BibTex RIS Kaynak Göster

OPTIMIZATION OF LOSS PROBABILITY FOR GI / M / 3/ 0 QUEUING SYSTEM WITH HETEROGENOUS SERVERS

Yıl 2010, Cilt: 1 Sayı: 1, 73 - 89, 29.07.2011

Öz

In this paper a queuing system with recurrent arrivals, three heterogeneous servers, and no waiting line is examined. In this system an arriving customer may choose any one of the free servers with equal probability. When all servers are busy, customers beyond the capacity of the system are lost.
These customers are called “lost customers”. The probability of losing a customer is computed for the queuing system, and it is shown that when the mean of the interarrival time distribution is fixed, loss probability is minimized by deterministic interarrival time distribution. This conclusion is supported by the simulation results.

Kaynakça

  • Blanc, J.A. (1987). Note on waiting times in systems with queues in parallel. Journal of Applied Prob- ability 24, 540-546.
  • Brumelle, S.L. (1978). A generalization of Erlang’s loss system to state dependent arrival and service rates. Math. Operat. Res. 3, 10-16.
  • Çinlar, E. and Disney, R. (1967). Streams of overflows from a finite queue. Operations Research 15, 131-134.
  • Erlang, A.K. (1917). Solution of some problems in the theory of probabilities of significance in auto- matic telephone exchanges. Post Office Electrical Engineers’ Journal 10, 189-197.
  • Gumbel, M. (1960). Waiting lines with heterogeneous servers. Operations Research 8, 504-511.
  • Halfin, S. (1981). Distribution of the Interoverflow time for the GI/G/1 loss system. Mathematics of Operations Research Vol. 6, No. 4, 563-570.
  • Konig, D. and Matthes, K. (1963). Werallgemeiherungen der erlangschen formelu. Math. Nachr., 26, 45-56.
  • Kumar, B.K., Madheswari, S.P. and Venkatakrishnan, K.S. (2007). Transient Solution of an M/M/2 Queue with Heterogeneous Servers Subject to Catastrophes. Information and Management Sci- ences 18, 63-80.
  • Nath, G. and Enns, E. (1981). Optimal service rates in the multiserver loss system with heterogeneous servers. Journal of Applied Probability 18, 776-781.
  • Palm, C. (1943). Intensitatschwwankugen fersperchverkehr. Ericsson and Technics 44, 1-189.
  • Pyke, R. (1961). Markov renewal processes: Definitions and preliminary properties. Amer. Math. Stat. 32, 1231-1242.
  • Pyke, R. (1961). Markov renewal processes with finitely many states. Amer. Math. Stat. 32, 1243- 1259.
  • Shahbazov, A.A. (2005). Olasılık teorisine giriş. Bölüm 10, s-300, Birsen Yayınevi, İstanbul.
  • Singh, V.S. (1970). Two-server markovian queues with balking: Heterogeneous vs. homogeneous servers. Operations Research, Vol. 18, No. 1, 145-159.
  • Singh, V.S. (1971). Markovian Queues with Three Heterogeneous Servers1. IIE Transactions 3, 45- 48.
  • Takacs, L. (1969). On Erlang’s formula. Annals of Mathematical Statistics 40, 71-78.

Teorik Bilimler

Yıl 2010, Cilt: 1 Sayı: 1, 73 - 89, 29.07.2011

Öz

Bu çalışmada rekurrent girişli, bekleme yerinin olmadığı, 3 heterojen kanallı bir kuyruk modeli incelenmiştir. Bu sistemde gelen müşteri, boş olan kanallardan herhangi birisine eşit olasılıkla girer. Bütün kanallar dolu ise sistem kapasitesi aşıldığından, gelen müşteri hizmet almadan sistemden ayrılır. Bu tür müşterilere “kaybolan müşteri” denir. İncelenen kuyruk sisteminde müşterinin kaybolma olasılığı hesaplanmış ve ortalaması sabit olan gelişlerarası süre dağılımları içinden gelişlerarası süre dağılımı deterministik seçildiğilde kaybolma olasılığının minimum olduğu gösterilmiştir. Elde edilen sonuçlar bir simülasyon çalışmasıyla desteklenmiştir

Kaynakça

  • Blanc, J.A. (1987). Note on waiting times in systems with queues in parallel. Journal of Applied Prob- ability 24, 540-546.
  • Brumelle, S.L. (1978). A generalization of Erlang’s loss system to state dependent arrival and service rates. Math. Operat. Res. 3, 10-16.
  • Çinlar, E. and Disney, R. (1967). Streams of overflows from a finite queue. Operations Research 15, 131-134.
  • Erlang, A.K. (1917). Solution of some problems in the theory of probabilities of significance in auto- matic telephone exchanges. Post Office Electrical Engineers’ Journal 10, 189-197.
  • Gumbel, M. (1960). Waiting lines with heterogeneous servers. Operations Research 8, 504-511.
  • Halfin, S. (1981). Distribution of the Interoverflow time for the GI/G/1 loss system. Mathematics of Operations Research Vol. 6, No. 4, 563-570.
  • Konig, D. and Matthes, K. (1963). Werallgemeiherungen der erlangschen formelu. Math. Nachr., 26, 45-56.
  • Kumar, B.K., Madheswari, S.P. and Venkatakrishnan, K.S. (2007). Transient Solution of an M/M/2 Queue with Heterogeneous Servers Subject to Catastrophes. Information and Management Sci- ences 18, 63-80.
  • Nath, G. and Enns, E. (1981). Optimal service rates in the multiserver loss system with heterogeneous servers. Journal of Applied Probability 18, 776-781.
  • Palm, C. (1943). Intensitatschwwankugen fersperchverkehr. Ericsson and Technics 44, 1-189.
  • Pyke, R. (1961). Markov renewal processes: Definitions and preliminary properties. Amer. Math. Stat. 32, 1231-1242.
  • Pyke, R. (1961). Markov renewal processes with finitely many states. Amer. Math. Stat. 32, 1243- 1259.
  • Shahbazov, A.A. (2005). Olasılık teorisine giriş. Bölüm 10, s-300, Birsen Yayınevi, İstanbul.
  • Singh, V.S. (1970). Two-server markovian queues with balking: Heterogeneous vs. homogeneous servers. Operations Research, Vol. 18, No. 1, 145-159.
  • Singh, V.S. (1971). Markovian Queues with Three Heterogeneous Servers1. IIE Transactions 3, 45- 48.
  • Takacs, L. (1969). On Erlang’s formula. Annals of Mathematical Statistics 40, 71-78.
Toplam 16 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Araştırma Makalesi
Yazarlar

H. Okan İşgüder Bu kişi benim

Umay Uzunoglu Kocer

Yayımlanma Tarihi 29 Temmuz 2011
Yayımlandığı Sayı Yıl 2010 Cilt: 1 Sayı: 1

Kaynak Göster

APA İşgüder, H. O., & Uzunoglu Kocer, U. (2011). OPTIMIZATION OF LOSS PROBABILITY FOR GI / M / 3/ 0 QUEUING SYSTEM WITH HETEROGENOUS SERVERS. Anadolu Üniversitesi Bilim Ve Teknoloji Dergisi - B Teorik Bilimler, 1(1), 73-89.
AMA İşgüder HO, Uzunoglu Kocer U. OPTIMIZATION OF LOSS PROBABILITY FOR GI / M / 3/ 0 QUEUING SYSTEM WITH HETEROGENOUS SERVERS. AUBTD-B. Temmuz 2011;1(1):73-89.
Chicago İşgüder, H. Okan, ve Umay Uzunoglu Kocer. “OPTIMIZATION OF LOSS PROBABILITY FOR GI / M / 3/ QUEUING SYSTEM WITH HETEROGENOUS SERVERS”. Anadolu Üniversitesi Bilim Ve Teknoloji Dergisi - B Teorik Bilimler 1, sy. 1 (Temmuz 2011): 73-89.
EndNote İşgüder HO, Uzunoglu Kocer U (01 Temmuz 2011) OPTIMIZATION OF LOSS PROBABILITY FOR GI / M / 3/ 0 QUEUING SYSTEM WITH HETEROGENOUS SERVERS. Anadolu Üniversitesi Bilim Ve Teknoloji Dergisi - B Teorik Bilimler 1 1 73–89.
IEEE H. O. İşgüder ve U. Uzunoglu Kocer, “OPTIMIZATION OF LOSS PROBABILITY FOR GI / M / 3/ 0 QUEUING SYSTEM WITH HETEROGENOUS SERVERS”, AUBTD-B, c. 1, sy. 1, ss. 73–89, 2011.
ISNAD İşgüder, H. Okan - Uzunoglu Kocer, Umay. “OPTIMIZATION OF LOSS PROBABILITY FOR GI / M / 3/ QUEUING SYSTEM WITH HETEROGENOUS SERVERS”. Anadolu Üniversitesi Bilim Ve Teknoloji Dergisi - B Teorik Bilimler 1/1 (Temmuz 2011), 73-89.
JAMA İşgüder HO, Uzunoglu Kocer U. OPTIMIZATION OF LOSS PROBABILITY FOR GI / M / 3/ 0 QUEUING SYSTEM WITH HETEROGENOUS SERVERS. AUBTD-B. 2011;1:73–89.
MLA İşgüder, H. Okan ve Umay Uzunoglu Kocer. “OPTIMIZATION OF LOSS PROBABILITY FOR GI / M / 3/ QUEUING SYSTEM WITH HETEROGENOUS SERVERS”. Anadolu Üniversitesi Bilim Ve Teknoloji Dergisi - B Teorik Bilimler, c. 1, sy. 1, 2011, ss. 73-89.
Vancouver İşgüder HO, Uzunoglu Kocer U. OPTIMIZATION OF LOSS PROBABILITY FOR GI / M / 3/ 0 QUEUING SYSTEM WITH HETEROGENOUS SERVERS. AUBTD-B. 2011;1(1):73-89.