BibTex RIS Kaynak Göster

The Real Matrix Representations of Semi-Octonions

Yıl 2016, Cilt: 4 Sayı: 2, 99 - 112, 25.08.2016
https://doi.org/10.20290/btdb.04545

Öz

Rosenfeld’s book [6] is a wonderful introduction to the normed division algebras: the real numbers, the complex
numbers, the quaternions, and the octonions. A brief introduction of the semi-octonions is provided in this book. In
[3], we studied some fundamental properties of the semi-octonions, Os, and show that the set of unit semi-octonions
is a subgroup of Os. In this paper, we give a complete investigation to real matrix representations of semi-octonions,
and consider a relation between the powers of these matrices. The De Moivre's formula implies that there are
uncountably many matrices of the unit semi-octonions A satisfying An = I8 for every integer n ≥ 3.

Kaynakça

  • Agrawal O P. Hamilton Operators and Dual number-quaternions in Spatial Kinematics. Mechanism and machine theory 1987; 22(6): 569-575.
  • Jafari M. On the properties of quasi-quaternions algebra, Communications faculty of science University Ankara, Series A, 63(1), 2014.
  • Jafari M. A viewpoint on semi-octonion algebra. Journal of Selçuk university natural and applied Science 2015; 4(4): 46-53.
  • Kansu M E, Tanisli M, Demir S. Electromagnetic energy conservation with complex octonions, Turkish journal of physics 2012; 36: 438–445.
  • Mortazaasl H, Jafari M. A study on semi-quaternions algebra in semi-Euclidean 4-space, Mathematical sciences and applications E-Notes2013; 1(2): 20-27. [6] Rosenfeld B A. Geometry of Lie Groups, Kluwer Academic Publishers, Dordrecht , 1997

THE REAL MATRIX REPRESENTATIONS OF SEMI-OCTONIONS

Yıl 2016, Cilt: 4 Sayı: 2, 99 - 112, 25.08.2016
https://doi.org/10.20290/btdb.04545

Öz

Rosenfeld’in kitabında normlu bölüm cebirleri, reel sayılar, kompleks sayılar, kuaterniyonlar ve oktonyonlara harika bir giriş yapılmıştır [6]. Yarı-oktonyonlara bir ufak giriş bu kitapta bulunabilir. Biz daha önce yarı-oktonyonların (Os) bazı temel özelliklerini inceledik ve gösterdik ki birim yarı-oktonyonların kümesi, O’nin bir alt-kümesidir [3]. Bu makalede, yarıoktonyonların reel matris gösterimini inceleyip aralarındaki bazı ilişkileri verdik. De-Moivre formülü, birim yarı-oktonyonlara karşılık gelen sayılamaz sayıda A matrisinin her n ≥ 3 tam sayısı için An = I8 şeklinde var olduğunu söylemektedir

Kaynakça

  • Agrawal O P. Hamilton Operators and Dual number-quaternions in Spatial Kinematics. Mechanism and machine theory 1987; 22(6): 569-575.
  • Jafari M. On the properties of quasi-quaternions algebra, Communications faculty of science University Ankara, Series A, 63(1), 2014.
  • Jafari M. A viewpoint on semi-octonion algebra. Journal of Selçuk university natural and applied Science 2015; 4(4): 46-53.
  • Kansu M E, Tanisli M, Demir S. Electromagnetic energy conservation with complex octonions, Turkish journal of physics 2012; 36: 438–445.
  • Mortazaasl H, Jafari M. A study on semi-quaternions algebra in semi-Euclidean 4-space, Mathematical sciences and applications E-Notes2013; 1(2): 20-27. [6] Rosenfeld B A. Geometry of Lie Groups, Kluwer Academic Publishers, Dordrecht , 1997
Toplam 5 adet kaynakça vardır.

Ayrıntılar

Bölüm Araştırma Makalesi
Yazarlar

Mehdi Jafari

Yayımlanma Tarihi 25 Ağustos 2016
Yayımlandığı Sayı Yıl 2016 Cilt: 4 Sayı: 2

Kaynak Göster

APA Jafari, M. (2016). THE REAL MATRIX REPRESENTATIONS OF SEMI-OCTONIONS. Anadolu Üniversitesi Bilim Ve Teknoloji Dergisi - B Teorik Bilimler, 4(2), 99-112. https://doi.org/10.20290/btdb.04545
AMA Jafari M. THE REAL MATRIX REPRESENTATIONS OF SEMI-OCTONIONS. AUBTD-B. Ekim 2016;4(2):99-112. doi:10.20290/btdb.04545
Chicago Jafari, Mehdi. “THE REAL MATRIX REPRESENTATIONS OF SEMI-OCTONIONS”. Anadolu Üniversitesi Bilim Ve Teknoloji Dergisi - B Teorik Bilimler 4, sy. 2 (Ekim 2016): 99-112. https://doi.org/10.20290/btdb.04545.
EndNote Jafari M (01 Ekim 2016) THE REAL MATRIX REPRESENTATIONS OF SEMI-OCTONIONS. Anadolu Üniversitesi Bilim Ve Teknoloji Dergisi - B Teorik Bilimler 4 2 99–112.
IEEE M. Jafari, “THE REAL MATRIX REPRESENTATIONS OF SEMI-OCTONIONS”, AUBTD-B, c. 4, sy. 2, ss. 99–112, 2016, doi: 10.20290/btdb.04545.
ISNAD Jafari, Mehdi. “THE REAL MATRIX REPRESENTATIONS OF SEMI-OCTONIONS”. Anadolu Üniversitesi Bilim Ve Teknoloji Dergisi - B Teorik Bilimler 4/2 (Ekim 2016), 99-112. https://doi.org/10.20290/btdb.04545.
JAMA Jafari M. THE REAL MATRIX REPRESENTATIONS OF SEMI-OCTONIONS. AUBTD-B. 2016;4:99–112.
MLA Jafari, Mehdi. “THE REAL MATRIX REPRESENTATIONS OF SEMI-OCTONIONS”. Anadolu Üniversitesi Bilim Ve Teknoloji Dergisi - B Teorik Bilimler, c. 4, sy. 2, 2016, ss. 99-112, doi:10.20290/btdb.04545.
Vancouver Jafari M. THE REAL MATRIX REPRESENTATIONS OF SEMI-OCTONIONS. AUBTD-B. 2016;4(2):99-112.