. J. Differential Equations, 34
(1979) 147–152.
[4] Ismail M. E. H., Merkes E. and Styer D., A generalization of starlike functions. Complex
Variables Theory Appl., 14 (1990), 77-84.
[5] Janowski W., Some extremal problems for certain families of analytic functions. Ann. Polon.
Math., 28 (1973), 297-326.
[6] Lehto O., and Virtanen K. I., Quasiconformal mappings in the plane (Grundlehren Math. Wiss.
vol. 126), 2nd ed., Springer, Berlin, 1973.
[7] Owa S. and Srivastava H. M. (Eds.), Current Topics in Analytic Function Theory. World
Scientific Publishing Company, Singapore, New Jersey, London, Hong Kong, 1992.
[8] Ponnusamy S., Close-to-convexity properties of Gaussian hypergeometric functions. J. Comput.
Appl. Math., 88 (1997), 327-337.
[9] Ponnusamy S. and Ronning F., Starlikeness properties for convolutions involving hypergeometric series, Ann. Univ. Mariae Curie-Sk lodowska Sect., L.II. 1 (16) (1998), 141–155.