Yıl 2022,
Cilt: 6 Sayı: 2, 173 - 190, 30.06.2022
Salim Abdelkrim
,
Mouffak Benchohra
,
Jamal Eddine Lazreg
,
Johnny Henderson
Kaynakça
- [1] S. Abbas, M. Benchohra, J.R. Graef and J. Henderson, Implicit Differential and Integral Equations: Existence and Stability,
Walter de Gruyter, London, 2018.
- [2] S. Abbas, M. Benchohra and G.M. N'Guérékata, Advanced Fractional Differential and Integral Equations, Nova Science
Publishers, New York, 2014.
- [3] S. Abbas, M. Benchohra and G.M. N'Guérékata, Topics in Fractional Differential Equations, Springer-Verlag, New York,
2012.
- [4] A. Almalahi and K. Panchal, Existence results of ψ-Hilfer integro-differential equations with fractional order in Banach
space, Ann. Univ. Paedagog. Crac. Stud. Math, 19 (2020), 171-192.
- [5] M. Benchohra, S. Bouriah and J. Henderson, Nonlinear implicit Hadamard's fractional differential equations with retarded
and advanced arguments, Azerbaijan J. Math. 8 (2018), 72-85.
- [6] M. Benchohra, J.E. Lazreg and G.M. N'Guérékata, Nonlinear implicit Hadamard's fractional differential equations on
Banach space with retarded and advanced arguments, Intern. J. Evol. Equ., 10 (2015), 283-295.
- [7] M. Benchohra, J. Henderson and S.K. Ntouyas, Impulsive Differential Equations and Inclusions, vol. 2. Hindawi Publishing
Corporation, New York, 2006.
- [8] Y.M. Chu, M.U. Awan, S. Talib, M.A. Noor and K.I. Noor, Generalizations of Hermite-Hadamard like inequalities involving
χ κ -Hilfer fractional integrals, Adv. Difference Equ. 2020 (2020), 594.
- [9] C. Derbazi, Z. Baitiche and M. Benchohra, Cauchy problem with ψ-Caputo fractional derivative in Banach spaces, Adv.
Theory Nonlinear Anal. Appl. 4 (2020), 349-360.
- [10] R. Diaz and C. Teruel, q,k-Generalized gamma and beta functions, J. Nonlinear Math. Phys. 12 (2005), 118-134.
- [11] A. Granas and J. Dugundji, Fixed Point Theory, Springer-Verlag, New York, 2003.
- [12] J.P. Kharade and K.D. Kucche, On the impulsive implicit ψ-Hilfer fractional differential equations with delay, Math. Meth.
Appl. Sci. 43 (2020), 1938-1952.
- [13] A.A. Kilbas, H.M. Srivastava, and J.J. Trujillo, Theory and Applications of Fractional Differential Equations, North-
Holland Mathematics Studies, Amsterdam, 2006.
- [14] S. Krim, S. Abbas, M. Benchohra, and E. Karapinar, Terminal value problem for implicit Katugampola fractional differ-
ential equations in b-metric spaces, J. Funct. Spaces. Volume 2021, Article ID 5535178, 7 pages.
- [15] J.E. Lazreg, S. Abbas, M. Benchohra, and E. Karapinar, Impulsive Caputo-Fabrizio fractional differential equations in
b-metric spaces, Open Math. 19 (1) (2021), 363-372.
- [16] K. Liu, J. Wang and D. O'Regan, Ulam-Hyers-Mittag-Leffler stability for ψ-Hilfer fractional-order delay differential equa-
tions, Adv Difference Equ. 2019 (2019), 50.
- [17] S. Mubeen and G. M. Habibullah, k-Fractional Integrals and Application, Int. J. Contemp. Math. Sci. 7 (2012), 89-94.
- [18] J.E. Nápoles Valdés, Generalized fractional Hilfer integral and derivative, Contr. Math. 2 (2020), 55-60.
- [19] S. Rashid, M. Aslam Noor, K. Inayat Noor and Y.M. Chu, Ostrowski type inequalities in the sense of generalized K-
fractional integral operator for exponentially convex functions, AIMS Math. 5 (2020), 2629-2645.
- [20] A. Salim, M. Benchohra, J.R. Graef and J.E. Lazreg, Boundary value problem for fractional generalized Hilfer-type fractional derivative with non-instantaneous impulses, Fractal Fract. 5 (2021), 1-21.
https://dx.doi.org/10.3390/fractalfract5010001
- [21] A. Salim, M. Benchohra, E. Karapinar and J.E. Lazreg, Existence and Ulam stability for impulsive generalized Hilfer-type
fractional differential equations, Adv. Di?er. Equ. 2020 (2020), 21 pp. https://doi.org/10.1186/s13662-020-03063-4
- [22] A. Salim, M. Benchohra, J.E. Lazreg and J. Henderson, Nonlinear implicit generalized Hilfer-type fractional differential
equations with non-instantaneous impulses in Banach spaces, Adv. Theory Nonlinear Anal. Appl. 4 (2020), 332-348.
https://doi.org/10.31197/atnaa.825294
- [23] A. Salim, M. Benchohra , J.E. Lazreg and G. N'Guérékata, Boundary Value Problem for Nonlinear Implicit General-
ized Hilfer-Type Fractional Differential Equations with Impulses, Abstract and Applied Analysis. 2021 (2021), 17pp.
https://doi.org/10.1155/2021/5592010
- [24] A. Salim, M. Benchohra, J.E. Lazreg, J.J. Nieto and Y. Zhou, Nonlocal Initial Value Problem for Hybrid Generalized Hilfer-
type Fractional Implicit Differential Equations, Nonauton. Dyn. Syst. 8 (2021), 87-100. https://doi.org/10.1515/msds-2020-
0127
- [25] J.V.C. Sousa and E. Capelas de Oliveira, A Gronwall inequality and the Cauchy-type problem by means of ψ-Hilfer
operator, Di?er. Equ. Appl. 11 (2019), 87-106.
- [26] J.V.C. Sousa and E. Capelas de Oliveira, Fractional order pseudo-parabolic partial differential equation: Ulam-Hyers
stability, Bull. Braz. Math. Soc. 50 (2019), 481-496.
- [27] J.V.C. Sousa and E. Capelas de Oliveira, On the ψ-Hilfer fractional derivative, Commun. Nonlinear Sci. Numer. Simul. 60
(2018), 72-91.
On $k$-Generalized $\psi$-Hilfer Boundary Value Problems with Retardation and Anticipation
Yıl 2022,
Cilt: 6 Sayı: 2, 173 - 190, 30.06.2022
Salim Abdelkrim
,
Mouffak Benchohra
,
Jamal Eddine Lazreg
,
Johnny Henderson
Öz
In this paper, we prove some existence and uniqueness results for a class of boundary valued problems for implicit nonlinear
$k$-generalized $\psi$-Hilfer fractional differential equations involving both retarded and advanced arguments. Further, examples are given to illustrate the viability of our results.
Kaynakça
- [1] S. Abbas, M. Benchohra, J.R. Graef and J. Henderson, Implicit Differential and Integral Equations: Existence and Stability,
Walter de Gruyter, London, 2018.
- [2] S. Abbas, M. Benchohra and G.M. N'Guérékata, Advanced Fractional Differential and Integral Equations, Nova Science
Publishers, New York, 2014.
- [3] S. Abbas, M. Benchohra and G.M. N'Guérékata, Topics in Fractional Differential Equations, Springer-Verlag, New York,
2012.
- [4] A. Almalahi and K. Panchal, Existence results of ψ-Hilfer integro-differential equations with fractional order in Banach
space, Ann. Univ. Paedagog. Crac. Stud. Math, 19 (2020), 171-192.
- [5] M. Benchohra, S. Bouriah and J. Henderson, Nonlinear implicit Hadamard's fractional differential equations with retarded
and advanced arguments, Azerbaijan J. Math. 8 (2018), 72-85.
- [6] M. Benchohra, J.E. Lazreg and G.M. N'Guérékata, Nonlinear implicit Hadamard's fractional differential equations on
Banach space with retarded and advanced arguments, Intern. J. Evol. Equ., 10 (2015), 283-295.
- [7] M. Benchohra, J. Henderson and S.K. Ntouyas, Impulsive Differential Equations and Inclusions, vol. 2. Hindawi Publishing
Corporation, New York, 2006.
- [8] Y.M. Chu, M.U. Awan, S. Talib, M.A. Noor and K.I. Noor, Generalizations of Hermite-Hadamard like inequalities involving
χ κ -Hilfer fractional integrals, Adv. Difference Equ. 2020 (2020), 594.
- [9] C. Derbazi, Z. Baitiche and M. Benchohra, Cauchy problem with ψ-Caputo fractional derivative in Banach spaces, Adv.
Theory Nonlinear Anal. Appl. 4 (2020), 349-360.
- [10] R. Diaz and C. Teruel, q,k-Generalized gamma and beta functions, J. Nonlinear Math. Phys. 12 (2005), 118-134.
- [11] A. Granas and J. Dugundji, Fixed Point Theory, Springer-Verlag, New York, 2003.
- [12] J.P. Kharade and K.D. Kucche, On the impulsive implicit ψ-Hilfer fractional differential equations with delay, Math. Meth.
Appl. Sci. 43 (2020), 1938-1952.
- [13] A.A. Kilbas, H.M. Srivastava, and J.J. Trujillo, Theory and Applications of Fractional Differential Equations, North-
Holland Mathematics Studies, Amsterdam, 2006.
- [14] S. Krim, S. Abbas, M. Benchohra, and E. Karapinar, Terminal value problem for implicit Katugampola fractional differ-
ential equations in b-metric spaces, J. Funct. Spaces. Volume 2021, Article ID 5535178, 7 pages.
- [15] J.E. Lazreg, S. Abbas, M. Benchohra, and E. Karapinar, Impulsive Caputo-Fabrizio fractional differential equations in
b-metric spaces, Open Math. 19 (1) (2021), 363-372.
- [16] K. Liu, J. Wang and D. O'Regan, Ulam-Hyers-Mittag-Leffler stability for ψ-Hilfer fractional-order delay differential equa-
tions, Adv Difference Equ. 2019 (2019), 50.
- [17] S. Mubeen and G. M. Habibullah, k-Fractional Integrals and Application, Int. J. Contemp. Math. Sci. 7 (2012), 89-94.
- [18] J.E. Nápoles Valdés, Generalized fractional Hilfer integral and derivative, Contr. Math. 2 (2020), 55-60.
- [19] S. Rashid, M. Aslam Noor, K. Inayat Noor and Y.M. Chu, Ostrowski type inequalities in the sense of generalized K-
fractional integral operator for exponentially convex functions, AIMS Math. 5 (2020), 2629-2645.
- [20] A. Salim, M. Benchohra, J.R. Graef and J.E. Lazreg, Boundary value problem for fractional generalized Hilfer-type fractional derivative with non-instantaneous impulses, Fractal Fract. 5 (2021), 1-21.
https://dx.doi.org/10.3390/fractalfract5010001
- [21] A. Salim, M. Benchohra, E. Karapinar and J.E. Lazreg, Existence and Ulam stability for impulsive generalized Hilfer-type
fractional differential equations, Adv. Di?er. Equ. 2020 (2020), 21 pp. https://doi.org/10.1186/s13662-020-03063-4
- [22] A. Salim, M. Benchohra, J.E. Lazreg and J. Henderson, Nonlinear implicit generalized Hilfer-type fractional differential
equations with non-instantaneous impulses in Banach spaces, Adv. Theory Nonlinear Anal. Appl. 4 (2020), 332-348.
https://doi.org/10.31197/atnaa.825294
- [23] A. Salim, M. Benchohra , J.E. Lazreg and G. N'Guérékata, Boundary Value Problem for Nonlinear Implicit General-
ized Hilfer-Type Fractional Differential Equations with Impulses, Abstract and Applied Analysis. 2021 (2021), 17pp.
https://doi.org/10.1155/2021/5592010
- [24] A. Salim, M. Benchohra, J.E. Lazreg, J.J. Nieto and Y. Zhou, Nonlocal Initial Value Problem for Hybrid Generalized Hilfer-
type Fractional Implicit Differential Equations, Nonauton. Dyn. Syst. 8 (2021), 87-100. https://doi.org/10.1515/msds-2020-
0127
- [25] J.V.C. Sousa and E. Capelas de Oliveira, A Gronwall inequality and the Cauchy-type problem by means of ψ-Hilfer
operator, Di?er. Equ. Appl. 11 (2019), 87-106.
- [26] J.V.C. Sousa and E. Capelas de Oliveira, Fractional order pseudo-parabolic partial differential equation: Ulam-Hyers
stability, Bull. Braz. Math. Soc. 50 (2019), 481-496.
- [27] J.V.C. Sousa and E. Capelas de Oliveira, On the ψ-Hilfer fractional derivative, Commun. Nonlinear Sci. Numer. Simul. 60
(2018), 72-91.