Bir Kararlı Salınıcı Devresinin 90 nm CMOS Teknolojisinde Tasarımı ve Simülasyonları
Yıl 2025,
Cilt: 1 Sayı: 2, 50 - 61, 25.12.2025
Emre Baysal
,
Ulaş Reyhan
,
Berke Ersöz
,
Emre Berkan Sungur
,
Yılmaz Zini
,
M. Yusuf Tanrıkulu
Öz
Modern entegre devre tasarımında, verimli, düşük güç tüketimli ve yüksek doğruluklu sistemlere olan ihtiyaç, gelişmiş devre bileşenlerinin geliştirilmesine yol açmıştır. Bu çalışma, düşük güçlü entegre sistemlerin performansını arttırmak amacıyla Bant Aralığı Referansı (BGR) devreleri, Düşük kayıplı (LDO) Regülatörleri ve Gerilim Kontrollü Salınıcılar (VCO) tasarımına ve entegrasyonuna odaklanmaktadır. Bu devreler, sıcaklık kararlılığı, güç verimliliği ve frekans doğruluğu gibi kritik zorlukları ele alarak mobil cihazlar, haberleşme ve gömülü sistemler gibi uygulamalar için vazgeçilmez hale gelmektedir. Önerilen tasarımlar CMOS teknolojisi kullanılarak geliştirilmiş ve kapsamlı simülasyonlar ile doğrulanmıştır. Sıcaklık katsayısı, güç tüketimi, faz gürültüsü ve çıkış kararlılığı gibi temel performans metrikleri optimize edilerek devrelerin pratik uygulanabilirliği gösterilmiştir. Bulgular, BGR, LDO ve VCO devrelerinin birleştirilerek modern düşük güçlü elektronik sistemlerin gereksinimlerini karşılayan bütünleşik bir çözüm elde edilebileceğini ortaya koymaktadır. Bu çalışma, yalnızca devre tasarım metodolojilerinin ilerlemesine katkıda bulunmakla kalmayıp, aynı zamanda karma sinyal ve düşük güçlü entegre devrelerde gelecekteki yenilikler için bir temel oluşturmaktadır. Bu bileşenler arasındaki etkileşimi ele alarak daha verimli, güvenilir ve çok yönlü elektronik sistemlerin geliştirilmesine zemin hazırlamaktadır.
Etik Beyan
Bu makalenin yazar(lar)ı çalışmalarında kullandıkları materyal ve yöntemlerin etik kurul izni ve/veya yasal-özel bir izin gerektirmediğini beyan ederler.
Destekleyen Kurum
Teknofest Organizasyonu
Teşekkür
Bu çalışma 2024 TEKNOFEST Çip Tasarım Yarışması'nın Analog Kategorisinde 4. olma başarısını elde etti. Yazarlar, tasarım ve simülasyon altyapısını sağladıkları için TEKNOFEST organizasyonuna teşekkür ederler.
Kaynakça
-
[1] Razavi, B. (2021). The design of a low-voltage bandgap reference, IEEE Solid-State Circuits Magazine 13(3), 6-16.
-
[2] Banba, H., Shiga, H., Umezawa, A., Miyaba, T., Tanzawa, T., Atsumi, S., Sakui, K. (1999). A CMOS bandgap reference circuit with sub-1-V operation, IEEE Journal of Solid-State Circuits 34(5), 670-674.
-
[3] Pakravan, E., Mojarad, M., Mashoufi, B. (2023). A low-power bandgap voltage reference circuit with ultra-low temperature coefficient. In Proceedings of the 5th Iranian International Conference on Microelectronics (IICM2023), 16-20.
-
[4] Hongprasit, S., Sa-ngiamvibool, W., Aurasopon, A. (2012). Design of bandgap core and startup circuits for all CMOS bandgap voltage reference, Przegląd Elektrotechniczny (Electrical Review) 88(4a), 277-280.
-
[5] Lee, C.-L., Sidek, R. M., Rokhani, F. Z., Sulaiman, N. (2015). A low power bandgap voltage reference for low-dropout regulator. In Proceedings of RSM 2015.
-
[6] Khan, D., Basim, M., Qurrat-ul-Ain, Q., Shah, S. A. A., Shehzad, K., Verma, D., Lee, K. Y. (2022). Design of a power regulated circuit with multiple LDOs for SoC applications, Electronics 11(17), 2774.
-
[7] Bhuiyan, M. A. S., Hossain, M. R., Minhad, K. N., Haque, F., Hemel, M. S. K., Dawi, O. M., Reaz, M. B. I., Ooi, K. J. A. (2022). CMOS low-dropout voltage regulator design trends: An overview, Electronics 11(2), 193.
-
[8] Zhang, R., Liu, Z., Wang, X. (2021). A capacitor-less LDO with nested Miller compensation and bulk-driven techniques in 90 nm CMOS. In Proceedings of the 4th International Conference on Circuits, Systems and Simulation (ICCSS), 51-55.
-
[9] Magod, R., Suda, N., Ivanov, V., Balasingam, R., Bakkaloglu, B. (2017). A low-noise output capacitorless low-dropout regulator with a switched-RC bandgap reference, IEEE Transactions on Power Electronics 32(4), 2856-2864.
-
[10] Hajimiri, A., Lee, T. H. (1998). A general theory for phase noise in electrical oscillators, IEEE Journal of Solid-State Circuits 33(2), 179-194.
-
[11] Chang, Y.-H., Luo, Y.-L. (2024). CMOS voltage-controlled oscillator with complementary and adaptive overdrive voltage control structures, Electronics 13(2), 440.
-
[12] Anjum, N., Yadav, V. K. S., Nath, V. (2023). Design and analysis of a low power current starved VCO for ISM band application, International Journal of Microsystems and IoT 1(2), 82-98.
-
[13] Rahul, R., Thilagavathy, R. (2014). A low phase noise CMOS voltage-controlled differential ring oscillator. In Proceedings of the International Conference on Control, Instrumentation, Communication and Computational Technologies (ICCICCT), 1025-1028.
-
[14] Razavi, B. (2017). Design of analog CMOS integrated circuits (2nd ed.). McGraw-Hill.
-
[15] Ito, T. (2003). Research and development of advanced CMOS technologies, FUJITSU Scientific & Technical Journal 39(1), 3-8.
-
[16] Sangolli, S. S., Rohini, S. H. (2015). Design of low voltage bandgap reference circuit using subthreshold MOSFET. In Proceedings of the 5th Nirma University International Conference on Engineering (NUiCONE).
-
[17] Huang, C. H., Liao, W. C. (2020). A high-performance LDO regulator enabling low-power SoC with voltage scaling approaches, IEEE Transactions on Very Large Scale Integration (VLSI) Systems 28(5), 1141-1149.
-
[18] Dinesh, S., Bharadwaj, S. (2017). New modified current starved ring voltage controlled oscillator and frequency to voltage rectifier for noise suppression from 1–6 GHz in 180 nm technology, Procedia Computer Science 115, 756-763.
Design and Simulations of a Stable Oscillator Circuit in 90 nm CMOS Technology
Yıl 2025,
Cilt: 1 Sayı: 2, 50 - 61, 25.12.2025
Emre Baysal
,
Ulaş Reyhan
,
Berke Ersöz
,
Emre Berkan Sungur
,
Yılmaz Zini
,
M. Yusuf Tanrıkulu
Öz
In the realm of modern integrated circuit design, the need for efficient, low-power, and high-accuracy systems has led to the development of advanced circuit components. This study focuses on the design and integration of Bandgap Reference (BGR) circuits, Low-Dropout (LDO) regulators, and Voltage-Controlled Oscillators (VCOs) to enhance the performance of low-power integrated systems. These circuits address critical challenges, including temperature stability, power efficiency, and frequency accuracy, making them indispensable for applications in mobile devices, communication systems, and embedded electronics. The proposed designs have been developed using 90 nm CMOS technology and validated through extensive simulations. Key performance metrics such as temperature coefficient, power consumption, phase noise, and output stability have been optimized to demonstrate the practical applicability of the circuits. The findings highlight the potential for combining BGR, LDO, and VCO circuits to achieve a unified solution that meets the demands of modern low-power electronic systems. This work not only contributes to the advancement of circuit design methodologies but also sets the stage for future innovations in mixed-signal and low-power integrated circuits. By addressing the interplay between these components, the study provides a foundation for developing more efficient, reliable, and versatile electronic systems.
Etik Beyan
The author(s) of this article declare that the materials and methods used in this study do not require ethical committee permission and/or legal-special permission.
Destekleyen Kurum
Teknofest Organization
Teşekkür
This study achieved the success of placing 4th in the Analog Category of the 2024 TEKNOFEST Chip Design Competition. The authors would like to thank the TEKNOFEST organization for providing the design and simulation infrastructure.
Kaynakça
-
[1] Razavi, B. (2021). The design of a low-voltage bandgap reference, IEEE Solid-State Circuits Magazine 13(3), 6-16.
-
[2] Banba, H., Shiga, H., Umezawa, A., Miyaba, T., Tanzawa, T., Atsumi, S., Sakui, K. (1999). A CMOS bandgap reference circuit with sub-1-V operation, IEEE Journal of Solid-State Circuits 34(5), 670-674.
-
[3] Pakravan, E., Mojarad, M., Mashoufi, B. (2023). A low-power bandgap voltage reference circuit with ultra-low temperature coefficient. In Proceedings of the 5th Iranian International Conference on Microelectronics (IICM2023), 16-20.
-
[4] Hongprasit, S., Sa-ngiamvibool, W., Aurasopon, A. (2012). Design of bandgap core and startup circuits for all CMOS bandgap voltage reference, Przegląd Elektrotechniczny (Electrical Review) 88(4a), 277-280.
-
[5] Lee, C.-L., Sidek, R. M., Rokhani, F. Z., Sulaiman, N. (2015). A low power bandgap voltage reference for low-dropout regulator. In Proceedings of RSM 2015.
-
[6] Khan, D., Basim, M., Qurrat-ul-Ain, Q., Shah, S. A. A., Shehzad, K., Verma, D., Lee, K. Y. (2022). Design of a power regulated circuit with multiple LDOs for SoC applications, Electronics 11(17), 2774.
-
[7] Bhuiyan, M. A. S., Hossain, M. R., Minhad, K. N., Haque, F., Hemel, M. S. K., Dawi, O. M., Reaz, M. B. I., Ooi, K. J. A. (2022). CMOS low-dropout voltage regulator design trends: An overview, Electronics 11(2), 193.
-
[8] Zhang, R., Liu, Z., Wang, X. (2021). A capacitor-less LDO with nested Miller compensation and bulk-driven techniques in 90 nm CMOS. In Proceedings of the 4th International Conference on Circuits, Systems and Simulation (ICCSS), 51-55.
-
[9] Magod, R., Suda, N., Ivanov, V., Balasingam, R., Bakkaloglu, B. (2017). A low-noise output capacitorless low-dropout regulator with a switched-RC bandgap reference, IEEE Transactions on Power Electronics 32(4), 2856-2864.
-
[10] Hajimiri, A., Lee, T. H. (1998). A general theory for phase noise in electrical oscillators, IEEE Journal of Solid-State Circuits 33(2), 179-194.
-
[11] Chang, Y.-H., Luo, Y.-L. (2024). CMOS voltage-controlled oscillator with complementary and adaptive overdrive voltage control structures, Electronics 13(2), 440.
-
[12] Anjum, N., Yadav, V. K. S., Nath, V. (2023). Design and analysis of a low power current starved VCO for ISM band application, International Journal of Microsystems and IoT 1(2), 82-98.
-
[13] Rahul, R., Thilagavathy, R. (2014). A low phase noise CMOS voltage-controlled differential ring oscillator. In Proceedings of the International Conference on Control, Instrumentation, Communication and Computational Technologies (ICCICCT), 1025-1028.
-
[14] Razavi, B. (2017). Design of analog CMOS integrated circuits (2nd ed.). McGraw-Hill.
-
[15] Ito, T. (2003). Research and development of advanced CMOS technologies, FUJITSU Scientific & Technical Journal 39(1), 3-8.
-
[16] Sangolli, S. S., Rohini, S. H. (2015). Design of low voltage bandgap reference circuit using subthreshold MOSFET. In Proceedings of the 5th Nirma University International Conference on Engineering (NUiCONE).
-
[17] Huang, C. H., Liao, W. C. (2020). A high-performance LDO regulator enabling low-power SoC with voltage scaling approaches, IEEE Transactions on Very Large Scale Integration (VLSI) Systems 28(5), 1141-1149.
-
[18] Dinesh, S., Bharadwaj, S. (2017). New modified current starved ring voltage controlled oscillator and frequency to voltage rectifier for noise suppression from 1–6 GHz in 180 nm technology, Procedia Computer Science 115, 756-763.