Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2023, Cilt: 7 Sayı: 1, 189 - 194, 31.03.2023

Öz

Kaynakça

  • [1] V.V. Aseev, Generalized angles in Ptolemaic Möbius structures, Siberian Math. J. 59 (2018) 189-201.
  • [2] V.V. Aseev, Multivalued quasimöbius mappings on Riemann sphere, Siberian Math. J. 64 (2023) (in print).
  • [3] G.M. Goluzin, Geometric Theory of Functions of a Complex Variable, Translations of Math. Monographs 26, American Math. Society, Providence - Rhode Island 02904 (1969).
  • [4] H.P. Künzi, Quasikonforme Abbildungen, Spinger-Verlag, Berlin-Göttingen-Heidelberg (1960).
  • [5] O. Lehto and K.I. Virtanen, Quasikonforme Abbildungen, Springer-Verlag, Berlin-Heidelberg-New York (1965).
  • [6] O. Martio, S. Rickman, and J. Väisälä, Definitions for quasiregular mappings, Ann. Acad. Sci. Fenn. Ser. A I 448 (1969) 1-40.
  • [7] O. Martio, S. Rickman, and J. Väisälä, Distortion and singulaities of quasiregular mappings, Ann. Acad. Sci. Fenn. Ser. A I 465 (1970) 1-13.
  • [8] Yu.G. Reshetnyak, Space Mappings with Bounded Distortion, Translations of Math. Monographs 73, American Math. Society, Providence - Rhode Island (1989).
  • [9] S. Rickman, Characterization of quasiconformal arcs, Ann. Acad. Sci. Fenn. Ser. A I Math. 395 (1966) 1-30.
  • [10] M. Vuorinen, Quadruples and spatial quasiconformal mappings, Math. Z. 205 (1990) 617-628.

The distortion of tetrads under quasimeromorphic mappings of Riemann sphere

Yıl 2023, Cilt: 7 Sayı: 1, 189 - 194, 31.03.2023

Öz

On the Riemann sphere, we consider the ptolemaic characteristic of a four of non-empty
pairwise non-intersecting compact subsets (generalized tetrad, or generalized angle).
We obtain an estimate for distortion of this characteristic under the inverse to a
K-quasimeromorphic mapping of the Riemann sphere which takes each of its values at
no more then N different points. The distortion function in this estimate depends only
on K and N. In the case K=1, it is an essentially new property of complex rational
functions.

Kaynakça

  • [1] V.V. Aseev, Generalized angles in Ptolemaic Möbius structures, Siberian Math. J. 59 (2018) 189-201.
  • [2] V.V. Aseev, Multivalued quasimöbius mappings on Riemann sphere, Siberian Math. J. 64 (2023) (in print).
  • [3] G.M. Goluzin, Geometric Theory of Functions of a Complex Variable, Translations of Math. Monographs 26, American Math. Society, Providence - Rhode Island 02904 (1969).
  • [4] H.P. Künzi, Quasikonforme Abbildungen, Spinger-Verlag, Berlin-Göttingen-Heidelberg (1960).
  • [5] O. Lehto and K.I. Virtanen, Quasikonforme Abbildungen, Springer-Verlag, Berlin-Heidelberg-New York (1965).
  • [6] O. Martio, S. Rickman, and J. Väisälä, Definitions for quasiregular mappings, Ann. Acad. Sci. Fenn. Ser. A I 448 (1969) 1-40.
  • [7] O. Martio, S. Rickman, and J. Väisälä, Distortion and singulaities of quasiregular mappings, Ann. Acad. Sci. Fenn. Ser. A I 465 (1970) 1-13.
  • [8] Yu.G. Reshetnyak, Space Mappings with Bounded Distortion, Translations of Math. Monographs 73, American Math. Society, Providence - Rhode Island (1989).
  • [9] S. Rickman, Characterization of quasiconformal arcs, Ann. Acad. Sci. Fenn. Ser. A I Math. 395 (1966) 1-30.
  • [10] M. Vuorinen, Quadruples and spatial quasiconformal mappings, Math. Z. 205 (1990) 617-628.
Toplam 10 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Articles
Yazarlar

Vladislav Aseev Bu kişi benim

Yayımlanma Tarihi 31 Mart 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 7 Sayı: 1

Kaynak Göster