Araştırma Makalesi
BibTex RIS Kaynak Göster

Inventory Management and Extensions: A Review of Economic Production Quantity Models

Yıl 2015, Cilt: 15 Sayı: 3, 97 - 112, 01.09.2015
https://doi.org/10.18037/ausbd.95553

Öz

Economic Production Quantity (EPQ) models search two important questions which are how much and when have to produce. The research on EPQ models is still important for many industries under different assumptions on EPQ models. In this paper, the scientific literature of the inventory management and its extensions where is mostly liked for EPQ models are mentioned with historical review by using national and international databases with indexes. The shortages, backordering, imperfect items, quality control and errors, learning curves, financial effects, and uncertainties are mostly seen in this research area for modeling on classical EPQ from the literature since 2000. Thus, we think that the real life problems are well defined by these proposed models. Today, the modelling of the stochastic, fuzzy logic, grey system theory and metaheuristics methods are used for large scale EPQ models. However, in the conclusion of this paper, for industrial practitioners and researchers the new research areas are discussed and presented which are dynamic, vendor- buyer, outsourcing, cancellation of orders, emergency orders, inventory routing, recycling process and close-loop supply chains for EPQ models.

Kaynakça

  • Alamri, A. A., Balkhi, Z. T. (2007). The effects of lear- ning and forgetting on the optimal production lot size for deteriorating items with time varying de- mand and deterioration rates. International Journal of Production Economics, 107 (1), 125-138.
  • Axsater, S. (1993). Continuous review policies for mul- ti-level inventory systems with stochastic demand. In: Graves, S.C. (Ed.), Handbooks in Operations Research and Management Science, vol. 4. North Holland, Amsterdam, The Netherlands.
  • Aydemir, E. (2013). Kusurlu Ürünleri İçeren Ekonomik Üretim Miktarı Modelinin Gri Sistem Teorisi Yak- laşımıyla Geliştirilmesi: Endüstriyel Bir Araştırma. SDÜ FBE Makine Mühendisliği ABD, Yayımlan- mamış Doktora Tezi, 202s.
  • Balkhi T. Z., Benkherouf L. (2004). On an inventory model for deteriorating items with stock depen- dent and time varying demand rates. Computers and Operations Research 31, 223-240.
  • Bayındır, Z. P., Birbil, Ş. İ., Frenk, J. B. G. (2006). The joint replenishment problem with variable produc- tion costs. European Journal of Operational Rese- arch, 175, 622-640.
  • Bayındır, Z. P., Birbil, Ş. İ., Frenk, J. B. G. (2007). A deterministic inventory/production model with general inventory cost rate function and piecewise linear concave production costs. European Journal of Operational Research, 179, 114-123.
  • Ben-Daya, M., Darwish, M., Ertogral, K. (2008). Joint economic lot sizing problem; A review and extensi- ons. European Journal of Operational Research, vol. 185/2, 726-742.
  • Ben-Daya, M., Hariga, M. A., (2003). Lead-Time Re- duction in a Stochastic Inventory System with Le- arning Consideration. International Journal of Pro- duction Research, 41 (3), 571-579.
  • Bhunia, A. K., Kundu, S., Sannigrahi, T., Goyal, S. K. (2009). An application of tournament genetic algo- rithm in a marketing oriented economic produc- tion lot-size model for deteriorating items. Inter- national Journal of Production Economics, 119 (1), 112–121.
  • Björk, K.-M. (2012). A multi-item fuzzy economic production quantity problem with a finite produc- tion rate, International Journal of Production Eco- nomics, 135 (2), 702-707.
  • Chan, W. M., Ibrahim, R. N., Lochert, P. B. (2003). A new EPQ model: integrating lower pricing, rework and reject situations. Production Planning and Control, 14(7), 588-595.
  • Chang, H.-C. (2004). An application of fuzzy sets theory to the EOQ model with imperfect quality items. Computers and Operations Research, 31, 2079-2092.
  • Chen, F. (1999). On(r,nQ) policies in serial inventory systems. In:Tayur,S., Ganeshan, R., Magazine, M.(Eds.), Quantitative Models for Supply Chain Management. Kluwer, Norwell, MA.
  • Chen, S. H., Wang, S. T., Chang, S. M. (2005). Optimi- zation of fuzzy production inventory model with repairable defective products under crisp or fuzzy production quantity. International Journal of Ope- rations Research, 2 (2), 31-37.
  • Cheng, F. T., Chang, H. H., Chiu S. W. (2010). Eco- nomic Production Quantity Model with Backorde- ring, Rework and Machine Failure Taking Place In Stock Piling Time. WSEAS Transactions On Infor- mation Science And Applications, 4 (7), 463-473.
  • Chiu, S. W., Wang, S.-L., Chiu, Y.-S.P. (2007). Deter- mining the optimal run time for EPQ model with scrap, rework, and stochastic breakdowns. Euro- pean Journal of Operational Research, 180(2), 664- 676.
  • Chiu, S., W., Chen, K-K., Chang, H-H. (2008). Mat- hematical method for expediting scrap-or-rework decision making in EPQ model with failure in re- pair. Mathematical and Computational Applicati- ons, 13 (3), 137-145.
  • Chiu, Y. P. (2003). Determining the optimal lot size for the finite production model with random defective rate, the rework process, and backlogging. Engine- ering Optimization, 35(4), 427-437.
  • Chui, H. N., Chen, H. M. (2005). An optimal algorithm for solving the dynamic lot-sizing model with le- arning and forgetting in setups and production. International Journal of Production Economics, 95 (2), 179-193.
  • Chui, Y. S. P., Lin, H. D., Chang, H. H. (2011). Mathe- matical Modeling for Solving Manufacturing Run Time Problem with Defective Rate and Random Machine Breakdown. Computers and Industrial Engineering, 60, 576-584.
  • Chung, K. J. (1998). A Theorem on the Determinati- on of Economic Order Quantity under Conditions of Permissible Delay in Payments. Computers and Operations Research, 25, 49-52.
  • Chung, K. J., Hou, K. L. (2003). An optimal production run time with imperfect production processes and allowable shortages. Computers and Operations Re- search, 30, 483-490.
  • Chung, K. J., Huang, Y. F. (2003). The Optimal Cycle Time for EPQ Inventory Model under Permissible Delay in Payments. International Journal of Pro- duction Economics, 84, 307-318.
  • Darwish, M. (2008). EPQ model with varying setup cost. International Journal of Production Econo- mics, 113, 297-306.
  • Dem H., Singh S.R., Kumar J. (2014) An EPQ model with trapezoidal demand and under volume flexi- bility, International Journal of Industrial Enginee- ring Computations. 5, 127-138.
  • Dobos, I., Richter, K. (2003). A production /recycling model with stationary demand and return rates. Central European Journal of Operations Research 11 (1), 35–46.
  • Dobos, I., Richter, K. (2004). An extended producti- on/recycling model with stationary demand and return rates. International Journal of Production Economics 90 (3), 311–323.
  • Drake, M. J. , Pentico, D. W., Toews, C. (2011). Using the EPQ for Coordinated Planning of a Product with Partial Backordering and its Components. Mathe- matical and Computer Modelling 53, 359-375.
  • Eroğlu, A. (2002). Deterministik Envanter Modelleri, Fakülte Kitabevi, 182, Isparta.
  • Eroğlu, A., Sütçü, A., Sulak, H. (2008). Rassal Olarak Kusurlu Üretim Yapan Üretim Süreçleri İçin Eko- nomik Üretim Miktarı Modeli. Gazi Üniversitesi Müh. Mim. Fak. Dergisi, 23, No 4, 923-929.
  • Ertogral, K. (2011). A Vendor-buyer lot sizing problem with stochastic demand: An exact procedure under service level approach. European Journal of Indust- rial Engineering, 5/1, 101-110.
  • Glock C. H., Jaber, M. Y. (2013). An economic produc- tion quantity (EPQ) model for a customer-domi- nated supply chain with defective items, reworking and scrap, International Journal of Services and Operations Management, 14 (2), 236-251.
  • Hafshejani, K. F., Valmohammadi, C., Khakpoor A. (2012). Retracted: Using genetic algorithm app- roach to solve a multi-product EPQ model with defective items, rework, and constrained space, Jo- urnal of Industrial Engineering International, 8: 27.
  • Halim, K. A., Giri, B. C., Chaudhuri, K. S. (2009). Fuzzy EPQ models for an imperfect production system. International Journal of Systems Science, 40 (1), 45-52.
  • Hariga, M. A., Ben-Daya, M. (1996). Optimal Time Varying Lot-Sizing Models under Inflationary Conditions. European Journal of Operational Rese- arch, 89, 313-325.
  • Hariga, M.A. (2010). A single-item continuous revi- ew inventory problem with space restriction. In- ternational Journal of Production Economics, 128, 153–158
  • Harris, F.W. (1913). How many parts to make at once. Factory The Magazine of Management, 10, 135–136.
  • Hayek, P. A., Salameh, M. K. (2001). Production lot si- zing with the reworking of imperfect quality items produced. Production Planning and Control, 12(6), 584-590.
  • Hu, F., Liu, D. (2010). Optimal Replenishment Policy for the EPQ Model with Permissible Delay in Pay- ments and Allowable Shortages. Applied Mathema- tical Modelling, 34, 3108-3117.
  • Islam, S., Roy, T. K. (2006). A fuzzy EPQ model with flexibility and reliability consideration and de- mand dependent unit production cost under a spa- ce constraint: A fuzzy geometric approach. Applied Mathematics and Computation, 176, 531-544.
  • Ittharat T. (2004). The Integrated Economic producti- on Quantity Model for Inventory and Quality, PhD Thesis in Texas Tech University, pp. 223.
  • Jaber, M. Y., Bonney, M. (2007). Economic Manufac- ture Quantity (EMQ) Model with Lot-Size Depen- dent Learning and Forgetting Rates. International Journal of Production Economics, 108 (1-2), 359- 367.
  • Jaber, M. Y., Guiffrida, A. L. (2008). Learning Curves for Imperfect Production Processes with Reworks and Process Restoration Interruptions. European Journal of Operational Research, 189 (1), 93-104.
  • Jaber, M., Y., Goyal, S. K., Imran, M. (2008). Economic production quantity model for items with imper- fect quality subject to learning effects. International Journal of Production Economics, 115, 143-150.
  • Jaber, M.Y., Bonney, M. (1998). The effects of learning and forgetting on the optimal lot size quantity of intermittent production runs. Production Planning and Control 9 (1), 20–27.
  • Jaber, M.Y., El Saadany, A. M. A. (2011). An Economic Production and Remanufacturing Model with Le- arning Effects. International Journal of Production Economics 131, 115-127.
  • Karaöz, M. (2003). Öğrenme ve Farklı Talep Fonksi- yonlarını İçeren Ekonomik Üretim Miktarı Model Önerileri. Süleyman Demirel Üniversitesi, Yayım- lanmamış Doktora Tezi, Isparta, 217s.
  • Kazemi, N., Ehsani, E., Jaber, M. Y. (2010). An inven- tory model with backorders with fuzzy parameters and decision variables. International Journal of Approximate Reasoning, 51, 964-972.
  • Kim, C. H., Hong, Y. (1999). An optimal production run length in deteriorating production processes. International Journal of Production Economics 58, 183-189.
  • Kobu, B. (2006). Üretim Yönetimi. 13. Baskı, Beta Yayı- nevi, 602 s. İstanbul.
  • Köse, E., Temiz, I., Erol, S. (2011). Grey System App- roach for Economic Order Quantity Models under Uncertainty, The Journal of Grey System, 1, 71-82.
  • Kreng, V. B., Tan, S. J. (2011). Optimal Replenishment Decision in an EPQ Model with Defective Items under Supply Chain Trade Credit Policy. Expert Systems with Applications, 38, 9888-9899.
  • Kumar, S. A., Suresh, N. (2008). Production and Opera- tions Management. New-Age International Publis- hers, 2. Baskı, 271 s., Yeni Delhi, Hindistan.
  • Li, J., Wang, S., Cheng, T. C. E. (2008). Analysis of Post- ponement Strategy by EPQ-based Models with Planned Backorders. Omega, 36, 777-788.
  • Liao, G. L., Chen, Y. H., Sheu, S. H. (2009). Optimal Economic Production Quantity Policy for Imper- fect Process with Imperfect Repair and Maintenan- ce. European Journal of Operational Research, 195, 348-357.
  • Liao, G. L., Sheu, S. H. (2011). Economic Production Quantity Model for Randomly Failing Production Process with Minimal Repair and Imperfect Main- tenance. International Journal of Production Econo- mics, 130, 118-124.
  • Liao, J. J. (2007). On an EPQ model for deteriorating items under permissible delay in payments. Appli- ed Mathematical Modelling, 31, 393-403.
  • Lo, S. T., Wee, H. M., Huang W.C. (2007). An integ- rated production-inventory model with imperfect production processes and Weibull distribution de- terioration under inflation. International Journal of Production Economics, 106, 248–260.
  • Mahata, G. C. (2012). An EPQ-based inventory model for exponentially deteriorating items under retailer partial trade credit policy in supply chain. Expert Systems with Applications, 39, 3537–3550.
  • Majumder P., Bera, U.K. (2013). An EPQ-based inven- tory model for deteriorationg items under stock- dependent demand with immediate part payment, Journal of Applied Mathematics and Physics, 1, 25- 30.
  • Mondal, S., Maiti, M. (2003). Multi-item fuzzy EOQ models using genetic algorithm. Com- puters and Industrial Engineering, 44 (1), 105-117.
  • Monks, J. G. (1996). Operation Managements. Schaum’s Outlines, Mc-Graw Hill, 2nd Edition, 427 s.
  • Mukhopadhyay, A., Goswami, A. (2013). Economic production quantity (EPQ) model for three type imperfect items with rework and learning in setup, International Journal of Optimization & Control: Theories & Applications 4 (1), 57-65.
  • Mula, J., Peidro, D., Poler, R. (2010). The effectiveness of a fuzzy mathematical programming approach for supply chain production planning with fuzzy demand. International Journal of Production Eco- nomics, 128, 136-143.
  • Musa, A., Sani, B. (2012). Inventory Ordering Policies of Delayed Deteriorating Items under Permissible Delay in Payments. International Journal of Pro- duction Economics, 136, 75-83.
  • Nahmias, S. (2009). Production and Operation Analy- sis. Mc-Graw Hill, 6. Baskı, 790s., ABD.
  • Nahmias, S., Rivera, H. (1979). A deterministic model for a repairable item inventory system with a finite repair rate. International Journal of Production Re- search 17 (3), 215–221.
  • Ojha, D., Sarker, B. R., Biswas, P. (2007). An optimal batch size for an imperfect production system with quality assurance and rework. International Journal of Production Research, 45:14, 3191-3214.
  • Pal, B., Sana S. S., Chaudhuri K. (2013). Maximising profits for an EPQ model with unreliable machine and rework of random defective items, Internatio- nal Journal of Systems Science, 44 (3), 582-594.
  • Pal, S., Maiti, M. K., Maiti, M. (2009). An EPQ model with price discounted promotional demand in an imprecise planning horizon via Genetic Algo- rithm. Computers and Industrial Engineering, 57 (1), 181-187.
  • Pan, J.C.-H., Yang, M.-F. (2008). Integrated inventory models with fuzzy annual demand and fuzzy pro- duction rate in a supply chain. International Jour- nal of Production Research, 46(3), 753-770.
  • Pasandideh, S. H. R., Niaki, S. T. A. (2008). A genetic algorithm approach to optimize a multi-products EPQ model with discrete delivery orders and cons- trained space. Applied Mathematics and Computa- tion, 195, 506-514.
  • Pentico, D. W., Drake, M. (2011). A survey of determi- nistic models for the EOQ and EPQ with partial backordering. European Journal of Operational Re- search, 214 (2), 179-198.
  • Pentico, D. W., Matthew, J. D., Toews, C. (2009). The deterministic EPQ with partial backordering: a new approach. Omega, 37, 624-636.
  • Raafat, F. (1991). Survey of literature on continuosly deteiorating inventory models. Journal of Operati- onal Research Society, 42 (1), 27-37.
  • Richter, K. (1996a). The extended EOQ repair and waste disposal model. International Journal of Pro- duction Economics, 45 (1–3), 443–447.
  • Richter, K. (1996b). The EOQ and waste disposal mo- del with variable setup numbers. European Journal of Operational Research 95 (2), 313–324.
  • Richter, K. (1997). Pure and mixed strategies for the EOQ repair and waste disposal problem. OR Spect- rum 19 (2), 123–129.
  • Roy, A., Maity, K., Kar, S., Maiti, M. (2009). A produc- tion-inventory model with remanufacturing for defective and usable items in fuzzy-environment. Computers and Industrial Engineering, 56, 87-96.
  • Salameh, M. K., Jaber, M. Y. (2000). Economic produc- tion quantity model for items with imperfect qua- lity. International Journal of Production Economics, 64, 59-64.
  • Sana S. S. (2008). An EOQ model with a varying de- mand followed by advertising expenditure and sel- ling price under permissible delay in payments: for a retailer, International Journal of Modelling, Identi- fication and Control, 5 (2), 166-172.
  • Sana, S. S. (2010). An economic production lot size model in an imperfect production system. Europe- an Journal of Operational Research, 201, 158-170.
  • Sarkar B., Sana S. S., Chaudhuri K. (2011). An imper- fect production process for time varying demand with inflation and time value of Money – An EMQ model. Expert System with Applications, 38 (11), 13543-13548.
  • Schrady, D.A. (1967). A deterministic inventory mo- del for repairable items. Naval Research Logistics 14 (3), 391–398.
  • Schuh, G. (2008). Produktionsmanagements I, WZL/ FIR, Aachen Universitat.
  • Singh C., Singh S.R. (2011). Imperfect production pro- cess with exponantial demand rate, Weibull dete- rioration under inflation. International Journal of Operational Research, 12 (4), 430-445.
  • Stojkovska I. (2013). On the optimality of the optimal policies for the deterministic EPQ with partial bac- kordering, Omega, 41 (5), 919-923.
  • Sulak, H., Eroğlu A. (2009). Ekonomik sipariş ve üre- tim miktarı modellerinde yeni açılımlar. Süleyman Demirel Üniversitesi İktisadi ve İdari Bilimler Fakül- tesi Dergisi, 14 (3), 383-406.
  • Taft, E. W. (1918). The Most Economical Production Lot. Iron Age, 101, 140-1412.
  • Taleizadeh, A. A., Cardenas-Barron L. E., Mohamma- di B. (2013). A deterministic multi product single machine EPQ model with backordering, scraped products, rework and interruption in manufactu- ring process, International Journal of Production Economics, 150, 9-27.
  • Teng J.T., Chang C.T. (2005). Economic production quantity models for deteriorating iitems with price and stock dependent demand. Computer and Ope- rations Research 32, 297-308.
  • Teng J.T., Ouyang L.Y., Chang C.T. (2005). Determi- nistic economic production quantity models with time-varying demand and cost. Applied Mathema- tical Modelling 29, 987-1003.
  • Teng, J. T., Chang, C. T. (2009). Optimal Manufacturer’s Replenishment Policies in the EPQ Model under Two Levels of Trade Credit Policy. European Jour- nal of Operational Research, 195, 358-363.
  • Tersine, R. J. (1994). Principles of Inventory and Mate- rials Management. Printice Hall, 4th Edition, 591 s. ABD.
  • Teunter, R. H. (2001). Economic ordering quantities for recoverable item inventory systems. Naval Re- search Logistics 48 (6), 484–495.
  • Toews, C., Pentico, D. W., Drake, M. J. (2011). The de- terministic EOQ and EPQ with partial backorde- ring at a rate that is linearly dependent on the time to delivery. International Journal of Production Eco- nomics, 131, 643-649.
  • Wee H. M., Widyadana G. A. (2012). Economic pro- duction quantity models for deteriorating items with rework and stochastic preventive maintenan- ce time. International Journal of Production Rese- arch, 50 (11), 2940-2952.
  • Wee H.-M., Wang, W.-T., Yang, P.-C. (2013). A pro- duction quantity model for imperfect items with shortage and screening constraint, International Journal of Production Research, 51 (6), 1869-1884.
  • Yang, L., Yang, J., Gang, Y., Zhang, H. (2011). Near- optimal (r,Q) Policies for a Two-stage Serial Inven- tory System with Poisson Demand. International Journal of Production Economics,133, 728-735.
  • Yenersoy, G. (2011). Üretim Planlama ve Kontrol. Pa- patya Yayınları, 383 s., İstanbul, Türkiye.
  • Yoo, S. H., Kim, D., Park, M. S. (2009). Economic Pro- duction Quantity Model with Imperfect Quality Items, Two-way Imperfect Inspection and Sales Return. International Journal of Production Econo- mics, 121, 255-265.
  • Yüksel, H. (2010). Üretim/İşlemler Yönetimi Te- mel Kavramlar. 2. Baskı, Nobel Yayın Dağıtım, No:1368, 388 s. Ankara.
  • Zhang, R. (2009). A note on the deterministic EPQ with partial backordering. Omega, 37, 1036-1038.
  • Zhang, R.-Q., Kaku, I., Xiao, Y.-Y. (2011). Determinis- tic EOQ with partial backordering and correlated demand caused by cross-selling. European Journal of Operational Research, 210 (3), 537-551.
  • Zhao, P., Wang, H., Gao, H. (2006). Improved particle swarm optimization algorithm for stochastic EOQ models with multi-item and multi-storehouse. Proceedings of the IEEE International Conference on Information Acquisition, August 20-23, Welhal, Shandong, China.

Envanter Yönetimi ve Uzantıları: Ekonomik Üretim Miktarı Modelleri Üzerine Bir Bilimsel Yazın Araştırması

Yıl 2015, Cilt: 15 Sayı: 3, 97 - 112, 01.09.2015
https://doi.org/10.18037/ausbd.95553

Öz

Ekonomik Üretim Miktarı (EÜM) modellerinde, ne zaman ne kadar (miktar) üretim yapılacağı sorusuna cevap aranmaktadır. EÜM modelleri farklı varsayımlar altında araştırma güncelliğini korumaktadır. Bu çalışmada, ulusal ve uluslararası indeksler taranarak elde edilen bilimsel yazın örnekleri ile envanter yönetimi ve ekonomik üretim miktarı modellerinde yaşanan değişim süreci araştırılmaktadır. Özellikle 2000 yılı ve sonrasında üretim süreçlerinden kaynaklanan stoksuzluk, talebi sonradan karşılama, kusurlu ürünlerin üretimi, kalite kontrol ve kontrol hataları, öğrenme etkisi, finansal etkiler vb. durumlar ve belirsizliklerin modellendiği görülmektedir. Böylece geliştirilen modellerin gerçek üretim ortamlarını daha iyi ifade ettiği düşünülmektedir. Günümüzde ise, EÜM modellerinde yaklaşımların olasılık, bulanık mantık, gri sistem teorisi ve sezgisel yöntemlerle desteklenme yoluna gidildiği bilimsel yazından açıkça görülmektedir. Ayrıca sonuç kısmında endüstri uygulayıcılarına ve araştırmacılara EÜM modelleri üzerinde dinamik, alıcı-satıcı, dış kaynak kullanımı, sipariş iptalleri, acil siparişler, envanter dağıtımı, geri dönüşüm parçalar ile kapalı-döngü tedarik içeren modeller yeni çalışma alanları olarak gösterilmiştir.

Kaynakça

  • Alamri, A. A., Balkhi, Z. T. (2007). The effects of lear- ning and forgetting on the optimal production lot size for deteriorating items with time varying de- mand and deterioration rates. International Journal of Production Economics, 107 (1), 125-138.
  • Axsater, S. (1993). Continuous review policies for mul- ti-level inventory systems with stochastic demand. In: Graves, S.C. (Ed.), Handbooks in Operations Research and Management Science, vol. 4. North Holland, Amsterdam, The Netherlands.
  • Aydemir, E. (2013). Kusurlu Ürünleri İçeren Ekonomik Üretim Miktarı Modelinin Gri Sistem Teorisi Yak- laşımıyla Geliştirilmesi: Endüstriyel Bir Araştırma. SDÜ FBE Makine Mühendisliği ABD, Yayımlan- mamış Doktora Tezi, 202s.
  • Balkhi T. Z., Benkherouf L. (2004). On an inventory model for deteriorating items with stock depen- dent and time varying demand rates. Computers and Operations Research 31, 223-240.
  • Bayındır, Z. P., Birbil, Ş. İ., Frenk, J. B. G. (2006). The joint replenishment problem with variable produc- tion costs. European Journal of Operational Rese- arch, 175, 622-640.
  • Bayındır, Z. P., Birbil, Ş. İ., Frenk, J. B. G. (2007). A deterministic inventory/production model with general inventory cost rate function and piecewise linear concave production costs. European Journal of Operational Research, 179, 114-123.
  • Ben-Daya, M., Darwish, M., Ertogral, K. (2008). Joint economic lot sizing problem; A review and extensi- ons. European Journal of Operational Research, vol. 185/2, 726-742.
  • Ben-Daya, M., Hariga, M. A., (2003). Lead-Time Re- duction in a Stochastic Inventory System with Le- arning Consideration. International Journal of Pro- duction Research, 41 (3), 571-579.
  • Bhunia, A. K., Kundu, S., Sannigrahi, T., Goyal, S. K. (2009). An application of tournament genetic algo- rithm in a marketing oriented economic produc- tion lot-size model for deteriorating items. Inter- national Journal of Production Economics, 119 (1), 112–121.
  • Björk, K.-M. (2012). A multi-item fuzzy economic production quantity problem with a finite produc- tion rate, International Journal of Production Eco- nomics, 135 (2), 702-707.
  • Chan, W. M., Ibrahim, R. N., Lochert, P. B. (2003). A new EPQ model: integrating lower pricing, rework and reject situations. Production Planning and Control, 14(7), 588-595.
  • Chang, H.-C. (2004). An application of fuzzy sets theory to the EOQ model with imperfect quality items. Computers and Operations Research, 31, 2079-2092.
  • Chen, F. (1999). On(r,nQ) policies in serial inventory systems. In:Tayur,S., Ganeshan, R., Magazine, M.(Eds.), Quantitative Models for Supply Chain Management. Kluwer, Norwell, MA.
  • Chen, S. H., Wang, S. T., Chang, S. M. (2005). Optimi- zation of fuzzy production inventory model with repairable defective products under crisp or fuzzy production quantity. International Journal of Ope- rations Research, 2 (2), 31-37.
  • Cheng, F. T., Chang, H. H., Chiu S. W. (2010). Eco- nomic Production Quantity Model with Backorde- ring, Rework and Machine Failure Taking Place In Stock Piling Time. WSEAS Transactions On Infor- mation Science And Applications, 4 (7), 463-473.
  • Chiu, S. W., Wang, S.-L., Chiu, Y.-S.P. (2007). Deter- mining the optimal run time for EPQ model with scrap, rework, and stochastic breakdowns. Euro- pean Journal of Operational Research, 180(2), 664- 676.
  • Chiu, S., W., Chen, K-K., Chang, H-H. (2008). Mat- hematical method for expediting scrap-or-rework decision making in EPQ model with failure in re- pair. Mathematical and Computational Applicati- ons, 13 (3), 137-145.
  • Chiu, Y. P. (2003). Determining the optimal lot size for the finite production model with random defective rate, the rework process, and backlogging. Engine- ering Optimization, 35(4), 427-437.
  • Chui, H. N., Chen, H. M. (2005). An optimal algorithm for solving the dynamic lot-sizing model with le- arning and forgetting in setups and production. International Journal of Production Economics, 95 (2), 179-193.
  • Chui, Y. S. P., Lin, H. D., Chang, H. H. (2011). Mathe- matical Modeling for Solving Manufacturing Run Time Problem with Defective Rate and Random Machine Breakdown. Computers and Industrial Engineering, 60, 576-584.
  • Chung, K. J. (1998). A Theorem on the Determinati- on of Economic Order Quantity under Conditions of Permissible Delay in Payments. Computers and Operations Research, 25, 49-52.
  • Chung, K. J., Hou, K. L. (2003). An optimal production run time with imperfect production processes and allowable shortages. Computers and Operations Re- search, 30, 483-490.
  • Chung, K. J., Huang, Y. F. (2003). The Optimal Cycle Time for EPQ Inventory Model under Permissible Delay in Payments. International Journal of Pro- duction Economics, 84, 307-318.
  • Darwish, M. (2008). EPQ model with varying setup cost. International Journal of Production Econo- mics, 113, 297-306.
  • Dem H., Singh S.R., Kumar J. (2014) An EPQ model with trapezoidal demand and under volume flexi- bility, International Journal of Industrial Enginee- ring Computations. 5, 127-138.
  • Dobos, I., Richter, K. (2003). A production /recycling model with stationary demand and return rates. Central European Journal of Operations Research 11 (1), 35–46.
  • Dobos, I., Richter, K. (2004). An extended producti- on/recycling model with stationary demand and return rates. International Journal of Production Economics 90 (3), 311–323.
  • Drake, M. J. , Pentico, D. W., Toews, C. (2011). Using the EPQ for Coordinated Planning of a Product with Partial Backordering and its Components. Mathe- matical and Computer Modelling 53, 359-375.
  • Eroğlu, A. (2002). Deterministik Envanter Modelleri, Fakülte Kitabevi, 182, Isparta.
  • Eroğlu, A., Sütçü, A., Sulak, H. (2008). Rassal Olarak Kusurlu Üretim Yapan Üretim Süreçleri İçin Eko- nomik Üretim Miktarı Modeli. Gazi Üniversitesi Müh. Mim. Fak. Dergisi, 23, No 4, 923-929.
  • Ertogral, K. (2011). A Vendor-buyer lot sizing problem with stochastic demand: An exact procedure under service level approach. European Journal of Indust- rial Engineering, 5/1, 101-110.
  • Glock C. H., Jaber, M. Y. (2013). An economic produc- tion quantity (EPQ) model for a customer-domi- nated supply chain with defective items, reworking and scrap, International Journal of Services and Operations Management, 14 (2), 236-251.
  • Hafshejani, K. F., Valmohammadi, C., Khakpoor A. (2012). Retracted: Using genetic algorithm app- roach to solve a multi-product EPQ model with defective items, rework, and constrained space, Jo- urnal of Industrial Engineering International, 8: 27.
  • Halim, K. A., Giri, B. C., Chaudhuri, K. S. (2009). Fuzzy EPQ models for an imperfect production system. International Journal of Systems Science, 40 (1), 45-52.
  • Hariga, M. A., Ben-Daya, M. (1996). Optimal Time Varying Lot-Sizing Models under Inflationary Conditions. European Journal of Operational Rese- arch, 89, 313-325.
  • Hariga, M.A. (2010). A single-item continuous revi- ew inventory problem with space restriction. In- ternational Journal of Production Economics, 128, 153–158
  • Harris, F.W. (1913). How many parts to make at once. Factory The Magazine of Management, 10, 135–136.
  • Hayek, P. A., Salameh, M. K. (2001). Production lot si- zing with the reworking of imperfect quality items produced. Production Planning and Control, 12(6), 584-590.
  • Hu, F., Liu, D. (2010). Optimal Replenishment Policy for the EPQ Model with Permissible Delay in Pay- ments and Allowable Shortages. Applied Mathema- tical Modelling, 34, 3108-3117.
  • Islam, S., Roy, T. K. (2006). A fuzzy EPQ model with flexibility and reliability consideration and de- mand dependent unit production cost under a spa- ce constraint: A fuzzy geometric approach. Applied Mathematics and Computation, 176, 531-544.
  • Ittharat T. (2004). The Integrated Economic producti- on Quantity Model for Inventory and Quality, PhD Thesis in Texas Tech University, pp. 223.
  • Jaber, M. Y., Bonney, M. (2007). Economic Manufac- ture Quantity (EMQ) Model with Lot-Size Depen- dent Learning and Forgetting Rates. International Journal of Production Economics, 108 (1-2), 359- 367.
  • Jaber, M. Y., Guiffrida, A. L. (2008). Learning Curves for Imperfect Production Processes with Reworks and Process Restoration Interruptions. European Journal of Operational Research, 189 (1), 93-104.
  • Jaber, M., Y., Goyal, S. K., Imran, M. (2008). Economic production quantity model for items with imper- fect quality subject to learning effects. International Journal of Production Economics, 115, 143-150.
  • Jaber, M.Y., Bonney, M. (1998). The effects of learning and forgetting on the optimal lot size quantity of intermittent production runs. Production Planning and Control 9 (1), 20–27.
  • Jaber, M.Y., El Saadany, A. M. A. (2011). An Economic Production and Remanufacturing Model with Le- arning Effects. International Journal of Production Economics 131, 115-127.
  • Karaöz, M. (2003). Öğrenme ve Farklı Talep Fonksi- yonlarını İçeren Ekonomik Üretim Miktarı Model Önerileri. Süleyman Demirel Üniversitesi, Yayım- lanmamış Doktora Tezi, Isparta, 217s.
  • Kazemi, N., Ehsani, E., Jaber, M. Y. (2010). An inven- tory model with backorders with fuzzy parameters and decision variables. International Journal of Approximate Reasoning, 51, 964-972.
  • Kim, C. H., Hong, Y. (1999). An optimal production run length in deteriorating production processes. International Journal of Production Economics 58, 183-189.
  • Kobu, B. (2006). Üretim Yönetimi. 13. Baskı, Beta Yayı- nevi, 602 s. İstanbul.
  • Köse, E., Temiz, I., Erol, S. (2011). Grey System App- roach for Economic Order Quantity Models under Uncertainty, The Journal of Grey System, 1, 71-82.
  • Kreng, V. B., Tan, S. J. (2011). Optimal Replenishment Decision in an EPQ Model with Defective Items under Supply Chain Trade Credit Policy. Expert Systems with Applications, 38, 9888-9899.
  • Kumar, S. A., Suresh, N. (2008). Production and Opera- tions Management. New-Age International Publis- hers, 2. Baskı, 271 s., Yeni Delhi, Hindistan.
  • Li, J., Wang, S., Cheng, T. C. E. (2008). Analysis of Post- ponement Strategy by EPQ-based Models with Planned Backorders. Omega, 36, 777-788.
  • Liao, G. L., Chen, Y. H., Sheu, S. H. (2009). Optimal Economic Production Quantity Policy for Imper- fect Process with Imperfect Repair and Maintenan- ce. European Journal of Operational Research, 195, 348-357.
  • Liao, G. L., Sheu, S. H. (2011). Economic Production Quantity Model for Randomly Failing Production Process with Minimal Repair and Imperfect Main- tenance. International Journal of Production Econo- mics, 130, 118-124.
  • Liao, J. J. (2007). On an EPQ model for deteriorating items under permissible delay in payments. Appli- ed Mathematical Modelling, 31, 393-403.
  • Lo, S. T., Wee, H. M., Huang W.C. (2007). An integ- rated production-inventory model with imperfect production processes and Weibull distribution de- terioration under inflation. International Journal of Production Economics, 106, 248–260.
  • Mahata, G. C. (2012). An EPQ-based inventory model for exponentially deteriorating items under retailer partial trade credit policy in supply chain. Expert Systems with Applications, 39, 3537–3550.
  • Majumder P., Bera, U.K. (2013). An EPQ-based inven- tory model for deteriorationg items under stock- dependent demand with immediate part payment, Journal of Applied Mathematics and Physics, 1, 25- 30.
  • Mondal, S., Maiti, M. (2003). Multi-item fuzzy EOQ models using genetic algorithm. Com- puters and Industrial Engineering, 44 (1), 105-117.
  • Monks, J. G. (1996). Operation Managements. Schaum’s Outlines, Mc-Graw Hill, 2nd Edition, 427 s.
  • Mukhopadhyay, A., Goswami, A. (2013). Economic production quantity (EPQ) model for three type imperfect items with rework and learning in setup, International Journal of Optimization & Control: Theories & Applications 4 (1), 57-65.
  • Mula, J., Peidro, D., Poler, R. (2010). The effectiveness of a fuzzy mathematical programming approach for supply chain production planning with fuzzy demand. International Journal of Production Eco- nomics, 128, 136-143.
  • Musa, A., Sani, B. (2012). Inventory Ordering Policies of Delayed Deteriorating Items under Permissible Delay in Payments. International Journal of Pro- duction Economics, 136, 75-83.
  • Nahmias, S. (2009). Production and Operation Analy- sis. Mc-Graw Hill, 6. Baskı, 790s., ABD.
  • Nahmias, S., Rivera, H. (1979). A deterministic model for a repairable item inventory system with a finite repair rate. International Journal of Production Re- search 17 (3), 215–221.
  • Ojha, D., Sarker, B. R., Biswas, P. (2007). An optimal batch size for an imperfect production system with quality assurance and rework. International Journal of Production Research, 45:14, 3191-3214.
  • Pal, B., Sana S. S., Chaudhuri K. (2013). Maximising profits for an EPQ model with unreliable machine and rework of random defective items, Internatio- nal Journal of Systems Science, 44 (3), 582-594.
  • Pal, S., Maiti, M. K., Maiti, M. (2009). An EPQ model with price discounted promotional demand in an imprecise planning horizon via Genetic Algo- rithm. Computers and Industrial Engineering, 57 (1), 181-187.
  • Pan, J.C.-H., Yang, M.-F. (2008). Integrated inventory models with fuzzy annual demand and fuzzy pro- duction rate in a supply chain. International Jour- nal of Production Research, 46(3), 753-770.
  • Pasandideh, S. H. R., Niaki, S. T. A. (2008). A genetic algorithm approach to optimize a multi-products EPQ model with discrete delivery orders and cons- trained space. Applied Mathematics and Computa- tion, 195, 506-514.
  • Pentico, D. W., Drake, M. (2011). A survey of determi- nistic models for the EOQ and EPQ with partial backordering. European Journal of Operational Re- search, 214 (2), 179-198.
  • Pentico, D. W., Matthew, J. D., Toews, C. (2009). The deterministic EPQ with partial backordering: a new approach. Omega, 37, 624-636.
  • Raafat, F. (1991). Survey of literature on continuosly deteiorating inventory models. Journal of Operati- onal Research Society, 42 (1), 27-37.
  • Richter, K. (1996a). The extended EOQ repair and waste disposal model. International Journal of Pro- duction Economics, 45 (1–3), 443–447.
  • Richter, K. (1996b). The EOQ and waste disposal mo- del with variable setup numbers. European Journal of Operational Research 95 (2), 313–324.
  • Richter, K. (1997). Pure and mixed strategies for the EOQ repair and waste disposal problem. OR Spect- rum 19 (2), 123–129.
  • Roy, A., Maity, K., Kar, S., Maiti, M. (2009). A produc- tion-inventory model with remanufacturing for defective and usable items in fuzzy-environment. Computers and Industrial Engineering, 56, 87-96.
  • Salameh, M. K., Jaber, M. Y. (2000). Economic produc- tion quantity model for items with imperfect qua- lity. International Journal of Production Economics, 64, 59-64.
  • Sana S. S. (2008). An EOQ model with a varying de- mand followed by advertising expenditure and sel- ling price under permissible delay in payments: for a retailer, International Journal of Modelling, Identi- fication and Control, 5 (2), 166-172.
  • Sana, S. S. (2010). An economic production lot size model in an imperfect production system. Europe- an Journal of Operational Research, 201, 158-170.
  • Sarkar B., Sana S. S., Chaudhuri K. (2011). An imper- fect production process for time varying demand with inflation and time value of Money – An EMQ model. Expert System with Applications, 38 (11), 13543-13548.
  • Schrady, D.A. (1967). A deterministic inventory mo- del for repairable items. Naval Research Logistics 14 (3), 391–398.
  • Schuh, G. (2008). Produktionsmanagements I, WZL/ FIR, Aachen Universitat.
  • Singh C., Singh S.R. (2011). Imperfect production pro- cess with exponantial demand rate, Weibull dete- rioration under inflation. International Journal of Operational Research, 12 (4), 430-445.
  • Stojkovska I. (2013). On the optimality of the optimal policies for the deterministic EPQ with partial bac- kordering, Omega, 41 (5), 919-923.
  • Sulak, H., Eroğlu A. (2009). Ekonomik sipariş ve üre- tim miktarı modellerinde yeni açılımlar. Süleyman Demirel Üniversitesi İktisadi ve İdari Bilimler Fakül- tesi Dergisi, 14 (3), 383-406.
  • Taft, E. W. (1918). The Most Economical Production Lot. Iron Age, 101, 140-1412.
  • Taleizadeh, A. A., Cardenas-Barron L. E., Mohamma- di B. (2013). A deterministic multi product single machine EPQ model with backordering, scraped products, rework and interruption in manufactu- ring process, International Journal of Production Economics, 150, 9-27.
  • Teng J.T., Chang C.T. (2005). Economic production quantity models for deteriorating iitems with price and stock dependent demand. Computer and Ope- rations Research 32, 297-308.
  • Teng J.T., Ouyang L.Y., Chang C.T. (2005). Determi- nistic economic production quantity models with time-varying demand and cost. Applied Mathema- tical Modelling 29, 987-1003.
  • Teng, J. T., Chang, C. T. (2009). Optimal Manufacturer’s Replenishment Policies in the EPQ Model under Two Levels of Trade Credit Policy. European Jour- nal of Operational Research, 195, 358-363.
  • Tersine, R. J. (1994). Principles of Inventory and Mate- rials Management. Printice Hall, 4th Edition, 591 s. ABD.
  • Teunter, R. H. (2001). Economic ordering quantities for recoverable item inventory systems. Naval Re- search Logistics 48 (6), 484–495.
  • Toews, C., Pentico, D. W., Drake, M. J. (2011). The de- terministic EOQ and EPQ with partial backorde- ring at a rate that is linearly dependent on the time to delivery. International Journal of Production Eco- nomics, 131, 643-649.
  • Wee H. M., Widyadana G. A. (2012). Economic pro- duction quantity models for deteriorating items with rework and stochastic preventive maintenan- ce time. International Journal of Production Rese- arch, 50 (11), 2940-2952.
  • Wee H.-M., Wang, W.-T., Yang, P.-C. (2013). A pro- duction quantity model for imperfect items with shortage and screening constraint, International Journal of Production Research, 51 (6), 1869-1884.
  • Yang, L., Yang, J., Gang, Y., Zhang, H. (2011). Near- optimal (r,Q) Policies for a Two-stage Serial Inven- tory System with Poisson Demand. International Journal of Production Economics,133, 728-735.
  • Yenersoy, G. (2011). Üretim Planlama ve Kontrol. Pa- patya Yayınları, 383 s., İstanbul, Türkiye.
  • Yoo, S. H., Kim, D., Park, M. S. (2009). Economic Pro- duction Quantity Model with Imperfect Quality Items, Two-way Imperfect Inspection and Sales Return. International Journal of Production Econo- mics, 121, 255-265.
  • Yüksel, H. (2010). Üretim/İşlemler Yönetimi Te- mel Kavramlar. 2. Baskı, Nobel Yayın Dağıtım, No:1368, 388 s. Ankara.
  • Zhang, R. (2009). A note on the deterministic EPQ with partial backordering. Omega, 37, 1036-1038.
  • Zhang, R.-Q., Kaku, I., Xiao, Y.-Y. (2011). Determinis- tic EOQ with partial backordering and correlated demand caused by cross-selling. European Journal of Operational Research, 210 (3), 537-551.
  • Zhao, P., Wang, H., Gao, H. (2006). Improved particle swarm optimization algorithm for stochastic EOQ models with multi-item and multi-storehouse. Proceedings of the IEEE International Conference on Information Acquisition, August 20-23, Welhal, Shandong, China.
Toplam 105 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Erdal Aydemir Bu kişi benim

Yayımlanma Tarihi 1 Eylül 2015
Gönderilme Tarihi 13 Ocak 2016
Yayımlandığı Sayı Yıl 2015 Cilt: 15 Sayı: 3

Kaynak Göster

APA Aydemir, E. (2015). Envanter Yönetimi ve Uzantıları: Ekonomik Üretim Miktarı Modelleri Üzerine Bir Bilimsel Yazın Araştırması. Anadolu Üniversitesi Sosyal Bilimler Dergisi, 15(3), 97-112. https://doi.org/10.18037/ausbd.95553