Derleme
BibTex RIS Kaynak Göster

Contributions of 3D Printing Technologies to Prosthetics and Orthotics Rehabilitation

Yıl 2024, , 41 - 54, 30.06.2024
https://doi.org/10.46971/ausbid.1399730

Öz

This study examines and evaluates the impact of 3-dimensional (3D) printing technology on orthosis and prosthesis production. This technology, which replaces traditional production methods, makes it possible to produce customized and cost-effective assistive products, especially for individuals with impaired function or missing limbs. The article explains in detail the basic principles of 3D printing technology, the materials used and production methods. It also discusses the contributions of orthoses and prostheses produced by 3D printing to rehabilitation processes and their effects on users. The study emphasizes the rapid production process and cost-effective advantages provided by 3D printing technology. In particular, the ability to easily create and produce patient-specific designs provides significant progress in rehabilitation processes. The fact that the orthoses and prostheses produced fully adapt to the body surface increases the comfort and functionality of the users. It is also noted that 3D printing technology makes it possible to obtain better results by using less time and resources compared to traditional production methods. Evaluations made through various research and application examples reveal that 3D printing technology is currently used in many orthotics and prosthesis-related areas. From this point of view, it shows that it will become more widespread in the field of orthoses and prosthetics in the future and will be an alternative solution to traditional production methods. In conclusion, this study touches on the basic principles of 3D printing technology and highlights its significant potential in the production of orthoses and prostheses. It reveals current studies in the field of orthotics and prosthetics, emphasizes the importance of the 3D printing method and encourages research and applications in this field.

Kaynakça

  • Alakas, H. M., Yazici, E., Ebiri, U., Kizilay, B. A., & Oruc, O. (2023). Selection of 3D printing technologies for prosthesis production with multi-criteria decision making methods. International Journal on Interactive Design and Manufacturing (IJIDeM), 18, 911–927. https://doi.org/10.1007/s12008-023-01489-0
  • Alsancak, S. (2000). Ortez ve Protez Tarihçesi, Ankara Üniversitesi Dikimevi Sağlık Hizmetleri Meslek Yüksekokul Yıllığı, 1(1).
  • Azlin, M., Ilyas, R., Zuhri, M., Sapuan, S., Harussani, M., Sharma, S., Nordin, A., Nurazzi, N., & Afiqah, A. (2022). 3D Printing and Shaping Polymers, Composites, and Nanocomposites: A Review. Polymers, 14(1), 180. https://doi.org/10.3390/polym14010180
  • Banga, H. K., Belokar, R. M., Kalra, P., & Kumar, R. (2018). Fabrication and stress analysis of ankle foot orthosis with additive manufacturing. Rapid Prototyping Journal, 24(2), 301–312. https://doi.org/10.1108/rpj-08-2016-0125
  • Campbell, T. A., & Ivanova, O. S. (2013). 3D printing of multifunctional nanocomposites. Nano Today, 8(2), 119–120. https://doi.org/10.1016/j.nantod.2012.12.002
  • Cha, Y. H., Lee, K. H., Ryu, H. J., Joo, I. W., Seo, A., Kim, D.-H., & Kim, S. J. (2017). Ankle-foot orthosis made by 3D printing technique and automated design software. Applied Bionics and Biomechanics, 9610468. https://doi.org/10.1155/2017/9610468
  • Charoo, N. A., Funkhouser, C., Kuttolamadom, M. A., Mansoor Khan, Ph. D., & Rahman, Z. (2021). Opportunities and challenges of selective laser sintering 3D printing in personalized pharmaceutical manufacturing. American Pharmaceutical Review, 46(6), 869–877. https://doi.org/10.1080/03639045.2020.1764027
  • Chen, R. K., Jin, Y., Wensman, J., & Shih, A. (2016). Additive manufacturing of custom orthoses and prostheses—a review. Additive Manufacturing, 12, 77–89. https://doi.org/10.1016/j.addma.2016.04.002
  • Derby, B., & Reis, N. (2003). Inkjet printing of highly loaded particulate suspensions. MRS Bulletin, 28(11), 815–818. https://doi.org/10.1557/mrs2003.230
  • Gibson, I., Rosen, D., Stucker, B. (2010). Direct Digital Manufacturing. In: Additive Manufacturing Technologies (pp. 378–399). Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-1120-9_14
  • Guida, P., Casaburi, A., Busiello, T., Lamberti, D., Sorrentino, A., Iuppariello, L., D’Albore, M., Colella, F., & Clemente, F. (2019). An alternative to plaster cast treatment in a pediatric trauma center using the CAD/CAM technology to manufacture customized three-dimensional-printed orthoses in a totally hospital context: A feasibility study. Journal of Pediatric Orthopaedics B, 28(3), 248–255. https://doi.org/10.1097/bpb.0000000000000589
  • Hazubski, S., Bamerni, D., & Otte, A. (2021). Conceptualization of a sensory feedback system in an anthropomorphic replacement hand. Prosthesis, 3(4), 415–427. https://doi.org/10.3390/prosthesis3040037
  • Jin, H., Xu, R., Wang, S., & Wang, J. (2019). Use of 3D-printed heel support insoles based on arch lift improves foot pressure distribution in healthy people. Medical Science Monitor, 25, 7175–7181. https://doi.org/10.12659/msm.918763
  • Khadilkar, A., Wang, J., & Rai, R. (2019). Deep learning–based stress prediction for bottom-up SLA 3D printing process. The International Journal of Advanced Manufacturing Technology, 102(5–8), 2555–2569. https://doi.org/10.1007/s00170-019-03363-4
  • Kim, S. J., Kim, S. J., Cha, Y. H., Lee, K. H., & Kwon, J. Y. (2018). Effect of personalized wrist orthosis for wrist pain with three-dimensional scanning and printing technique. Prosthetics & Orthotics International, 42(6), 636–643. https://doi.org/10.1177/0309364618785725
  • Kropla, F., Hoffmann, M., Winkler, D., Krause, M., Scholz, S., & Grunert, R. (2023). Development of an individual helmet orthosis for infants based on a 3D scan. 3D Printing in Medicine, 9(1). https://doi.org/10.1186/s41205-023-00187-7
  • Kumar Banga, H., Kalra, P., M. Belokar, R., & Kumar, R. (2021). Design and fabrication of prosthetic and orthotic product by 3D printing. IntechOpen, https://doi.org/10.5772/intechopen.94846
  • Kumar, R., & Sarangi, S. K. (2021). 3D-Printed Orthosis: A Review on Design Process and Material Selection for Fused Deposition Modeling Process. In Lecture Notes in Mechanical Engineering (pp. 531–538). Lecture Notes in Mechanical Engineering. https://doi.org/10.1007/978-981-16-0909-1_55
  • Kuo, F. L., Wu, S., Kuo, T. Y., Lee, Y.S., Huang, S. W., & Lee, H. C. (2023). Effects of 3D-printed assistive device on daily life function in patients with neurological impairment: A pilot study. Disability and Rehabilitation: Assistive Technology, 1–9. https://doi.org/10.1080/17483107.2023.2227222
  • Kuo, Y.R., Fang, J.J., Wu, C.T., Lin, R.M., Su, P.F., & Lin, C.L. (2019). Analysis of a customized cervical collar to improve neck posture during smartphone usage: A comparative study in healthy subjects. European Spine Journal, 28(8), 1793–1803. https://doi.org/10.1007/s00586-019-06022-0
  • Li J., Chen S., Shang X., Li N., Aiyiti W., & Gao F. (2022). Research Progress of Rehabilitation Orthoses Based on 3D Printing Technology: Advances in Materials Science and Engineering, 1-16. https://doi.org/10.1155/2022/5321570
  • Liu, Z., Zhang, P., Yan, M., Xie, Y., & Huang, G. (2019). Additive manufacturing of specific ankle-foot orthoses for persons after stroke: A preliminary study based on Gait Analysis Data. Mathematical Biosciences and Engineering, 16(6), 8134–8143. https://doi.org/10.3934/mbe.2019410
  • Mancuso, M., Bulzomì, R., Mannisi, M., Martelli, F., & Giacomozzi, C. (2023). 3D-printed insoles for people with type 2 diabetes: An Italian, ambulatory case report on the Innovative Care Model. Diabetology, 4(3), 339–355. https://doi.org/10.3390/diabetology4030029
  • Mannisi, M., Dell’Isola, A., Andersen, M. S., & Woodburn, J. (2019). Effect of lateral wedged insoles on the knee internal contact forces in medial knee osteoarthritis. Gait & Posture, 68, 443–448. https://doi.org/10.1016/j.gaitpost.2018.12.030
  • Marable W.R, Smith C, Sigurjónsson B.Þ, Atlason I.F, Johannesson G.A. (2020). Transfemoral socket fabrication method using direct casting: outcomes regarding patient satisfaction with device and services. Canadian Prosthetics & Orthotics Journal. 3(2) 34672. https://doi.org/10.33137/cpoj.v3i2.34672
  • Miclaus, R., Repanovici, A., & Roman, N. (2017). Biomaterials: Polylactic acid and 3D printing processes for orthosis and prosthesis. Materiale Plastice, 54(1), 98–102. https://doi.org/10.37358/mp.17.1.4794 National Center for Biotechnology Information (2024). PubChem Patent Summary for US-6027324-A, Apparatus for production of three dimensional objects by stereolithography. https://pubchem.ncbi.nlm.nih.gov/patent/US-6027324-A
  • Nicoloso, D. V., Pelz, Barrack, & Kuester. (2021). Towards 3D printing of a monocoque transtibial prosthesis using a bio-inspired design workflow. Rapid Prototyping Journal, 67-80. https://doi.org/10.1108/rpj-06-2021-0136]
  • Patel, P., & Gohil, P. (2022). Custom orthotics development process based on additive manufacturing. Materials Today: Proceedings, 59, 52-63. https://doi.org/10.1016/j.matpr.2022.04.858
  • Patpatiya, P., Chaudhary, K., Shastri, A., & Sharma, S. (2022). A review on polyjet 3D printing of polymers and multi-material structures. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 236(14), 7899–7926. https://doi.org/10.1177/09544062221079506
  • Portnova, A. A., Mukherjee, G., Peters, K. M., Yamane, A., & Steele, K. M. (2018). Design of a 3D-printed, open-source wrist-driven orthosis for individuals with Spinal Cord Injury. PLOS ONE, 13(2). https://doi.org/10.1371/journal.pone.0193106
  • Seo, K. J., Kim, B., & Mun, D. (2023). Development of customized ankle-foot-orthosis using 3D scanning and printing technologies. Journal of Mechanical Science and Technology, 37(12), 6131–6142. https://doi.org/10.1007/s12206-023-2406-1
  • Silva, A., & Guilhon, D. (2019). Comparative analysis of ankle prosthesis connector adapters in 3D printed using PLA and PETG. XXVI Brazilian Congress on Biomedical Engineering, 70(1), 155–161. https://doi.org/10.1007/978-981-13-2119-1_24
  • Tarrade, T., Doucet, F., Saint-Lô, N., Llari, M., & Behr, M. (2019). Are custom-made foot orthoses of any interest on the treatment of foot pain for prolonged standing workers?. Applied Ergonomics, 80, 130–135. https://doi.org/10.1016/j.apergo.2019.05.013
  • Thiede, S., Wiese, M., & Herrmann, C. (2021). Upscaling strategies for Polymer Additive Manufacturing: An assessment from economic and environmental perspective for SLS, MJF and DLP. Procedia CIRP, 104, 653–658. https://doi.org/10.1016/j.procir.2021.11.110
  • van der Stelt, M., Verhulst, A. C., Vas Nunes, J. H., Koroma, T. A., Nolet, W. W., Slump, C. H., Grobusch, M. P., Maal, T. J., & Brouwers, L. (2020). Improving lives in three dimensions: The feasibility of 3D printing for creating personalized medical aids in a rural area of Sierra Leone. The American Journal of Tropical Medicine and Hygiene, 102(4), 905–909. https://doi.org/10.4269/ajtmh.19-0359
  • Venumbaka, S. A., Covarubias, M., Cesaro, G., Ronca, A., De Capitani, C., Ambrosio, L., & Sorrentino, A. (2020). Application of multi materials additive manufacturing technique in the design and manufacturing of hand orthoses. Lecture Notes in Computer Science, 461–468. https://doi.org/10.1007/978-3-030-58805-2_55
  • Wang, K., Shi, Y., He, W., Yuan, J., Li, Y., Pan, X., & Zhao, C. (2018). The research on 3D printing fingerboard and the initial application on cerebral stroke patient’s hand spasm. BioMedical Engineering OnLine, 17(1). https://doi.org/10.1186/s12938-018-0522-4
  • Wang, Y., Jiang, W., Gan, Y., Yu, Y., & Dai, K. (2021). Clinical Observation of 3D Printing Technology in Insoles for Flexible Flatfoot Patients. Journal of Shanghai Jiaotong University (science), 26(3), 398–403. https://doi.org/10.1007/s12204-021-2311-7
  • Wendo, K., Barbier, O., Bollen, X., Schubert, T., Lejeune, T., Raucent, B., & Olszewski, R. (2022). Open-Source 3D Printing in the Prosthetic Field—The Case of Upper Limb Prostheses: A Review. Machines, 10(6), 413. https://doi.org/10.3390/machines10060413.
  • Wohlers T. T. & Caffrey T. (2015). Wohlers report 2015: 3D printing and additive manufacturing state of the industry annual worldwide progress report. Wohlers Associates.
  • World Health Organization. (‎2017)‎. Standards for prosthetics and orthotics. https://iris.who.int/handle/10665/259209
  • Yousif, L. E., Resan, K. K., & Fenjan, R. M. (2018). Temperature effect on mechanical characteristics of a new design prosthetic foot. International Journal of Mechanical Engineering and Technology. 9(13). 1431-1447
  • Zheng, Y., Liu, G., Yu, L., Wang, Y., Fang, Y., Shen, Y., Huang, X., Qiao, L., Yang, J., Zhang, Y., & Hua, Z. (2019). Effects of a 3D-printed orthosis compared to a low-temperature thermoplastic plate orthosis on wrist flexor spasticity in chronic hemiparetic stroke patients: A randomized controlled trial. Clinical Rehabilitation, 34(2), 194–204. https://doi.org/10.1177/0269215519885174

3 Boyutlu Baskı Teknolojilerinin Ortotik ve Prostetik Rehabilitasyona Katkıları

Yıl 2024, , 41 - 54, 30.06.2024
https://doi.org/10.46971/ausbid.1399730

Öz

Bu çalışma, 3 boyutlu (3B) baskı teknolojisinin ortez ve protez üretimindeki etkisini incelemekte ve değerlendirmektedir. Geleneksel üretim yöntemlerinin alternatifi olabilecek bu teknoloji, özellikle fonksiyonunu kaybetmiş veya eksik uzuvlara sahip bireyler için özelleştirilmiş ve uygun maliyetli yardımcı ürünlerin üretimini mümkün kılmaktadır. Makale, 3B baskı teknolojisinin temel prensiplerini, kullanılan malzemeleri ve üretim yöntemlerini ayrıntılı olarak açıklamaktadır. Ayrıca, 3B baskıyla üretilen ortez ve protezlerin rehabilitasyon süreçlerine katkılarını ve kullanıcılar üzerindeki etkilerini ele almaktadır. Çalışmada, 3B baskı teknolojisinin sağladığı hızlı üretim süreci ve uygun maliyet avantajları vurgulanmaktadır. Özellikle, hastalara özel tasarımların kolayca yapılabilmesi ve üretilebilmesi, rehabilitasyon süreçlerinde önemli bir ilerleme sağlamaktadır. Üretilen ortez ve protezlerin vücut yüzeyine tam uyum sağlaması, kullanıcıların konforunu ve işlevselliğini artırmaktadır. Ayrıca, 3B baskı teknolojisinin geleneksel üretim yöntemlerine göre daha az zaman ve kaynak kullanarak daha iyi sonuçlar elde etmeyi mümkün kıldığına dikkat çekilmektedir. Çeşitli araştırma ve uygulama örnekleri üzerinden yapılan değerlendirmeler, 3B baskı teknolojisinin mevcutta birçok ortez ve protez ile alakalı alanda kullanıldığını ortaya koymaktadır. Bu noktadan hareketle ortez ve protez alanında gelecekte daha da yaygınlaşacağını ve geleneksel üretim yöntemlerine alternatif bir çözüm olacağını göstermektedir. Sonuç olarak, bu çalışma, 3B baskı teknolojisinin temel prensiplerine değinerek ortez ve protez üretimindeki önemli potansiyelini vurgulamaktadır. Ortez ve protez alanındaki güncel çalışmaları ortaya koymakta ve 3B baskı yönteminin önemini vurgulamaktadır ve bu alandaki araştırma ve uygulamaları teşvik etmektedir.

Kaynakça

  • Alakas, H. M., Yazici, E., Ebiri, U., Kizilay, B. A., & Oruc, O. (2023). Selection of 3D printing technologies for prosthesis production with multi-criteria decision making methods. International Journal on Interactive Design and Manufacturing (IJIDeM), 18, 911–927. https://doi.org/10.1007/s12008-023-01489-0
  • Alsancak, S. (2000). Ortez ve Protez Tarihçesi, Ankara Üniversitesi Dikimevi Sağlık Hizmetleri Meslek Yüksekokul Yıllığı, 1(1).
  • Azlin, M., Ilyas, R., Zuhri, M., Sapuan, S., Harussani, M., Sharma, S., Nordin, A., Nurazzi, N., & Afiqah, A. (2022). 3D Printing and Shaping Polymers, Composites, and Nanocomposites: A Review. Polymers, 14(1), 180. https://doi.org/10.3390/polym14010180
  • Banga, H. K., Belokar, R. M., Kalra, P., & Kumar, R. (2018). Fabrication and stress analysis of ankle foot orthosis with additive manufacturing. Rapid Prototyping Journal, 24(2), 301–312. https://doi.org/10.1108/rpj-08-2016-0125
  • Campbell, T. A., & Ivanova, O. S. (2013). 3D printing of multifunctional nanocomposites. Nano Today, 8(2), 119–120. https://doi.org/10.1016/j.nantod.2012.12.002
  • Cha, Y. H., Lee, K. H., Ryu, H. J., Joo, I. W., Seo, A., Kim, D.-H., & Kim, S. J. (2017). Ankle-foot orthosis made by 3D printing technique and automated design software. Applied Bionics and Biomechanics, 9610468. https://doi.org/10.1155/2017/9610468
  • Charoo, N. A., Funkhouser, C., Kuttolamadom, M. A., Mansoor Khan, Ph. D., & Rahman, Z. (2021). Opportunities and challenges of selective laser sintering 3D printing in personalized pharmaceutical manufacturing. American Pharmaceutical Review, 46(6), 869–877. https://doi.org/10.1080/03639045.2020.1764027
  • Chen, R. K., Jin, Y., Wensman, J., & Shih, A. (2016). Additive manufacturing of custom orthoses and prostheses—a review. Additive Manufacturing, 12, 77–89. https://doi.org/10.1016/j.addma.2016.04.002
  • Derby, B., & Reis, N. (2003). Inkjet printing of highly loaded particulate suspensions. MRS Bulletin, 28(11), 815–818. https://doi.org/10.1557/mrs2003.230
  • Gibson, I., Rosen, D., Stucker, B. (2010). Direct Digital Manufacturing. In: Additive Manufacturing Technologies (pp. 378–399). Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-1120-9_14
  • Guida, P., Casaburi, A., Busiello, T., Lamberti, D., Sorrentino, A., Iuppariello, L., D’Albore, M., Colella, F., & Clemente, F. (2019). An alternative to plaster cast treatment in a pediatric trauma center using the CAD/CAM technology to manufacture customized three-dimensional-printed orthoses in a totally hospital context: A feasibility study. Journal of Pediatric Orthopaedics B, 28(3), 248–255. https://doi.org/10.1097/bpb.0000000000000589
  • Hazubski, S., Bamerni, D., & Otte, A. (2021). Conceptualization of a sensory feedback system in an anthropomorphic replacement hand. Prosthesis, 3(4), 415–427. https://doi.org/10.3390/prosthesis3040037
  • Jin, H., Xu, R., Wang, S., & Wang, J. (2019). Use of 3D-printed heel support insoles based on arch lift improves foot pressure distribution in healthy people. Medical Science Monitor, 25, 7175–7181. https://doi.org/10.12659/msm.918763
  • Khadilkar, A., Wang, J., & Rai, R. (2019). Deep learning–based stress prediction for bottom-up SLA 3D printing process. The International Journal of Advanced Manufacturing Technology, 102(5–8), 2555–2569. https://doi.org/10.1007/s00170-019-03363-4
  • Kim, S. J., Kim, S. J., Cha, Y. H., Lee, K. H., & Kwon, J. Y. (2018). Effect of personalized wrist orthosis for wrist pain with three-dimensional scanning and printing technique. Prosthetics & Orthotics International, 42(6), 636–643. https://doi.org/10.1177/0309364618785725
  • Kropla, F., Hoffmann, M., Winkler, D., Krause, M., Scholz, S., & Grunert, R. (2023). Development of an individual helmet orthosis for infants based on a 3D scan. 3D Printing in Medicine, 9(1). https://doi.org/10.1186/s41205-023-00187-7
  • Kumar Banga, H., Kalra, P., M. Belokar, R., & Kumar, R. (2021). Design and fabrication of prosthetic and orthotic product by 3D printing. IntechOpen, https://doi.org/10.5772/intechopen.94846
  • Kumar, R., & Sarangi, S. K. (2021). 3D-Printed Orthosis: A Review on Design Process and Material Selection for Fused Deposition Modeling Process. In Lecture Notes in Mechanical Engineering (pp. 531–538). Lecture Notes in Mechanical Engineering. https://doi.org/10.1007/978-981-16-0909-1_55
  • Kuo, F. L., Wu, S., Kuo, T. Y., Lee, Y.S., Huang, S. W., & Lee, H. C. (2023). Effects of 3D-printed assistive device on daily life function in patients with neurological impairment: A pilot study. Disability and Rehabilitation: Assistive Technology, 1–9. https://doi.org/10.1080/17483107.2023.2227222
  • Kuo, Y.R., Fang, J.J., Wu, C.T., Lin, R.M., Su, P.F., & Lin, C.L. (2019). Analysis of a customized cervical collar to improve neck posture during smartphone usage: A comparative study in healthy subjects. European Spine Journal, 28(8), 1793–1803. https://doi.org/10.1007/s00586-019-06022-0
  • Li J., Chen S., Shang X., Li N., Aiyiti W., & Gao F. (2022). Research Progress of Rehabilitation Orthoses Based on 3D Printing Technology: Advances in Materials Science and Engineering, 1-16. https://doi.org/10.1155/2022/5321570
  • Liu, Z., Zhang, P., Yan, M., Xie, Y., & Huang, G. (2019). Additive manufacturing of specific ankle-foot orthoses for persons after stroke: A preliminary study based on Gait Analysis Data. Mathematical Biosciences and Engineering, 16(6), 8134–8143. https://doi.org/10.3934/mbe.2019410
  • Mancuso, M., Bulzomì, R., Mannisi, M., Martelli, F., & Giacomozzi, C. (2023). 3D-printed insoles for people with type 2 diabetes: An Italian, ambulatory case report on the Innovative Care Model. Diabetology, 4(3), 339–355. https://doi.org/10.3390/diabetology4030029
  • Mannisi, M., Dell’Isola, A., Andersen, M. S., & Woodburn, J. (2019). Effect of lateral wedged insoles on the knee internal contact forces in medial knee osteoarthritis. Gait & Posture, 68, 443–448. https://doi.org/10.1016/j.gaitpost.2018.12.030
  • Marable W.R, Smith C, Sigurjónsson B.Þ, Atlason I.F, Johannesson G.A. (2020). Transfemoral socket fabrication method using direct casting: outcomes regarding patient satisfaction with device and services. Canadian Prosthetics & Orthotics Journal. 3(2) 34672. https://doi.org/10.33137/cpoj.v3i2.34672
  • Miclaus, R., Repanovici, A., & Roman, N. (2017). Biomaterials: Polylactic acid and 3D printing processes for orthosis and prosthesis. Materiale Plastice, 54(1), 98–102. https://doi.org/10.37358/mp.17.1.4794 National Center for Biotechnology Information (2024). PubChem Patent Summary for US-6027324-A, Apparatus for production of three dimensional objects by stereolithography. https://pubchem.ncbi.nlm.nih.gov/patent/US-6027324-A
  • Nicoloso, D. V., Pelz, Barrack, & Kuester. (2021). Towards 3D printing of a monocoque transtibial prosthesis using a bio-inspired design workflow. Rapid Prototyping Journal, 67-80. https://doi.org/10.1108/rpj-06-2021-0136]
  • Patel, P., & Gohil, P. (2022). Custom orthotics development process based on additive manufacturing. Materials Today: Proceedings, 59, 52-63. https://doi.org/10.1016/j.matpr.2022.04.858
  • Patpatiya, P., Chaudhary, K., Shastri, A., & Sharma, S. (2022). A review on polyjet 3D printing of polymers and multi-material structures. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 236(14), 7899–7926. https://doi.org/10.1177/09544062221079506
  • Portnova, A. A., Mukherjee, G., Peters, K. M., Yamane, A., & Steele, K. M. (2018). Design of a 3D-printed, open-source wrist-driven orthosis for individuals with Spinal Cord Injury. PLOS ONE, 13(2). https://doi.org/10.1371/journal.pone.0193106
  • Seo, K. J., Kim, B., & Mun, D. (2023). Development of customized ankle-foot-orthosis using 3D scanning and printing technologies. Journal of Mechanical Science and Technology, 37(12), 6131–6142. https://doi.org/10.1007/s12206-023-2406-1
  • Silva, A., & Guilhon, D. (2019). Comparative analysis of ankle prosthesis connector adapters in 3D printed using PLA and PETG. XXVI Brazilian Congress on Biomedical Engineering, 70(1), 155–161. https://doi.org/10.1007/978-981-13-2119-1_24
  • Tarrade, T., Doucet, F., Saint-Lô, N., Llari, M., & Behr, M. (2019). Are custom-made foot orthoses of any interest on the treatment of foot pain for prolonged standing workers?. Applied Ergonomics, 80, 130–135. https://doi.org/10.1016/j.apergo.2019.05.013
  • Thiede, S., Wiese, M., & Herrmann, C. (2021). Upscaling strategies for Polymer Additive Manufacturing: An assessment from economic and environmental perspective for SLS, MJF and DLP. Procedia CIRP, 104, 653–658. https://doi.org/10.1016/j.procir.2021.11.110
  • van der Stelt, M., Verhulst, A. C., Vas Nunes, J. H., Koroma, T. A., Nolet, W. W., Slump, C. H., Grobusch, M. P., Maal, T. J., & Brouwers, L. (2020). Improving lives in three dimensions: The feasibility of 3D printing for creating personalized medical aids in a rural area of Sierra Leone. The American Journal of Tropical Medicine and Hygiene, 102(4), 905–909. https://doi.org/10.4269/ajtmh.19-0359
  • Venumbaka, S. A., Covarubias, M., Cesaro, G., Ronca, A., De Capitani, C., Ambrosio, L., & Sorrentino, A. (2020). Application of multi materials additive manufacturing technique in the design and manufacturing of hand orthoses. Lecture Notes in Computer Science, 461–468. https://doi.org/10.1007/978-3-030-58805-2_55
  • Wang, K., Shi, Y., He, W., Yuan, J., Li, Y., Pan, X., & Zhao, C. (2018). The research on 3D printing fingerboard and the initial application on cerebral stroke patient’s hand spasm. BioMedical Engineering OnLine, 17(1). https://doi.org/10.1186/s12938-018-0522-4
  • Wang, Y., Jiang, W., Gan, Y., Yu, Y., & Dai, K. (2021). Clinical Observation of 3D Printing Technology in Insoles for Flexible Flatfoot Patients. Journal of Shanghai Jiaotong University (science), 26(3), 398–403. https://doi.org/10.1007/s12204-021-2311-7
  • Wendo, K., Barbier, O., Bollen, X., Schubert, T., Lejeune, T., Raucent, B., & Olszewski, R. (2022). Open-Source 3D Printing in the Prosthetic Field—The Case of Upper Limb Prostheses: A Review. Machines, 10(6), 413. https://doi.org/10.3390/machines10060413.
  • Wohlers T. T. & Caffrey T. (2015). Wohlers report 2015: 3D printing and additive manufacturing state of the industry annual worldwide progress report. Wohlers Associates.
  • World Health Organization. (‎2017)‎. Standards for prosthetics and orthotics. https://iris.who.int/handle/10665/259209
  • Yousif, L. E., Resan, K. K., & Fenjan, R. M. (2018). Temperature effect on mechanical characteristics of a new design prosthetic foot. International Journal of Mechanical Engineering and Technology. 9(13). 1431-1447
  • Zheng, Y., Liu, G., Yu, L., Wang, Y., Fang, Y., Shen, Y., Huang, X., Qiao, L., Yang, J., Zhang, Y., & Hua, Z. (2019). Effects of a 3D-printed orthosis compared to a low-temperature thermoplastic plate orthosis on wrist flexor spasticity in chronic hemiparetic stroke patients: A randomized controlled trial. Clinical Rehabilitation, 34(2), 194–204. https://doi.org/10.1177/0269215519885174
Toplam 43 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Yardımcı Sağlık ve Rehabilitasyon Bilimi (Diğer)
Bölüm Derleme Makaleler
Yazarlar

Serap Alsancak 0000-0002-3987-670X

Ahmet Gökhan Acar 0000-0003-0731-6668

Ali Koray Özgün 0000-0002-7748-896X

Yayımlanma Tarihi 30 Haziran 2024
Gönderilme Tarihi 12 Aralık 2023
Kabul Tarihi 29 Haziran 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Alsancak, S., Acar, A. G., & Özgün, A. K. (2024). 3 Boyutlu Baskı Teknolojilerinin Ortotik ve Prostetik Rehabilitasyona Katkıları. Ankara Sağlık Bilimleri Dergisi, 13(1), 41-54. https://doi.org/10.46971/ausbid.1399730

2560px-CC_BY-NC-ND.svg.png

Ankara Sağlık Bilimleri Dergisinde (Journal of Ankara Health Sciences) yayımlanan çalışmaların telif hakları dergimizde olup, yayınlanan çalışmalar CC BY-NC-ND 4.0 lisansı altında açık erişim olarak yayımlanmaktadır. Yayımlanmak üzere kabul edilen çalışmaların her türlü yayın hakkı dergiyi yayımlayan kuruma aittir.

Makale gönderme süreçleri ve "Telif Hakkı Devir Formu" hakkında yardım almak için tıklayınız.