Araştırma Makalesi
BibTex RIS Kaynak Göster

Bir Kararlı Salınıcı Devresinin 90 nm CMOS Teknolojisinde Tasarımı ve Simülasyonları

Yıl 2025, Cilt: 1 Sayı: 2, 50 - 61, 25.12.2025

Öz

Modern entegre devre tasarımında, verimli, düşük güç tüketimli ve yüksek doğruluklu sistemlere olan ihtiyaç, gelişmiş devre bileşenlerinin geliştirilmesine yol açmıştır. Bu çalışma, düşük güçlü entegre sistemlerin performansını arttırmak amacıyla Bant Aralığı Referansı (BGR) devreleri, Düşük kayıplı (LDO) Regülatörleri ve Gerilim Kontrollü Salınıcılar (VCO) tasarımına ve entegrasyonuna odaklanmaktadır. Bu devreler, sıcaklık kararlılığı, güç verimliliği ve frekans doğruluğu gibi kritik zorlukları ele alarak mobil cihazlar, haberleşme ve gömülü sistemler gibi uygulamalar için vazgeçilmez hale gelmektedir. Önerilen tasarımlar CMOS teknolojisi kullanılarak geliştirilmiş ve kapsamlı simülasyonlar ile doğrulanmıştır. Sıcaklık katsayısı, güç tüketimi, faz gürültüsü ve çıkış kararlılığı gibi temel performans metrikleri optimize edilerek devrelerin pratik uygulanabilirliği gösterilmiştir. Bulgular, BGR, LDO ve VCO devrelerinin birleştirilerek modern düşük güçlü elektronik sistemlerin gereksinimlerini karşılayan bütünleşik bir çözüm elde edilebileceğini ortaya koymaktadır. Bu çalışma, yalnızca devre tasarım metodolojilerinin ilerlemesine katkıda bulunmakla kalmayıp, aynı zamanda karma sinyal ve düşük güçlü entegre devrelerde gelecekteki yenilikler için bir temel oluşturmaktadır. Bu bileşenler arasındaki etkileşimi ele alarak daha verimli, güvenilir ve çok yönlü elektronik sistemlerin geliştirilmesine zemin hazırlamaktadır.

Etik Beyan

Bu makalenin yazar(lar)ı çalışmalarında kullandıkları materyal ve yöntemlerin etik kurul izni ve/veya yasal-özel bir izin gerektirmediğini beyan ederler.

Destekleyen Kurum

Teknofest Organizasyonu

Teşekkür

Bu çalışma 2024 TEKNOFEST Çip Tasarım Yarışması'nın Analog Kategorisinde 4. olma başarısını elde etti. Yazarlar, tasarım ve simülasyon altyapısını sağladıkları için TEKNOFEST organizasyonuna teşekkür ederler.

Kaynakça

  • [1] Razavi, B. (2021). The design of a low-voltage bandgap reference, IEEE Solid-State Circuits Magazine 13(3), 6-16.
  • [2] Banba, H., Shiga, H., Umezawa, A., Miyaba, T., Tanzawa, T., Atsumi, S., Sakui, K. (1999). A CMOS bandgap reference circuit with sub-1-V operation, IEEE Journal of Solid-State Circuits 34(5), 670-674.
  • [3] Pakravan, E., Mojarad, M., Mashoufi, B. (2023). A low-power bandgap voltage reference circuit with ultra-low temperature coefficient. In Proceedings of the 5th Iranian International Conference on Microelectronics (IICM2023), 16-20.
  • [4] Hongprasit, S., Sa-ngiamvibool, W., Aurasopon, A. (2012). Design of bandgap core and startup circuits for all CMOS bandgap voltage reference, Przegląd Elektrotechniczny (Electrical Review) 88(4a), 277-280.
  • [5] Lee, C.-L., Sidek, R. M., Rokhani, F. Z., Sulaiman, N. (2015). A low power bandgap voltage reference for low-dropout regulator. In Proceedings of RSM 2015.
  • [6] Khan, D., Basim, M., Qurrat-ul-Ain, Q., Shah, S. A. A., Shehzad, K., Verma, D., Lee, K. Y. (2022). Design of a power regulated circuit with multiple LDOs for SoC applications, Electronics 11(17), 2774.
  • [7] Bhuiyan, M. A. S., Hossain, M. R., Minhad, K. N., Haque, F., Hemel, M. S. K., Dawi, O. M., Reaz, M. B. I., Ooi, K. J. A. (2022). CMOS low-dropout voltage regulator design trends: An overview, Electronics 11(2), 193.
  • [8] Zhang, R., Liu, Z., Wang, X. (2021). A capacitor-less LDO with nested Miller compensation and bulk-driven techniques in 90 nm CMOS. In Proceedings of the 4th International Conference on Circuits, Systems and Simulation (ICCSS), 51-55.
  • [9] Magod, R., Suda, N., Ivanov, V., Balasingam, R., Bakkaloglu, B. (2017). A low-noise output capacitorless low-dropout regulator with a switched-RC bandgap reference, IEEE Transactions on Power Electronics 32(4), 2856-2864.
  • [10] Hajimiri, A., Lee, T. H. (1998). A general theory for phase noise in electrical oscillators, IEEE Journal of Solid-State Circuits 33(2), 179-194.
  • [11] Chang, Y.-H., Luo, Y.-L. (2024). CMOS voltage-controlled oscillator with complementary and adaptive overdrive voltage control structures, Electronics 13(2), 440.
  • [12] Anjum, N., Yadav, V. K. S., Nath, V. (2023). Design and analysis of a low power current starved VCO for ISM band application, International Journal of Microsystems and IoT 1(2), 82-98.
  • [13] Rahul, R., Thilagavathy, R. (2014). A low phase noise CMOS voltage-controlled differential ring oscillator. In Proceedings of the International Conference on Control, Instrumentation, Communication and Computational Technologies (ICCICCT), 1025-1028.
  • [14] Razavi, B. (2017). Design of analog CMOS integrated circuits (2nd ed.). McGraw-Hill.
  • [15] Ito, T. (2003). Research and development of advanced CMOS technologies, FUJITSU Scientific & Technical Journal 39(1), 3-8.
  • [16] Sangolli, S. S., Rohini, S. H. (2015). Design of low voltage bandgap reference circuit using subthreshold MOSFET. In Proceedings of the 5th Nirma University International Conference on Engineering (NUiCONE).
  • [17] Huang, C. H., Liao, W. C. (2020). A high-performance LDO regulator enabling low-power SoC with voltage scaling approaches, IEEE Transactions on Very Large Scale Integration (VLSI) Systems 28(5), 1141-1149.
  • [18] Dinesh, S., Bharadwaj, S. (2017). New modified current starved ring voltage controlled oscillator and frequency to voltage rectifier for noise suppression from 1–6 GHz in 180 nm technology, Procedia Computer Science 115, 756-763.

Design and Simulations of a Stable Oscillator Circuit in 90 nm CMOS Technology

Yıl 2025, Cilt: 1 Sayı: 2, 50 - 61, 25.12.2025

Öz

In the realm of modern integrated circuit design, the need for efficient, low-power, and high-accuracy systems has led to the development of advanced circuit components. This study focuses on the design and integration of Bandgap Reference (BGR) circuits, Low-Dropout (LDO) regulators, and Voltage-Controlled Oscillators (VCOs) to enhance the performance of low-power integrated systems. These circuits address critical challenges, including temperature stability, power efficiency, and frequency accuracy, making them indispensable for applications in mobile devices, communication systems, and embedded electronics. The proposed designs have been developed using 90 nm CMOS technology and validated through extensive simulations. Key performance metrics such as temperature coefficient, power consumption, phase noise, and output stability have been optimized to demonstrate the practical applicability of the circuits. The findings highlight the potential for combining BGR, LDO, and VCO circuits to achieve a unified solution that meets the demands of modern low-power electronic systems. This work not only contributes to the advancement of circuit design methodologies but also sets the stage for future innovations in mixed-signal and low-power integrated circuits. By addressing the interplay between these components, the study provides a foundation for developing more efficient, reliable, and versatile electronic systems.

Etik Beyan

The author(s) of this article declare that the materials and methods used in this study do not require ethical committee permission and/or legal-special permission.

Destekleyen Kurum

Teknofest Organization

Teşekkür

This study achieved the success of placing 4th in the Analog Category of the 2024 TEKNOFEST Chip Design Competition. The authors would like to thank the TEKNOFEST organization for providing the design and simulation infrastructure.

Kaynakça

  • [1] Razavi, B. (2021). The design of a low-voltage bandgap reference, IEEE Solid-State Circuits Magazine 13(3), 6-16.
  • [2] Banba, H., Shiga, H., Umezawa, A., Miyaba, T., Tanzawa, T., Atsumi, S., Sakui, K. (1999). A CMOS bandgap reference circuit with sub-1-V operation, IEEE Journal of Solid-State Circuits 34(5), 670-674.
  • [3] Pakravan, E., Mojarad, M., Mashoufi, B. (2023). A low-power bandgap voltage reference circuit with ultra-low temperature coefficient. In Proceedings of the 5th Iranian International Conference on Microelectronics (IICM2023), 16-20.
  • [4] Hongprasit, S., Sa-ngiamvibool, W., Aurasopon, A. (2012). Design of bandgap core and startup circuits for all CMOS bandgap voltage reference, Przegląd Elektrotechniczny (Electrical Review) 88(4a), 277-280.
  • [5] Lee, C.-L., Sidek, R. M., Rokhani, F. Z., Sulaiman, N. (2015). A low power bandgap voltage reference for low-dropout regulator. In Proceedings of RSM 2015.
  • [6] Khan, D., Basim, M., Qurrat-ul-Ain, Q., Shah, S. A. A., Shehzad, K., Verma, D., Lee, K. Y. (2022). Design of a power regulated circuit with multiple LDOs for SoC applications, Electronics 11(17), 2774.
  • [7] Bhuiyan, M. A. S., Hossain, M. R., Minhad, K. N., Haque, F., Hemel, M. S. K., Dawi, O. M., Reaz, M. B. I., Ooi, K. J. A. (2022). CMOS low-dropout voltage regulator design trends: An overview, Electronics 11(2), 193.
  • [8] Zhang, R., Liu, Z., Wang, X. (2021). A capacitor-less LDO with nested Miller compensation and bulk-driven techniques in 90 nm CMOS. In Proceedings of the 4th International Conference on Circuits, Systems and Simulation (ICCSS), 51-55.
  • [9] Magod, R., Suda, N., Ivanov, V., Balasingam, R., Bakkaloglu, B. (2017). A low-noise output capacitorless low-dropout regulator with a switched-RC bandgap reference, IEEE Transactions on Power Electronics 32(4), 2856-2864.
  • [10] Hajimiri, A., Lee, T. H. (1998). A general theory for phase noise in electrical oscillators, IEEE Journal of Solid-State Circuits 33(2), 179-194.
  • [11] Chang, Y.-H., Luo, Y.-L. (2024). CMOS voltage-controlled oscillator with complementary and adaptive overdrive voltage control structures, Electronics 13(2), 440.
  • [12] Anjum, N., Yadav, V. K. S., Nath, V. (2023). Design and analysis of a low power current starved VCO for ISM band application, International Journal of Microsystems and IoT 1(2), 82-98.
  • [13] Rahul, R., Thilagavathy, R. (2014). A low phase noise CMOS voltage-controlled differential ring oscillator. In Proceedings of the International Conference on Control, Instrumentation, Communication and Computational Technologies (ICCICCT), 1025-1028.
  • [14] Razavi, B. (2017). Design of analog CMOS integrated circuits (2nd ed.). McGraw-Hill.
  • [15] Ito, T. (2003). Research and development of advanced CMOS technologies, FUJITSU Scientific & Technical Journal 39(1), 3-8.
  • [16] Sangolli, S. S., Rohini, S. H. (2015). Design of low voltage bandgap reference circuit using subthreshold MOSFET. In Proceedings of the 5th Nirma University International Conference on Engineering (NUiCONE).
  • [17] Huang, C. H., Liao, W. C. (2020). A high-performance LDO regulator enabling low-power SoC with voltage scaling approaches, IEEE Transactions on Very Large Scale Integration (VLSI) Systems 28(5), 1141-1149.
  • [18] Dinesh, S., Bharadwaj, S. (2017). New modified current starved ring voltage controlled oscillator and frequency to voltage rectifier for noise suppression from 1–6 GHz in 180 nm technology, Procedia Computer Science 115, 756-763.
Toplam 18 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Devreler ve Sistemler
Bölüm Araştırma Makalesi
Yazarlar

Emre Baysal 0009-0009-9220-1910

Ulaş Reyhan 0009-0004-8248-3348

Berke Ersöz 0009-0002-8742-0632

Emre Berkan Sungur 0009-0003-2831-6867

Yılmaz Zini 0009-0006-9732-3667

M. Yusuf Tanrıkulu 0000-0001-7956-1289

Gönderilme Tarihi 16 Mayıs 2025
Kabul Tarihi 21 Ağustos 2025
Yayımlanma Tarihi 25 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 1 Sayı: 2

Kaynak Göster

APA Baysal, E., Reyhan, U., Ersöz, B., … Sungur, E. B. (2025). Design and Simulations of a Stable Oscillator Circuit in 90 nm CMOS Technology. Adana Alparslan Türkeş Bilim ve Teknoloji Üniversitesi Bilim Dergisi, 1(2), 50-61.
AMA Baysal E, Reyhan U, Ersöz B, Sungur EB, Zini Y, Tanrıkulu MY. Design and Simulations of a Stable Oscillator Circuit in 90 nm CMOS Technology. ATUJSCIENCE. Aralık 2025;1(2):50-61.
Chicago Baysal, Emre, Ulaş Reyhan, Berke Ersöz, Emre Berkan Sungur, Yılmaz Zini, ve M. Yusuf Tanrıkulu. “Design and Simulations of a Stable Oscillator Circuit in 90 nm CMOS Technology”. Adana Alparslan Türkeş Bilim ve Teknoloji Üniversitesi Bilim Dergisi 1, sy. 2 (Aralık 2025): 50-61.
EndNote Baysal E, Reyhan U, Ersöz B, Sungur EB, Zini Y, Tanrıkulu MY (01 Aralık 2025) Design and Simulations of a Stable Oscillator Circuit in 90 nm CMOS Technology. Adana Alparslan Türkeş Bilim ve Teknoloji Üniversitesi Bilim Dergisi 1 2 50–61.
IEEE E. Baysal, U. Reyhan, B. Ersöz, E. B. Sungur, Y. Zini, ve M. Y. Tanrıkulu, “Design and Simulations of a Stable Oscillator Circuit in 90 nm CMOS Technology”, ATUJSCIENCE, c. 1, sy. 2, ss. 50–61, 2025.
ISNAD Baysal, Emre vd. “Design and Simulations of a Stable Oscillator Circuit in 90 nm CMOS Technology”. Adana Alparslan Türkeş Bilim ve Teknoloji Üniversitesi Bilim Dergisi 1/2 (Aralık2025), 50-61.
JAMA Baysal E, Reyhan U, Ersöz B, Sungur EB, Zini Y, Tanrıkulu MY. Design and Simulations of a Stable Oscillator Circuit in 90 nm CMOS Technology. ATUJSCIENCE. 2025;1:50–61.
MLA Baysal, Emre vd. “Design and Simulations of a Stable Oscillator Circuit in 90 nm CMOS Technology”. Adana Alparslan Türkeş Bilim ve Teknoloji Üniversitesi Bilim Dergisi, c. 1, sy. 2, 2025, ss. 50-61.
Vancouver Baysal E, Reyhan U, Ersöz B, Sungur EB, Zini Y, Tanrıkulu MY. Design and Simulations of a Stable Oscillator Circuit in 90 nm CMOS Technology. ATUJSCIENCE. 2025;1(2):50-61.