Let $(X, d)$ be a quasi-metric space. A Rus-Hicks-Rhoades (RHR) map $f : X \to X$ is the one satisfying $d(fx, f^2x) \le \alpha d(x, fx)$ for every $x\in X$, where $\alpha \in [0,1)$. In our previous work [37], we collected various fixed-point theorems closely related to RHR maps. In the present article, we collect almost all the things we know about RHR maps and their examples. Moreover, we derive new classes of generalized RHR maps and fixed point theorems on them. Consequently, many of the known results in metric fixed point theory are improved and reproved in an easy way.
fixed point theorem metric space fixed point stationary point maximal element
Birincil Dil | İngilizce |
---|---|
Konular | Matematik |
Bölüm | Articles |
Yazarlar | |
Erken Görünüm Tarihi | 5 Ağustos 2023 |
Yayımlanma Tarihi | 23 Temmuz 2023 |
Yayımlandığı Sayı | Yıl 2023 Cilt: 7 Sayı: 2 |