We introduce the concept of exponentially $s$-convexity in the second sense on a time scale interval. We prove among other things that if $f: [a, b]\to \mathbb{R}$ is an exponentially $s$-convex function, then
\begin{align*}
&\frac{1}{b-a}\int_a^b f(t)\Delta t\\
&\leq \frac{f(a)}{e_{\beta}(a, x_0) (b-a)^{2s}}(h_2(a, b))^s+\frac{f(b)}{e_{\beta}(b, x_0) (b-a)^{2s}}(h_2(b, a))^s,
\end{align*}
where $\beta$ is a positively regressive function. By considering special cases of our time scale, one can derive loads of interesting new inequalities. The results obtained herein are novel to best of our knowledge and they complement existing results in the literature.
Ostrowski inequality Time scales Hölder's inequality Exponentially s-convexity
Birincil Dil | İngilizce |
---|---|
Konular | Matematik |
Bölüm | Articles |
Yazarlar | |
Yayımlanma Tarihi | 30 Aralık 2022 |
Yayımlandığı Sayı | Yıl 2022 Cilt: 6 Sayı: 4 |