Araştırma Makalesi
BibTex RIS Kaynak Göster

Neumann and Mix Boundary Value Problems on the Upper Half Plane

Yıl 2022, Cilt: 6 Sayı: 1, 135 - 142, 31.03.2022
https://doi.org/10.31197/atnaa.950920

Öz

We give explicit representation of Neumann boundary value problem for Bitsadze equation on the upper half plane. We will also give solution of the inhomogeneous polyanalytic equation arising from Neumann and (n-1) Dirichlet boundary conditions on the upper half plane H.

Kaynakça

  • [1] H. Begehr, Boundary value problems in Complex analysis, I.F.Bol. Asoc. Mat. Venezolana V, XII, No.1(2005), 65-85.
  • [2] I.N. Vekua, Generalized analytic functions, Pergamon Press, Oxford, (1962).
  • [3] E. Gaertner, Basic complex boundary value problems in the upper half plane, PhD thesis, FU Berlin, (2006). Available at http//www.diss.fuberlin.de/diss/receive/FUDISS thesis 000000002129.
  • [4] H. Begehr, G.N. Hile, A hierarchy of integral operators. Rocky Mountain J.Math., 27 (1997), 669-706.
  • [5] A. Chaudhary, A. Kumar, Boundary value problems in upper half plane, Complex Variables and Elliptic Equations, 54 (2009), 441-448.
  • [6] A. Chaudhary, A. Kumar, Mixed Boundary value problems in the upper half plane, Journal of Applied Functional Analysis, 5(2010), 209-220.
  • [7] A. Kumar, R. Prakash, Neumann and mixed boundary value problems. Journal of Applied Functional Analysis, 3(2008), 399-418.
  • [8] H. Begehr, S. Burgumbayeva, B. Shupeyeva, Harmonic Green functions for a plane domain with two touching circles as boundary. Advanced Mathematical Models and Applications 3(2018), 18-29.
  • [9] H. Begehr, M. Akel, Neumann function for a hyperbolic strip and a class of related plane domains, Mathematis- cheNachrichten, 290 (4) (2017), 490-506.
  • [10] H. Begehr, Complex analytic methods for partial differential equations. An introductory text. World Scientific, Singapore, (1994).
Yıl 2022, Cilt: 6 Sayı: 1, 135 - 142, 31.03.2022
https://doi.org/10.31197/atnaa.950920

Öz

Kaynakça

  • [1] H. Begehr, Boundary value problems in Complex analysis, I.F.Bol. Asoc. Mat. Venezolana V, XII, No.1(2005), 65-85.
  • [2] I.N. Vekua, Generalized analytic functions, Pergamon Press, Oxford, (1962).
  • [3] E. Gaertner, Basic complex boundary value problems in the upper half plane, PhD thesis, FU Berlin, (2006). Available at http//www.diss.fuberlin.de/diss/receive/FUDISS thesis 000000002129.
  • [4] H. Begehr, G.N. Hile, A hierarchy of integral operators. Rocky Mountain J.Math., 27 (1997), 669-706.
  • [5] A. Chaudhary, A. Kumar, Boundary value problems in upper half plane, Complex Variables and Elliptic Equations, 54 (2009), 441-448.
  • [6] A. Chaudhary, A. Kumar, Mixed Boundary value problems in the upper half plane, Journal of Applied Functional Analysis, 5(2010), 209-220.
  • [7] A. Kumar, R. Prakash, Neumann and mixed boundary value problems. Journal of Applied Functional Analysis, 3(2008), 399-418.
  • [8] H. Begehr, S. Burgumbayeva, B. Shupeyeva, Harmonic Green functions for a plane domain with two touching circles as boundary. Advanced Mathematical Models and Applications 3(2018), 18-29.
  • [9] H. Begehr, M. Akel, Neumann function for a hyperbolic strip and a class of related plane domains, Mathematis- cheNachrichten, 290 (4) (2017), 490-506.
  • [10] H. Begehr, Complex analytic methods for partial differential equations. An introductory text. World Scientific, Singapore, (1994).
Toplam 10 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Articles
Yazarlar

Arun Chaudhary 0000-0002-7101-9679

Yayımlanma Tarihi 31 Mart 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 6 Sayı: 1

Kaynak Göster